Research Article

Partition Dimension of Generalized Petersen Graph

Hassan Raza, Jia-Bao Liu, Muhammad Azeem, and Muhammad Faisal Nadeem

1Business School, University of Shanghai for Science and Technology, Shanghai 200000, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
3Department of Mathematics, Riphah Institute of Computing and Applied Sciences, Riphah International University, Lahore, Pakistan
4Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Correspondence should be addressed to Hassan Raza; hassan_raza783@yahoo.com

Received 16 February 2021; Accepted 5 April 2021; Published 29 October 2021

Copyright © 2021 Hassan Raza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $G = (V_G, E_G)$ be the connected graph. For any vertex $i \in V_G$ and a subset $B \subseteq V_G$, the distance between i and B is $d(i, B) = \min\{d(i, j) | j \in B\}$. The ordered k-partition of V_G is $\Pi = \{B_1, B_2, \ldots, B_k\}$. The representation of vertex i with respect to Π is the k-vector, that is, $r(i|\Pi) = (d(i, B_1), d(i, B_2), \ldots, d(i, B_k))$. The partition Π is called the resolving (distinguishing) partition if $r(i|\Pi) \neq r(j|\Pi)$, for all distinct $i, j \in V_G$. The minimum cardinality of the resolving partition is called the partition dimension, denoted as $pd(G)$. In this paper, we consider the upper bound for the partition dimension of the generalized Petersen graph in terms of the cardinalities of its partite sets.

1. Introduction

The graphs considered are simple, undirected, and without loops. The classical distance $d(i, j)$ between the two vertices $i, j \in V_G$ is the length of the shortest path between them. For an ordered set $R = \{\ell_1, \ell_2, \ldots, \ell_k\} \subseteq V_G$, the ordered k-tuple,

$$r(i|R) = (d(i, \ell_1), d(i, \ell_2), \ldots, d(i, \ell_k)),$$

is known as metric representation of i with respect to R. When the vertices of the graph G have distinct representation, the set R is termed as the resolving (distinguishing) set which contains minimum number of vertices. The minimum cardinality of such a resolving set is the metric dimension of the G, denoted as $\text{dim}(G)$. Slater introduced this concept in 1975 [1], after which Melter and Harary independently renamed it the resolving set [2]. In the graph’s theoretical study, this concept is called a metric basis or basis set. The concept of metric dimension does find applications in chemistry [3], else problem concerning pattern recognition and image processing, some involves the utilization of hierarchical data structures [4].

For an ordered-partition $\Pi = B_1, B_2, \ldots, B_k \subseteq V_G$, the partition representation of the vertex $i \in V_G$ with respect to Π is

$$r(i|\Pi) = (d(i, B_1), d(i, B_2), \ldots, d(i, B_k)),$$

where $d(i, B_h)(1 \leq h \leq k)$ denotes the distance between the vertex i and B_h, that is,

$$d(i, B_h) = \min\{d(i, j) | j \in B_h\}.$$

We can affirm that Π is the resolving partition of the graph G if different vertices have unique partition representation, that is, $r(i|\Pi) \neq r(j|\Pi)$, where $i, j \in V_G$. The partition dimension of the graph G is than the minimum number of resolving partition set in G. It is denoted as $pd(G)$. This concept was introduced by Chartrand et al. in 2000 [5].

The concept of resolving partition sets and partition dimensions extensively appeared in the literature. For example, the graph with partition dimension $|V| - 3$ is discussed [6] and the graph obtained by graph operations and its corresponding partition dimension is studied in [7]. The
bounds on the partition dimension for convex polytopes are studied in [8–10] and bounds of partition on the circulant and multipartite discussed in [11, 12]. The partition dimension of chemical structure fullerene graphs is studied in [13], and on the bounded partition, dimension of the Cartesian product of graphs are studied in [14]. Furthermore, in [15], yielded bounds for the subdivision of different graphs, than in [16] presented the bounds on tree graphs. The bounds of unicyclic graphs in the form of subgraphs are considered in [17]. For more recent literature and results, we refer to see [18–24]. The graph obtained by graph operations and its corresponding partition dimension is considered in [7]. The relation between the metric dimension and partition dimension in a connected graph G is represented as follows.

Theorem 1 (see [3]). For a nontrivial connected graph G,

\[\dim(G) \leq \text{pd}(G) + 1. \]

Some of the known results are related to the parameter of partition dimension of the graphs.

Theorem 2 (see [5]). Let \(\Pi \) be a partition resolving set of \(V(G) \) and \(i, j \in V(G) \). If \(d(i, m) = d(j, m) \), for all vertices \(m \in V(G) \setminus (i, j) \), then \(i, j \) belongs to different subsets of \(G \).

Theorem 3 (see [5]). Let \(G \) be a simple and connected graph, then,

(i) \(\text{pd}(G) \) is two iff \(G \) is the only path graph

(ii) \(\text{pd}(G) \) is \(|G| \) iff \(G \) is a complete graph

2. **Generalized Petersen Graph** \(P_{n,k} \)

Generalized Petersen graph \(P_{n,k} \), where \(n \geq 3 \) and \(1 \leq k \leq \lfloor (n-1)/2 \rfloor \), is a graph having the vertex set

\[V(P_{n,k}) = \{a_j, b_j : j = 1, 2, \ldots, n\}, \]

and the edge set

\[E(P_{n,k}) = \{a_j, a_{j+1}, b_j, b_{j+k}, a_j b_j : j = 1, 2, \ldots, n\}. \]

Petersen graph is a cubic graph, and it has three types of edges according to the definition of generalized Petersen graphs; the edges between the vertices \(a_j \) and \(a_{j+1} \) are called outer edges, the edges produced by the vertices \(b_j \) and \(b_{j+k} \) are called inner edges, and the edges created by \(a_j \) and \(b_j \) are called spokes. The vertices \(a_j \) are called outer vertices and \(b_j \) are known as the inner vertices. The generalized Petersen graph \(P_{12,4} \) is shown in Figure 1. The study on the resolving set and metric dimension of Petersen and generalized Petersen graphs, and we refer the readers to [25–27]. Motivated by these results on the metric dimension of the generalized Petersen graphs, we study the problem of partition dimension and have shown the sharp upper bound.

