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Acquiring complementary information about tissue morphology from multimodal medical images is beneficial to clinical disease
diagnosis, but it cannot be widely used due to the cost of scans. In such cases, medical image synthesis has become a popular area.
Recently, generative adversarial network (GAN) models are applied to many medical image synthesis tasks and show prior
performance, since they enable to capture structural details clearly. However, GAN still builds the main framework based on
convolutional neural network (CNN) that exhibits a strong locality bias and spatial invariance through the use of shared weights
across all positions. *erefore, the long-range dependencies have been destroyed in this processing. To address this issue, we
introduce a double-scale deep learning method for cross-modal medical image synthesis. More specifically, the proposed method
captures locality feature via local discriminator based on CNN and utilizes long-range dependencies to learning global feature
through global discriminator based on transformer architecture. To evaluate the effectiveness of double-scale GAN, we conduct
folds of experiments on the standard benchmark IXI dataset and experimental results demonstrate the effectiveness of
our method.

1. Introduction

Magnetic resonance imaging (MRI) is a versatile and non-
invasive imaging technique widely used in clinical applica-
tions. TailoredMRI pulse sequences enable to capture specific
characteristics of the underlying anatomical information. For
instance, T1-weighted brain images clearly depict the gray
matter and white matter tissue, while T2-weighted images
depict the fluid in the cortical tissue. Hence, acquiring
complementary information about tissue morphology from
multimodal images enables to improve accuracy and
confidence in clinical diagnosis [1]. Unfortunately, acquiring
multimodal MR imaging is often challenging due to
numerous factors, such as uncooperative patients, limited
availability of scanning time, and the expensive cost of
prolonged exams [2, 3]. To address this issue, cross-modal
medical image synthesis has been widely used, as it enables to

synthesis unattained images inmultimodal protocols from the
subset of available images [4–7].

Currently, deep learning-based synthesis demonstrates
more promising performance, which is compared with the
traditional registration-based method [8, 9] and intensity-
transformation-based methods [10, 11]. For the image
synthesis task, convolutional neural network (CNN) ar-
chitectures produce significant performance through min-
imizing pixelwise losses between synthetic and real images.
However, pixelwise losses ignore high-level features in the
training step. Since generative adversarial networks (GAN)
were introduced by Goodfellow et al. [12], this problem was
gradually solved by adversarial loss functions, which
designed a training strategy between generator and dis-
criminator networks based on the game theory. In this case,
GAN enables to capture high-frequency texture information
of medical images. *erefore, GAN-based methods surpass
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many synthesis tasks based on traditional architectures
[13, 14]. To be specific, the generator and discriminator
networks of GAN deploy compact convolution filters,
whereas CNNs are plugged with spatial locality on the entire
images by the sliding window. *is makes the long-range
dependencies between distant regions lost [15].

Moreover, CNNs not only exhibit a strong locality bias
but also a bias towards spatial invariance through the use of
shared weights across all positions [16]. *is prevents the
networks from fully understanding the local region of the
input image. To guide networks towards critical image re-
gions, Zhao et al. [17] proposed the attention mechanisms
that strengthen the features of important regions by learning
the weight map and multiplying it on the feature map.
However, conventional attention mechanisms still do not
explicitly model long-range dependencies. Recently, trans-
former architectures have been applied to language tasks and
are increasingly adopted in other areas such as segmentation
tasks [18] and classification tasks [19]. In contrast to the
predominant vision architecture, the emergent transformer
architectures are integrated to learn complex relationships
among its inputs, since it contains no built-in inductive prior
on the locality of interactions such as sliding window. Hence,
we consolidate transformer into our model due to capture
more global information and make a comprehensive un-
derstanding of the input [16].

In this paper, we propose a double-scale deep learning
method for cross-modal medical image synthesis. Motivated
by the fact that low-level image structure and high-level
feature is equally important to cross-modal medical image
synthesis we integrate the ability of transformer to efficiently
seek long-range interactions inside our model, which en-
ables to capture global feature as complementary infor-
mation for CNNs. To achieve this, we carefully design
double-scale discriminator GAN which specifically consists
of the transformer-based global discriminator and CNN-
based local discriminator.

*emain contributions of this paper are listed as follows.
(1) We introduce a double-scale discriminator GAN for
medical image synthesis. (2) *e global discriminator of our
model is designed on vision transformer that utilizes long-
range dependencies between distant patches and captures
global features.