Let \(m > 0 \) be the positive integer called the modulus. We can say that two integers \(x \) and \(y \) are congruent modulo \(m \) if \(y - x \) is divisible by \(m \). It can be written as follows.

\[x = y \text{(mod} m) \Leftrightarrow x - y = m k, \text{ for some positive integer } k.\]

The symbol \(y \text{(MOD} m) \) denotes the smallest positive integer \(x \).

\[x \equiv y \text{(MOD} m) \]

where \(y \text{(MOD} m) \) is the remainder when \(y \) is divided by \(m \) as many times as possible.

The difference between \(\text{MOD} m \) and \(\text{mod} m \) is the first one is the equality relation, while the second one is the equivalence relation.

In this paper, we employed the equivalence relation because it can have many solutions for \(x \). The partition dimension of the generalized Petersen graph is solved while taking the (mod 4), that is, for \(n = 0, 1, 2, 3 \text{(mod} 4) \).

3. **Results on the Generalized Petersen Graph** \(P_{n,k} \)

In this section, we provide sharp bounds on the partition dimension of the generalized Petersen graph \(P_{n,k} \).

In the following section, \(g = \lfloor j/2 \rfloor, \kappa = \lceil \ell/2 \rceil, \) and \(p \) is 1 if the representation of the vertices belongs to the \(\Pi \setminus B_k \) or \(B_1, B_2, B_3 \), otherwise 0.

Theorem 4. Let \(P_{n,k} \) is a generalized Petersen graph of order \(n \geq 20 \), when \(n \equiv 0 \text{(mod} 4) \). Then, \(\text{pd}(P_{n,k}) \leq 4 \).

Proof. Let \(n = 4 j \), where \(j \geq 7 \in \mathbb{Z}^+ \). The proof is exhibited by considering two cases. \(\square \)

Case 1. When \(j \) is odd.

Assume the partition resolving set \(\Pi = \{B_1, B_2, B_3, B_4\} \), where \(B_1 = \{\beta_1\} \), \(B_2 = \{\alpha_3\} \), \(B_3 = \{\beta_{\kappa-2}\} \), and \(B_4 = V(P_{n,k}) \setminus \{\beta_1, \alpha_3, \beta_{\kappa-2}\} \). Now, we exhibit the representations of vertices of \(P_{n,k} \) with respect to \(\Pi \).

The representations of the outer vertices; \(r(\alpha_{4j+1}|\Pi) = (\ell + 1, 2, \ell + 3, p) \) if \(\ell = 0, 1; \) \(r(\alpha_{4j+1}|\Pi) = (\ell + 1, \ell + 3, \ell + 3, p) \) if \(\ell = 2, \ldots, g - 1; \) \(r(\alpha_{4j+1}|\Pi) = (\ell + 1, \ell + 3, \ell + 2, p) \) if \(\ell = g \).
\[\ell = g: \quad r(\alpha_{4t+1}[\Pi]) = (j - \ell + 1, j - \ell + 4, j - \ell + 1, p) \quad \text{if } \ell = g + 1, \ldots, j - 1: \]

\[
\begin{align*}
r(\alpha_{4t+1}^\ell[\Pi]) &= \begin{cases}
(\ell + 2, 2\ell + 1, \ell + 2, 0), & \text{if } \ell = 0, 1, \\
(\ell + 2, \ell + 3, \ell + 1, 0), & \text{if } \ell = 2, \ldots, g - 1, \\
(\ell + 2, \ell + 3, \ell + 1, 0), & \text{if } \ell = g, \\
(j - \ell + 2, j - \ell + 3, j - \ell, 0), & \text{if } \ell = g + 1, \ldots, j - 1.
\end{cases}
\end{align*}
\]

Further representation of outer vertices are \(r(\alpha_{4t+4}^\ell[\Pi]) = (3, 1, 4, p)\) if \(\ell = 0\), \(r(\alpha_{4t+3}^\ell[\Pi]) = (\ell + 3, \ell + 3, \ell + 4, p)\) if \(\ell = 1, 2, \ldots, g - 1\), \(r(\alpha_{4t+2}^\ell[\Pi]) = (\ell + 2, \ell + 3, \ell + 2, p)\) if \(\ell = g\), \(r(\alpha_{4t+1}^\ell[\Pi]) = (j - \ell + 1, j - \ell + 3, j - \ell + 1, p)\) if \(\ell = g + 1, \ldots, j - 2\), and \(r(\alpha_{4t+1}^\ell[\Pi]) = (2, 3, 3, p)\) if \(\ell = j - 1\).

The above representations indicate that there exist two no vertices having the exact representation in the outer cycle. Now, the representations of the inner vertices are shown:

\[
\begin{align*}
r(\beta_{4t+1}^\ell[\Pi]) &= \begin{cases}
(\ell, \ell + 2, \ell + 4, p), & \text{if } \ell = 0, 1, \ldots, g - 1, \\
(\ell, \ell + 2, \ell + 3, 0), & \text{if } \ell = g, \\
(j - \ell, j - \ell + 3, j - \ell + 2, 0), & \text{if } \ell = g + 1, \ldots, j - 1.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
r(\beta_{4t+2}^\ell[\Pi]) &= \begin{cases}
(\ell + 3, \ell + 2, \ell + 1, 0), & \text{if } \ell = 0, 1, \ldots, g - 1, \\
(\ell + 3, \ell + 2, \ell, 0), & \text{if } \ell = g, \\
(j - \ell + 3, j - \ell + 2, j - \ell - 1, p), & \text{if } \ell = g + 1, \ldots, j - 1.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
r(\beta_{4t+3}^\ell[\Pi]) &= \begin{cases}
(\ell + 4, \ell + 1, \ell + 4, p), & \text{if } \ell = 0, 1, \ldots, g - 1, \\
(\ell + 4, \ell + 1, \ell + 3, p), & \text{if } \ell = g, \\
(j - \ell + 3, j - \ell + 1, j - \ell + 2, p), & \text{if } \ell = g + 1, \ldots, j - 1.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
r(\beta_{4t+4}^\ell[\Pi]) &= \begin{cases}
(\ell + 4, \ell + 2, \ell + 5, p), & \text{if } \ell = 0, 1, \ldots, g - 1, \\
(\ell + 3, \ell + 2, \ell + 3, p), & \text{if } \ell = g, \\
(j - \ell + 2, j - \ell + 2, j - \ell + 2, p), & \text{if } \ell = g + 1, \ldots, j - 2, \\
(3, 3, 4, p), & \text{if } \ell = j - 1.
\end{cases}
\end{align*}
\]

From the representation of inner vertices, it is evident that no two vertices have the exact representation in the inner cycle.

Case 2. When \(j\) is even.

Let the partition resolving set be \(\Pi = \{B_1, B_2, B_3, B_4\}\), where \(B_1 = \{\beta_1\}\), \(B_2 = \{\alpha_1\}\), \(B_3 = \{\beta_2, \alpha_1\}\), and
\[B_4 = V(P_{n,k}) \setminus \{ \beta_1, \alpha_2, \beta_2j+1 \} \]; the following are the representations of the entire vertex set of \(P_{n,k} \) with respect to \(\Pi \).

\[
\begin{align*}
\text{The representation of the outer vertices:}
\end{align*}
\]

\[
r(\alpha_{4\ell_1}) & = \begin{cases}
(1, 5, \frac{j + 2}{2}, 0), & \text{if } \ell = 0, \\
(\ell + 1, 2, \frac{j - 2\ell + 2}{2}, 0), & \text{if } \ell = 1, 2, \\
(\ell + 1, \ell + 2, \frac{j - 2\ell + 2}{2}, 0), & \text{if } \ell = 3, \ldots, \frac{j}{2}, \\
(\ell - 1, \ell + 2, 2, 0), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 1, j - \ell + 5, \frac{2\ell - j + 2}{2}, 0), & \text{if } \ell = \frac{j + 4}{2}, \ldots, j - 1,
\end{cases}
\]

\[
r(\alpha_{4\ell_2}) & = \begin{cases}
(2, 4, \frac{j + 4}{2}, 0), & \text{if } \ell = 0, \\
(\ell + 2, 2\ell - 1, \frac{j - 2\ell + 4}{2}, 0), & \text{if } \ell = 1, 2, \\
(\ell + 2, \ell + 2, \frac{j - 2\ell + 4}{2}, 0), & \text{if } \ell = 3, \ldots, \frac{j}{2}, \\
(j - \ell + 2, j - \ell + 4, \frac{2\ell - j + 4}{2}, 0), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1,
\end{cases}
\]

\[
r(\alpha_{4\ell_3}) & = \begin{cases}
(3, 3, \frac{j + 4}{2}, 0), & \text{if } \ell = 0, \\
(\ell + 3, \ell + 1, \frac{j - 2\ell + 4}{2}, 0), & \text{if } \ell = 2, 3, \ldots, \frac{j - 2}{2}, \\
(\ell + 2, \ell + 1, 3, 0), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 2, j - \ell + 3, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1,
\end{cases}
\]

\[
r(\alpha_{4\ell_4}) & = \begin{cases}
(\ell + 3, 3 - 2\ell, \frac{j - 2\ell + 2}{2}, 0), & \text{if } \ell = 0, 1, \\
(\ell + 3, \ell + 2, \frac{j - 2\ell + 2}{2}, 0), & \text{if } \ell = 2, \ldots, \frac{j - 2}{2}, \\
(\ell + 1, \ell + 2, 3, 0), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 1, j - \ell + 4, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1.
\end{cases}
\]
The representation of outer vertices within themselves is unique, with no two vertices consisting of the exact representation.

Now, we exhibit the representations of the inner vertices:

$r(\beta_{4\ell+1}[\Pi]) = \begin{cases}
(1, 3, \frac{j-2}{2}, p), & \text{if } \ell = 1, \\
(\ell, \ell + 1, \frac{j-2\ell}{2}, p), & \text{if } \ell = 2, \ldots, \frac{j-2}{2}, \\
(j - \ell, \ell + 1, 1, p), & \text{if } \ell = \frac{j+2}{2}, \\
(j - \ell, j - \ell + 4, \frac{2\ell-j}{2}, p), & \text{if } \ell = \frac{j+4}{2}, \ldots, j-1,
\end{cases}$

$r(\beta_{4\ell+2}[\Pi]) = \begin{cases}
(3, 3, \frac{j+6}{2}, p), & \text{if } \ell = 0, \\
(\ell + 3, \ell + 1, \frac{j-2\ell+6}{2}, p), & \text{if } \ell = 1, 2, \ldots, \frac{j}{2}, \\
(j - \ell + 3, j - \ell + 3, \frac{2\ell-j+6}{2}, p), & \text{if } \ell = \frac{j+2}{2}, \ldots, j-1,
\end{cases}$

$r(\beta_{4\ell+3}[\Pi]) = \begin{cases}
(4, 2, \frac{j+6}{2}, p), & \text{if } \ell = 0, \\
(\ell + 4, \ell, \frac{j-2\ell+6}{2}, p), & \text{if } \ell = 1, 2, 3, \ldots, \frac{j-2}{2}, \\
(\ell + 3, \ell, 4, p), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 3, j - \ell + 2, \frac{2\ell-j+8}{2}, p), & \text{if } \ell = \frac{j+2}{2}, \ldots, j-1,
\end{cases}$

$r(\beta_{4\ell+4}[\Pi]) = \begin{cases}
(4, 3, \frac{j+4}{2}, p), & \text{if } \ell = 0, \\
(\ell + 4, \ell + 1, \frac{j-2\ell+4}{2}, p), & \text{if } \ell = 1, 2, 3, \ldots, \frac{j-2}{2}, \\
(\ell + 2, \ell + 1, 4, p), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 2, j - \ell + 3, \frac{2\ell-j+8}{2}, p), & \text{if } \ell = \frac{j+2}{2}, \ldots, j-1.
\end{cases}$
The representations indicate that no two inner vertices among them have the exact representation.