2. Related Works

2.1. Medical Image Synthesis. Recently, GAN-based models
have been successfully applied to kinds of tasks including
data augmentation [20–22] and image synthesis tasks
[23–25]. For example, Nie et al. [5] utilized MR images to
synthesize computed tomography (CT) images with a
context-aware GAN model; Wolterink et al. [7] utilized
GAN to generate low-dose CTfrom routine-dose CT images.
Nevertheless, as the traditional GAN has failed to meet the
gradually higher application requirements, pix2pix [26] has
recently begun to attract the attention of researchers, which
utilizes paired data to enhance the pixel-to-pixel similarity
between the real and the synthesized images, and then, Olut
et al. [27] developed a CycleGAN-based method to synthesis

MRA from T1-MRI and T2-MRI. *ese methods are unable
to capture the features of critical image regions. *erefore,
Zhao et al. [17] used a self-attention in the generator of GAN
to enhance the feature of tumour and improve the perfor-
mance of tumour detection. Isola et al. [26] used a patch-
based discriminator to refine the extraction of features.
However, these methods cannot solve the problem that the
strong prior position information introduced by the sliding
window in the convolution operation, which destroys the
modelling of the distant dependence relationship, so that all
the local information cannot be better captured.

2.2. /e Transformer Architecture. *e transformer archi-
tecture is designed to handle complicated interactions between
inputs regardless of their relative position to one another
through modelling interactions between its inputs solely
through attention mechanism. Transformer is originally ap-
plied to language tasks, Floridi and Chiriatti [28] introduced
GPT to use language modelling as its pretraining task. Re-
cently, this method also can be used in computer vision. Esser
et al. [16] proposed a VQGAN which represents images as a
composition of perceptually rich image constituents and
thereby overcomes the infeasible quadratic complexity when
modelling images directly in pixel space. However, the
codebook of VQGAN requires numerous datasets to fit, which
is impractical in the medical image field. Meanwhile, the
increased expressivity of transformers comes with quadrati-
cally increasing computational costs, because all pairwise
interactions are taken into account. Finally, our method is
based on a vision transformer which crops interactions be-
tween inputs based on nonoverlapping patch-level.

3. Approach

3.1. Overview of Our Method. *e overview of double-scale
GAN is illustrated in Figure 1. Our method is comprised of
three main components: generator network, global dis-
criminator network, and local discriminator network. In the
remainder of this section, we explain the detailed compo-
sition of each network component and the loss functions.

3.2. Generator Network. *e first component of our method
is a deep encoder network that contains a series of con-
volutional layers to capture a hierarchy of localized features
of source images. To learn a meaningful and effective high-
level representation, we adopt an autoencoder structure as
our main framework. In order to reduce the use of
upsampling layer, deconvolution operation is used instead.

*e detail of generator is illustrated in Figure 1. In the
downsampling process, our method uses two convolutional
layers of kernel size with 3 and stride with 2. In the
upsampling process, our method uses two deconvolutional
layers of kernel size with 3 and stride with 2. Besides, we also
introduce instance normalization after each convolutional
layer. After the instance normalization, the activation
function ReLU is used in the encoder and decoder. For
spatial and depth feature extraction, our method also adds 9
ResNet blocks between downsampling and upsampling.
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3.3. Local Discriminator Network. *e local discriminator is
based on a condition PatchGAN architecture [26]. It receives
as input the concatenation of the source and target contrast
images [29] and then obtains 30∗ 30 overlapped patches of
70∗ 70 size through sliding window for prediction to real or
fake. Although this patch-based discriminant is more robust
than the image-based discriminant in the extraction of local
detail features, the overlapping patches it extracts destroy the
long-range dependencies by introducing a strong prior
position relationship, so as to have a comprehensive un-
derstanding of the input images.

3.4. Global Discriminator Network. In order to synthesize
high-quality medical images, global and local features are
equally important. Inspired by the DeblurGAN-v2 [30], we
use a pure transformer method to replace convolutional
network to capture long-range dependencies for a com-
prehensive understanding of the input image. *e details of
global discriminator network are depicted in Figure 2.