The outer and inner vertices in the graph of $P_{n,k}$ have distinct representations. Thus, $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}$, $B_2 = \{\alpha_3\}$, $B_3 = \{\beta_{n-2}\}$, and $B_4 = V(P_{n,k}) \setminus \{\beta_1, \alpha_3, \beta_{n-2}\}$ is the partition resolving set for odd j. Moreover, $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}$, $B_2 = \{\alpha_3\}$, $B_3 = \{\beta_{j+1}\}$, and $B_4 = V(P_{n,k}) \setminus \{\beta_1, \alpha_3, \beta_{j+1}\}$ is the partition resolving for even j. Hence,

$$\text{pd}(P_{n,k}) \leq 4. \quad (11)$$

From the following theorem p is 1, if the representation of the vertices belongs to the $\Pi \setminus B_2$ or B_1, B_2, B_3, B_4, otherwise $p = 0$.

Case 3. Let the partition resolving set be $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}$, $B_2 = \{\alpha_3\}$, $B_3 = \{\beta_3\}$, $B_4 = \{\alpha_5\}$, and $B_5 = V(P_{n,k}) \setminus \{\beta_1, \alpha_3, \beta_3, \alpha_5\}$; the following are the representations of the entire vertex set of $P_{n,k}$ with respect to Π.

The representation of the outer vertices:

Theorem 5. Let $P_{n,k}$ is a generalized Petersen graph with $n \geq 17$, $n \equiv 1 \pmod{4}$. Then, $\text{pd}(P_{n,k}) \leq 5$.

Proof. Let $n = 4j + 1$, $j \geq 4, \in \mathbb{Z}^+$. \hfill \Box

The representation of outer vertices between them is distinct concerning Π.

The representation of the inner vertices:

$$r(\alpha_{4\ell+1}|\Pi) = \begin{cases} (1,1,3,3,0), & \text{if } \ell = 0, \\ (\ell + 1, \ell + 3, \ell + 2, \ell + 1, 0), & \text{if } \ell = 2, \ldots, g, \\ (j - \ell + 2, j - \ell + 4, j - \ell + 3, 2\ell - g, 0), & \text{if } \ell = g + 1, \\ (2,2,3,4,0), & \text{if } \ell = j, \\ (3,3,3,1,0), & \text{if } \ell = 1, \\ (\ell + 2, \ell + 2, \ell + 2, \ell + 2, 0), & \text{if } \ell = 2, 3, \ldots, g - 1, \\ (j - \ell + 1, 2\ell - g + 2, 2\ell - g + 2, 2\ell - g + 2, 0), & \text{if } \ell = g, \\ (j - \ell + 1, j - \ell + 3, j - \ell + 3, j - \ell + 3, 0), & \text{if } \ell = g + 1, \ldots, j - 1, \\ (3 + \ell, 3\ell + 1, \ell + 1, 2, 0), & \text{if } \ell = 0, 1, \\ (\ell + 3, \ell + 3, \ell + 1, \ell + 3, 0), & \text{if } \ell = 2, \ldots, g - 1, \\ (j - \ell + 2, j - \ell + 2, 2\ell - g + 1, 2\ell - g + 3, 0), & \text{if } \ell = g, \\ (j - \ell + 2, j - \ell + 2, j - \ell + 2, j - \ell + 4, 0), & \text{if } \ell = g + 1, \ldots, j - 1, \\ (3 + \ell, 3\ell + 2, 2\ell + 1), & \text{if } \ell = 0, 1, \\ (\ell + 3, \ell + 4, \ell + 2, \ell + 3, 0), & \text{if } \ell = 2, \ldots, g - 1, \\ (j - \ell + 2, j - \ell + 3, j - \ell + 1, 2\ell - g + 3, 0), & \text{if } \ell = g, \\ (j - \ell + 2, j - \ell + 3, j - \ell + 1, j - \ell + 4, 0), & \text{if } \ell = g + 1, \ldots, j - 2, \\ (3,3,2,5,p), & \text{if } \ell = j - 1. \\ \end{cases} \quad (12)$$

The representation of outer vertices between them is distinct concerning Π.
The inner vertices have unique representation with respect to Π. Moreover, the outer and inner vertices have distinct representation among them. Thus, $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}$, $B_2 = \{\alpha_2\}$, $B_3 = \{\beta_3\}$, $B_4 = \{\alpha_5\}$, and $B_5 = V(P_{n,k}) \setminus \{\beta_1, \alpha_2, \beta_3, \alpha_5\}$, is the partition resolving set for $n = 4j + 1$. Hence,

$$\text{pd}(P_{n,k}) \leq 5. \quad \text{(14)}$$

Theorem 6. Let $P_{n,k}$ be a generalized Petersen graph with $n \geq 18$, when $n \equiv 2 \pmod{4}$. Then, $\text{pd}(P_{n,k}) \leq 5$.

Proof. Let $n = 4j + 2$, $j \geq 7 \in \mathbb{Z}^+$. The proof is split into two cases.

Case 4. When j is odd.

Let the partition resolving set be $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}$, $B_2 = \{\alpha_2\}$, $B_3 = \{\beta_3\}$, $B_4 = \{\alpha_5\}$, and $B_5 = V(P_{n,k}) \setminus \{\beta_1, \alpha_2, \beta_3, \alpha_5\}$.

The representation of the outer vertices:
The representation of the outer cycle vertices is distinct concerning Π.

Now, the representation of the inner vertices:

\[
\begin{align*}
 r(\beta_{\ell_1\ell_1}[\Pi]) &= \begin{cases}
(1, 3, g + 2, g + 1, p), & \text{if } \ell = 1, \\
(\ell, \ell + 2, g - \ell + 4, g - \ell + 2, p), & \text{if } \ell = 2, 3, \ldots, g, \\
(\ell, j - \ell + 2, \ell - g + 3, \ell - g, p), & \text{if } \ell = g + 1, g + 2, \\
(j - \ell + 4, j - \ell + 2, \ell - g + 3, \ell - g, p), & \text{if } \ell = g + 3, g + 4, \ldots, j - 2, \\
(j - \ell + 4, j - \ell + 2, j - \ell + 1, \ell - g, p), & \text{if } \ell = j - 1, j, \\
(\ell + 3, \ell + 2, g - \ell + 3, g - \ell + 3, p), & \text{if } \ell = 0, 1, \ldots, g, \\
(j - \ell + 3, j - \ell + 3, \ell - g + 3, \ell - g + 1, p), & \text{if } \ell = g + 1, \ldots, j, \\
(4, 1, g, g + 2, p), & \text{if } \ell = 0, \\
(\ell + 4, \ell + 1, g - \ell, g - \ell + 3, p), & \text{if } \ell = 1, 2, \ldots, g - 2, \\
(\ell + 3, \ell + 1, 1, 4, p), & \text{if } \ell = g - 1, \\
(j - \ell, j - \ell + 2, 1, 3, p), & \text{if } \ell = g + 1, \\
(j - \ell, j - \ell + 3, \ell - g, \ell - g + 2, p), & \text{if } \ell = g + 2, \ldots, j - 1, \\
(\ell + 4, \ell + 2, g - \ell + 3, g - \ell + 2, p), & \text{if } \ell = 0, 1, \ldots, g, \\
(j - \ell + 3, j - \ell + 2, \ell - g + 3, \ell - g + 2, p), & \text{if } \ell = g + 1, g + 2, \ldots, j - 1.
\end{cases}
\end{align*}
\]

The representations of inner cycle vertices with respect to Π are distinct. Both the outer and inner cycle vertices show distinct representations. Thus, $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}, B_2 = \{\alpha_3\}, B_3 = \{\beta_{2j+1}\}, B_4 = \{\alpha_{2j+3}\}$, and $B_5 = V(P_{n,k}\setminus\{\beta_1, \alpha_3, \beta_{2j+1}, \alpha_{2j+3}\})$, is the partition resolving set when j is odd.

Case 5. When j is even.

Let the partition resolving set be $\Pi = \{B_1, B_2, B_3, B_4\}$, where $B_1 = \{\beta_1\}, B_2 = \{\alpha_3\}, B_3 = \{\beta_{2j+1}\}, B_4 = \{\alpha_{2j+3}\}$, and $B_5 = V(P_{n,k}\setminus\{\beta_1, \alpha_3, \beta_{2j+1}, \alpha_{2j+3}\})$.

The representation of the outer vertices:

\[
\begin{align*}
 r(\alpha_{4\ell_1\ell_1}[\Pi]) &= \begin{cases}
\left(\ell + 1, \frac{j - 2\ell + 2}{2}, \frac{j - 2\ell + 6}{2}, 0\right), & \text{if } \ell = 0, 1, \\
\left(\ell + 1, \ell + 3, \frac{j - 2\ell + 2}{2}, \frac{j - 2\ell + 6}{2}, 0\right), & \text{if } \ell = 2, 3, \ldots, \frac{j}{2}, \\
\left(j - \ell + 3, j - \ell + 3, \frac{2\ell - j + 2}{2}, \frac{2\ell - j + 2}{2}, 0\right), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j, \\
\left(\ell + 2, 2\ell + 1, \frac{j - 2\ell + 4}{2}, \frac{j + 6}{2}, 0\right), & \text{if } \ell = 0, 1, \\
\left(\ell + 2, \ell + 3, \frac{j - 2\ell + 4}{2}, \frac{j - 2\ell + 8}{2}, 0\right), & \text{if } \ell = 2, 3, \ldots, \frac{j - 2}{2}, \\
\left(j - \ell + 2, j + 6, \frac{2\ell - j + 4}{2}, \frac{j - 2\ell + 4}{2}, 0\right), & \text{if } \ell = \frac{j + 2}{2}, \\
\left(j - \ell + 2, j + 6, \frac{2\ell - j + 4}{2}, \frac{j - 2\ell + 4}{2}, 0\right), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1, \\
\left(2, 3, \frac{j + 4}{2}, \frac{j + 4}{2}, p\right), & \text{if } \ell = j.
\end{cases}
\end{align*}
\]
The representations of the outer cycle vertices are distinct concerning Π.