*e input image is first split into 32∗ 32 nonoverlapping
patches, in which kernel size is equal to stride:

P1, P2, . . . , PN � split (input), (1)

where Pi denotes the i-th patch of the input image; we set
N � 82 to divide the input into 64 patches. *en, all patches
are flattened to D dimension by a trainable linear projection.
Similar to the class token in BERT [31], we also prepend a
learnable embedding to the sequence of embedded patches.
Position embeddings are added to the patch embeddings to
retain positional information. Our method uses standard
learnable 1D position embeddings because many studies
have shown that using more advanced 2D-aware position

embeddings not works [32], which can be therefore for-
mulated as follows:

Z0 � xclass; P1E; P2E; . . . ; PNE  + Epos, (2)

where Z0 denotes the input of transformer encoder; E de-
notes embedding projection which maps patch image to
vector; and Epos denotes the learnable positional embedding
that carries information about patch location.

*e transformer encoder consists of two parts: multi-
head self-attention (MSA) and multilayer perceptrons
(MLP). MSA enables to learn different levels of features
benefit from multihead attention. In addition, layer norm
(LN) is applied before every block, and residual connections
after every block. At the end of these blocks, the output is
taken by the classification head to output the real/fake
prediction. *e output of the l-th layer in the transformer
encoder can be formulated as

Zl
′ � MSA LN Zl−1( (  + Zl−1, (3)

Zl
′ � MLP LN Zl

′( (  + Zl
′ , (4)

where Zl−1 represents the feature extracted from the pre-
vious layer.

3.5. Loss Function. *e first component of the loss function
in our method is a pixelwise loss as inspired by the pix2pix
architecture [26]:

L1 � Ex,y|y − G(x)|1, (5)

where x denotes the source image and y denotes the target
image.
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Figure 1: Schematic flow chart of the proposed algorithm for cross-modal medical image synthesis, which consists of generator, CNN-based
local discriminator, and transformer-based global discriminator. *e local discriminator guides the generator to learn structural repre-
sentation with inductive bias. *e global discriminator guides the generator to learn comprehensive features by utilizing long-range
dependencies between patches of input image.
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Unlike loss functions based on pixelwise differences,
perceptual loss relies on differences in higher feature rep-
resentations that are often extracted from networks pre-
trained for more generic tasks [33]. A commonly used
network is VGGNet which trained on the ImageNet [34]
dataset for object classification. Here, following [33], we
extracted feature maps right before the second max-pooling
operation of VGG16 pretrained on ImageNet:

Lper � Ex,y|V(y) − V(G(x))|1, (6)

where V(·) denotes pretrained VGG16.
*e local discriminator is based on the conditional

discriminator; its loss function can be formulated as

LLocal(G, D) � −Ex,y (D(x, y) − 1)
2

  − Ex,z D(x, G(x, z))
2

 ,

(7)

where z denotes the synthesis image from generator.
*e global discriminator uses hinge loss to optimize the

generator; hinge loss can be formulated as

LGocal(G, D) � −Ex,y[min(0, D(x, y) − 1)]

− Ex,z[min(0, −D(x, G(x, z))

− 1)] − λadvEx,y,z[D(G(x, z), y)],

(8)

By aggregating all the above losses, we can formulate our
aggregate loss function as

Laggregate � λL1
L1 + λperLper + λLocalLLocal + λGlobalLGlobal,

(9)
where λL1

denotes the weighing of the pixelwise loss; λper
denotes the weighing of the perceptual loss; λLocal denotes
the weighing of the adversarial loss of local discriminator;

and λGlobal denotes the weighing of the adversarial loss of
global discriminator.

4. Experiments

In this section, we will first describe the information about
the dataset used in our method and then introduce the
implementation details of experiments. We present exper-
imental results that compare with several state-of-the-art
methods.

4.1. Dataset. *e dataset used in the evaluation is provided
by the IXI dataset. *e experimental dataset we used totals
40 subjects, and each subject has corresponding T1-MRI and
T2-MRI, where 30 subjects were used for training and 10
were used for testing. Acquisition parameters were as fol-
lows: T1-weighted images: TE� 4.603ms, TR� 9.813ms,
and spatial resolution� 0.94× 0.94×1.2mm3. T2-weighted
images: TE� 100ms, TR� 8178.34ms, and spatial
resolution� 0.94× 0.94×1.2mm3. Since multicontrast im-
ages were unregistered, we use FSL [35] to register T1-MRI
and T2-MRI. Finally, we use zero-padding to fill all images in
axial cross-sections used in experiments to a consistent size
of 256∗ 256.