Now, the representations of the inner vertices:

$$r(\alpha_{4\ell+1}|\Pi) = \begin{cases}
(\ell + 3, \ell + 2, j - 2\ell + 4, j - 2\ell + 8, p), & \text{if } \ell = 0, \ldots, \frac{j - 2}{2}, \\
(j - \ell + 1, \ell + 2, \frac{2\ell - j + 6}{2}, 2, 0), & \text{if } \ell = \frac{j + 2}{2}, \\
(j - \ell + 1, j - \ell + 4, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 4}{2}, \ldots, j - 1, \\
(3, 1, \frac{j + 2}{2}, \frac{j + 6}{2}, p), & \text{if } \ell = 0,
\end{cases}$$

$$r(\alpha_{4l+2}|\Pi) = \begin{cases}
\ell + 3, \ell + 3, j - 2\ell + 2, j - 2\ell + 6, 0, & \text{if } \ell = 1, \ldots, \frac{j - 2}{2}, \\
(j - \ell + 2, j - \ell + 3, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 2}{2}, \\
(j - \ell + 2, j - \ell + 3, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 4}{2}, \ldots, j - 1.
\end{cases}$$

$$r(\beta_{4\ell+1}|\Pi) = \begin{cases}
(\ell, \ell + 2, \frac{j - 2\ell}{2}, \frac{j - 2\ell + 4}{2}, p), & \text{if } \ell = 1, \ldots, \frac{j - 2}{2}, \\
(\ell, 1, 1, p), & \text{if } \ell = \frac{j + 2}{2}, \\
(j - \ell + 4, j - \ell + 2, \frac{2\ell - j}{2}, \frac{2\ell - j}{2}, p), & \text{if } \ell = \frac{j + 4}{2}, \ldots, j,
\end{cases}$$

$$r(\beta_{4\ell+2}|\Pi) = \begin{cases}
(3, \frac{j + 4}{2}, \frac{j + 6}{2}, p), & \text{if } \ell = 0, \\
(\ell + 3, \ell + 2, \frac{j - 2\ell + 6}{2}, \frac{j - 2\ell + 6}{2}, p), & \text{if } \ell = 1, \ldots, \frac{j}{2}, \\
(j - \ell + 3, j - \ell + 3, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 2}{2}, p), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j.
\end{cases}$$

$$r(\beta_{4\ell+3}|\Pi) = \begin{cases}
(4, \frac{j + 2}{2}, \frac{j + 2}{2}, p), & \text{if } \ell = 0, \\
(\ell + 4, \ell + 1, \frac{j - 2\ell + 6}{2}, \frac{j - 2\ell + 6}{2}, p), & \text{if } \ell = 1, \ldots, \frac{j - 4}{2}, \\
(j - \ell, \ell + 1), & \text{if } \ell = \frac{j - 2}{2}, \\
(4, \frac{j - 2\ell + 6}{2}, p), & \text{if } \ell = \frac{j - 2}{2}, \\
(j - \ell, j - \ell + 3, \frac{2\ell - j + 8}{2}, \frac{2\ell - j + 4}{2}, p), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 2, \\
(1, \frac{2\ell - j + 4}{2}, \frac{2\ell - j + 4}{2}, p), & \text{if } \ell = j - 1.
\end{cases}$$
The representations of the inner cycle vertices are distinct. Also, outer and inner vertices are distinct as well with respect to Π. Thus, Π = \{B_1, B_2, B_3, B_4\}, where \(B_1 = \{\beta_1\}, B_2 = \{\alpha_3\}, B_3 = \{\beta_{j+1}\}, B_4 = \{\alpha_{j+2}\}\), and \(B_5 = V(P_{n,k})\) \{\beta_1, \alpha_3, \beta_{j+1}, \alpha_{j+2}\}, is the partition resolving set, when \(j\) is even. From above facts, we have
\[
\text{pd}(P_{n,k}) \leq 5. \tag{21}
\]

Theorem 7. Let \(P_{n,k}\) be a generalized Petersen graph with \(n \geq 19\) and \(n \equiv 3 \pmod{4}\). Then, \(\text{pd} \ (P_{n,k}) \leq 5\).

\[
r(\beta_{4\ell+4}[\Pi]) = \begin{cases}
(\ell + 4, \ell + 2, \frac{j - 2\ell + 4}{2}, \frac{2\ell - j + 4}{2}, p), & \text{if } \ell = 0, 1, \ldots, \frac{j - 2}{2}, \\
(j - \ell + 3, j - \ell + 2, \frac{2\ell - j + 8}{2}, \frac{2\ell - j + 4}{2}, p), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1.
\end{cases}
\] \(\tag{20}\)

Proof. When \(n = 3 \pmod{4}, n = 4j + 3,\) and \(j \geq 7 \in \mathbb{Z}^+\). The proof is divided in two cases.

Case 6. When \(j\) is odd.

Let the partition resolving set be \(\Pi = \{B_1, B_2, B_3, B_4\}\), where \(B_1 = \{\beta_1\}, B_2 = \{\alpha_3\}, B_3 = \{\beta_{j+1}\}, B_4 = \{\alpha_{j+2}\}\), and \(B_5 = V(P_{n,k})\) \{\beta_1, \alpha_3, \beta_{j+1}, \alpha_{j+2}\}. The representation of vertices with respect to \(\Pi\) is presented.

The representations of the outer vertices:

\[
r(\alpha_{4\ell+1}[\Pi]) = \begin{cases}
(\ell + 1, 2, g - \ell + 3, g + 3, 0), & \text{if } \ell = 0, 1, \\
(\ell + 1, \ell + 3, g - \ell + 3, g - \ell + 4, 0), & \text{if } \ell = 2, \ldots, g - 1, \\
(\ell + 1, \ell + 3, j - 2\ell + 2, 0), & \text{if } \ell = g, g + 1, \\
(j - \ell + 3, j - \ell + 4, \ell - g + 2, \ell - g + 2, 0), & \text{if } \ell = g + 2, \ldots, j.
\end{cases}
\] \(\tag{22}\)

\[
r(\alpha_{4\ell+2}[\Pi]) = \begin{cases}
(\ell + 2, 2\ell + 1, g - \ell + 2, g - \ell + 4, p), & \text{if } \ell = 0, 1, \\
(\ell + 2, \ell + 3, g - \ell + 2, g - \ell + 4, p), & \text{if } \ell = 2, \ldots, g - 1, \\
(\ell + 2, g + 3, \ell - g + 2, 0), & \text{if } \ell = g, g + 1, \\
(j - \ell + 3, j - \ell + 3, \ell - g + 2, \ell - g + 3, p), & \text{if } \ell = g + 2, \ldots, j - 1, \\
(3, 3, g + 2, g + 4, p), & \text{if } \ell = j.
\end{cases}
\] \(\tag{23}\)

\[
r(\alpha_{4\ell+3}[\Pi]) = \begin{cases}
(\ell + 3, \ell + 2, g - \ell + 1, g - \ell + 3, 0), & \text{if } \ell = 1, 2, \ldots, g - 1, \\
(j - \ell + 2, \ell + 2, \ell - g + 1, 2\ell - j + 2, 0), & \text{if } \ell = g, g + 1, \\
(j - i + 2, j - \ell + 4, \ell - g + 1, \ell - g + 3, 0), & \text{if } \ell = g + 2, \ldots, j - 1, \\
(2, 3, g + 2, g + 3, 0), & \text{if } \ell = j.
\end{cases}
\] \(\tag{24}\)

\[
r(\alpha_{4\ell+4}[\Pi]) = \begin{cases}
(3, 1, g + 2, g + 2, 0), & \text{if } \ell = 0, \\
(\ell + 3, \ell + 3, g - \ell + 2, g - \ell + 2, 0), & \text{if } \ell = 1, 2, \ldots, g - 1, \\
(j - \ell + 1, j - \ell + 4, \ell - g + 2, \ell - g + 2, 0), & \text{if } \ell = g + 1, \ldots, j - 1.
\end{cases}
\] \(\tag{25}\)

The representation of the outer cycle vertices with respect to \(\Pi\) is distinct.

Now, the representation of the inner vertices:

\[
r(\beta_{4\ell+1}[\Pi]) = \begin{cases}
(\ell, \ell + 2, g - \ell + 4, g - \ell + 3, p), & \text{if } \ell = 1, 2, \ldots, g, \\
(\ell, j - \ell + 3, \ell - g + 3, \ell - g + 1, p), & \text{if } \ell = g + 1, g + 2, \\
(j - \ell + 4, j - \ell + 3, \ell - g + 3, \ell - g + 1, p), & \text{if } \ell = g + 3, g + 4, \ldots, j.
\end{cases}
\] \(\tag{26}\)

\[
r(\beta_{4\ell+2}[\Pi]) = \begin{cases}
(\ell + 3, \ell + 2, g - \ell + 3, g - \ell + 3, p), & \text{if } \ell = 0, 1, \ldots, g, \\
(j - \ell + 4, j - \ell + 2, \ell - g + 3, \ell - g + 2, p), & \text{if } \ell = g + 1, g + 2, \ldots, j - 2, \\
(j - \ell + 4, j - \ell + 2, j - \ell + 1, \ell - g + 2, p), & \text{if } \ell = j - 1, j.
\end{cases}
\] \(\tag{27}\)
r(β_{4ℓ+1}^Π) = \begin{cases}
(ℓ + 4, ℓ + 1, g − ℓ, g − ℓ + 2, p), & \text{if } ℓ = 0, 1, \ldots, g − 1, \\
(ℓ + 2, ℓ + 1, 1, 3, p), & \text{if } ℓ = g + 1, \\
(j − ℓ + 3, j − ℓ + 3, ℓ − g, ℓ − g + 2, p), & \text{if } ℓ = g + 2, \ldots, j − 1, \\
(3, 3, ℓ − g, ℓ − g + 1, p), & \text{if } ℓ = j.
\end{cases}
(28)

r(β_{4ℓ+2}^Π) = \begin{cases}
(4, 2, g + 2, g + 1, p), & \text{if } ℓ = 0, \\
(ℓ + 4, ℓ + 2, g − ℓ + 3, g − ℓ + 1, p), & \text{if } ℓ = 1, 2, \ldots, g − 2, \\
(j − ℓ, ℓ + 2, g − ℓ + 3, g − ℓ + 1, p), & \text{if } ℓ = g − 1, g, \\
(j − ℓ, j − ℓ + 3, ℓ − g + 3, ℓ − g + 1, p), & \text{if } ℓ = g + 1, \ldots, j − 1.
\end{cases}
(29)

The representations of the inner cycle vertices are distinct with respect to Π. Also, the outer and inner vertices have distinct representations as well. Thus, Π = \{B_1, B_2, B_3, B_4\}, where \(B_1 = \{β_1\}, B_2 = \{α_3\}, B_3 = \{β_{2j+1}\}, \)
\(B_4 = \{α_{2j+2}\}, \) and \(B_5 = V(P_{n,k})\backslash \{β_1, α_3, β_{2j+1}, α_{2j+2}\}\) is the partition resolving set when \(j\) is odd.

Case 7. When \(j\) is even.

Let the partition resolving set be Π = \(\{B_1, B_2, B_3, B_4\}\), where \(B_1 = \{β_1\}, B_2 = \{α_3\}, B_3 = \{β_{2j+1}\}, B_4 = \{α_{2j+2}\}, \) and \(B_5 = V(P_{n,k})\backslash \{β_1, α_3, β_{2j+1}, α_{2j+2}\}\).

The representation of the outer vertices:

\[r(α_{4ℓ+1}^Π) = \begin{cases}
(ℓ + 1, 2, j − 2ℓ + 2, j + 6, 0), & \text{if } ℓ = 0, 1, \\
(ℓ + 1, ℓ + 3, j − 2ℓ + 2, j − 2ℓ + 8, 0), & \text{if } ℓ = 2, \ldots, j − 2, \\
(ℓ + 1, j + 6, 2ℓ − j + 2, 2, 0), & \text{if } ℓ = j + \frac{j + 2}{2}, \\
(j − ℓ + 3, j − ℓ + 4, 2ℓ − j + 2, 2ℓ − j + 6, 0), & \text{if } ℓ = j + 2, \ldots, j.
\end{cases} \]
(30)