4.2. Implementation Details. Our method is implemented
in PyTorch. All methods were trained and tested on 1
NVIDIA Tesla V100 with 32 GB of memory for each GPU.
In the stage of training of our method, we set the epoch as
100, learning rate as 0.0002, and batch size as 1 which
causes the training time to increase to 5 hours. Model
training was performed via the Adam optimizer with
β1 � 0.5 and β2 � 0.999. In global discriminator, we use
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Figure 2: Detailed chart of global discriminator.*e left side shows the overall computational flow of the global discriminator, and the right
side shows the details of the transformer encoder on the left.
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multihead attention with 4 heads and set D as 64. In each
multihead attention, we performed GeLu activation and
set dropout as 0.1. Limited by the small size of the medical
image dataset, we utilize pretrained model in global
discriminator for object classification tasks on the
ImageNet database. All weights were initialized using
normal distribution with 0 mean and 0.02 std. We set the
hyperparameter in the aggregate loss function as λL1

� 1,
λper � 1, λLocal � 0.8, and λGlobal � 0.3. For the fairness of
the experiment, we designed 4-fold cross-validation by
randomly sampling nonoverlapping training, validation,
and testing sets in each fold.

4.3.ComparisonMethods. To validate the effectiveness of the
proposed synthesis method, we compare it with three state-
of-the-art cross-modality synthesis methods:

(1) pix2pix [26]: this method is based on a convolutional
GAN model and UNet backbone, which synthesizes
thewhole image by focusing on the pixelwise similarity.

(2) CycleGAN [27]: this method consists of two gen-
erators and two discriminators, which uses a cycle
consistency loss to enable to train with unpaired
data. In our comparison, we use the paired data to
training this method and our method.

Table 1: Comparisons of T2-weight MRI synthesis between our proposed method with different approaches of PSNR and SSIM (data in the
table denote the average value and standard deviation of the test dataset).

Method PSNR SSIM
pix2pix 34.38 ± 0.84 0.775 ± 0.04
CycleGAN 34.75 ± 0.86 0.786 ± 0.03
PGAN (without global) 34.82 ± 0.98 0.892 ± 0.06
Ours (global and local) 34.91 ± 1.00 0.895 ± 0.07

Table 2: Comparisons of T1-weight MRI synthesis between our proposed method with different approaches of PSNR and SSIM (data in the
table denote the average value and standard deviation of the test dataset).

Method PSNR SSIM
pix2pix 34.58 ± 0.84 0.758 ± 0.04
CycleGAN 34.73 ± 0.82 0.795 ± 0.04
PGAN (without global) 35.85 ± 1.09 0.887 ± 0.07
Ours (global and local) 35.34 ± 0.95 0.895 ± 0.07
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Figure 3: Synthesized images from all competing methods are shown along with the source images and the reference target image. Our
method improves synthesis performance in regions that are depicted suboptimally in competing methods. Obviously, the composite images
from our method have less noise and sharper tissue depiction.
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(3) PGAN [29]: this method is based on conditional
GAN; its generator consists of a encoder, a decoder,
and 9 ResNet blocks. Meanwhile, this method has
shown superior performance in many cross-modal
image synthesis tasks.

4.4. Results and Analysis. We employ two measurements to
evaluate the synthesis performance of the proposed methods
and our method in comparison: structural similarity index
measurement (SSIM) and peak-signal-to-noise ratio
(PSNR). *e data in all tables are represented by the mean
and standard deviation. Further details can be found in
Tables 1 and 2.

To demonstrate the effectiveness of our double-scale
discriminator method with regard to subjective quality, a
demonstrated example is shown in Figure 3.

5. Conclusion

In this paper, we have proposed a double-scale discriminator
GAN for cross-modal medical image synthesis. By com-
positing both CNN and transformer to design double-scale
discriminator, our method has explicitly exploited the lo-
calization power of CNNs and the sensitivity of vision
transformers to global context meanwhile. Experimental
results have demonstrated the effectiveness of the proposed
method. In the future, we will focus on the medical image
generation method which integrated multiview and multi-
modal information through transformer, which solves the
problem that 2D medical image generation cannot exploit
3D information and 3D medical image generation needs
high computing power.
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