\[r(α_{4ℓ+2}^Π) = \begin{cases}
(ℓ + 2, ℓ + 1, j − 2ℓ + 4, j − 2ℓ + 6, 0), & \text{if } ℓ = 0, 1, \\
(ℓ + 2, ℓ + 3, j − 2ℓ + 4, j − 2ℓ + 6, 0), & \text{if } ℓ = 2, \ldots, j − 2, \\
(j + 4, j − ℓ + 3, 2ℓ − j + 4, 2ℓ − j + 1, 0), & \text{if } ℓ = j + 2, \frac{j + 2}{2}, \\
(j − ℓ + 3, j − ℓ + 3, 2ℓ − j + 4, 2ℓ − j + 6, 0), & \text{if } ℓ = j + 4, \frac{j + 4}{2}, \ldots, j.
\end{cases} \]
(31)

\[r(α_{4ℓ+3}^Π) = \begin{cases}
(ℓ + 3, ℓ + 2, j − 2ℓ + 4, j − 2ℓ + 4, 0), & \text{if } ℓ = 1, \ldots, j − 2, \\
(j − ℓ + 2, j − ℓ + 4, 2ℓ − j + 6, 2ℓ − j + 4, 0), & \text{if } ℓ = j + 2, \ldots, j, \\
(2, 3, j + 4, j + 4, 0), & \text{if } ℓ = j.
\end{cases} \]
(32)
The representation of the outer cycle vertices with respect to Π is distinct.

\[
r(a_{l+1}[\Pi]) = \begin{cases}
(\ell + 3, \ell + 1, \frac{j + 2}{2}, \frac{j + 6}{2}, 0), & \text{if } \ell = 0, \\
(\ell + 3, \ell + 3, \frac{j - 2\ell + 2}{2}, \frac{j - 2\ell + 6}{2}, 0), & \text{if } \ell = 1, \ldots, \frac{j - 4}{2}, \\
(j - \ell + 1, \ell + 3, \frac{2\ell - j + 6}{2}, \frac{j - 2\ell + 1}{2}), & \text{if } \ell = \frac{j - 2}{2}, \\
(j - \ell + 1, j - \ell + 4, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 6}{2}, 0), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1.
\end{cases}
\]

(33)

Now, the representation of the inner vertices:

\[
r(\beta_{l+1}[\Pi]) = \begin{cases}
(\ell, \ell + 2, \frac{j - 2\ell + 2}{2}, \frac{j - 2\ell + 6}{2}, p), & \text{if } \ell = 1, \ldots, \frac{j - 2}{2}, \\
(\ell, \ell + 1, 1, 3, p), & \text{if } \ell = \frac{j + 2}{2}, \\
(j - \ell + 4, j - \ell + 3, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 4}{2}, p) & \text{if } \ell = \frac{j + 4}{2}, \ldots, j.
\end{cases}
\]

(34)

\[
r(\beta_{l+1}[\Pi]) = \begin{cases}
(\ell + 3, \ell + 2, \frac{j + 2\ell + 2}{2}, \frac{j - 2\ell + 4}{2}, p), & \text{if } \ell = 0, 1, \\
(\ell + 3, \ell + 2, \frac{j - 2\ell + 6}{2}, \frac{j - 2\ell + 4}{2}, p), & \text{if } \ell = 2, 3, \ldots, \frac{j}{2}, \\
(j - \ell + 4, j - \ell + 2, \frac{2\ell - j + 6}{2}, \frac{2\ell - j + 4}{2}, p) & \text{if } \ell = \frac{j + 2}{2}, \ldots, j.
\end{cases}
\]

(35)

\[
r(\beta_{l+1}[\Pi]) = \begin{cases}
(\ell + 4, \ell + 1, \frac{j - 2\ell + 6}{2}, \frac{j - 2\ell + 2}{2}, p), & \text{if } \ell = 0, 1, \ldots, \frac{j - 2}{2}, \\
(\ell + 3, \ell + 1, 4, 1, p), & \text{if } \ell = \frac{j}{2}, \\
(j - \ell + 3, j - \ell + 3, \frac{2\ell - j + 8}{2}, \frac{2\ell - j + 2}{2}, p) & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 1, \\
(3, 3, \frac{j + 6}{2}, \frac{j + 2}{2}, p), & \text{if } \ell = j.
\end{cases}
\]

(36)

\[
r(\beta_{l+1}[\Pi]) = \begin{cases}
(\ell + 4, \ell + 2, \frac{j - 2\ell + 4}{2}, \frac{j - 2\ell + 4}{2}, p), & \text{if } \ell = 0, 1, \ldots, \frac{j - 4}{2}, \\
(j - \ell + 2, 2\ell - j + 8, \frac{j - 2\ell + 4}{2}, \frac{j - 2\ell + 4}{2}, p), & \text{if } \ell = \frac{j - 2}{2}, \\
(j - \ell, j - \ell + 3, \frac{2\ell - j + 8}{2}, \frac{2\ell - j + 4}{2}, p), & \text{if } \ell = \frac{j + 2}{2}, \ldots, j - 2, \\
(1, 4, \frac{j + 2}{2}, \frac{j + 2}{2}, p), & \text{if } \ell = j - 1.
\end{cases}
\]

(37)
From all these facts, we conclude that the entire vertex set of \(P_{n,k} \) is included that \(3 \leq \text{pd}(P_{n,k}) \leq \begin{cases} 4, & \text{if } n \geq 20 \text{ and } n \equiv 0 \pmod{4}, \\ 5, & \text{if } n \geq 17 \text{ and } n \equiv 1, 2, 3 \pmod{4}. \end{cases} \) (39)

Theorem 4 discusses the partitioning of generalized Petersen network when \(n \equiv 0 \pmod{4} \), and Theorems 5–7 contain the partitioning when \(n \equiv 1, 2, 3 \pmod{4} \), respectively.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

The authors contributed equally to this paper.

Acknowledgments

The work of Hassan Raza was supported by the post-doctoral funding of University of Shanghai for Science and Technology, under Grant no. 10-20-303-302.

References

