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With renewable energy (RE) being increasingly connected to power grids, pumped storage plants (PSPs) play a very important
role in restraining the fluctuation of power grids. However, conventional control strategy could not adapt well to the different
control tasks. &is paper proposes an intelligent nonlinear model predictive control (NMPC) strategy, in which hydraulic-
mechanical and electrical subsystems are combined in a synchronous control framework. A newly proposed online sequential
extreme learning machine algorithm with forgetting factor (named WOS-ELM) is introduced to learn the dynamic behaviors of
the coupling system. Specifically, the initial learning parameters are optimized by prior-knowledge learning and a new self-
adaptive adjustment strategy is also put forward. Subsequently, the stair-like control strategy and artificial sheep algorithm (ASA)
are used in rolling the optimization mechanism to replace the existing complex differential geometric solutions. Comparative
experiments are carried out under different working conditions based on a PSP in China.&e results show that the influence from
coupling factors can be considerable and the proposed MPC strategy indicates superiority in voltage and load adjustment as well
as the frequency oscillation suppression.

1. Introduction

Due to the increasingly serious situation of climate change
and air pollution, wind, solar, and other emerging form of
renewable energy (RE) have developed rapidly in the past
decade [1,2]. &e international energy agency (IEA) predicts
the energy consumption for the next 20 years, with RE
accounting for 20%, as shown in Figure 1. However, RE has
the features of intermittent and random fluctuations, and the
security and stability of power systems are facing severe
challenges [4,5]. Pumped storage plants (PSPs) are generally
considered to be the most promising technology, which
enhances the power grid’s ability to absorb RE. &ey
shoulder the important responsibility of power and fre-
quency modulation as well as emergency backup [6].

&erefore, the control quality of the fast response of PSPs is
crucial for the utilization efficiency of RE sources and the
energy quality of the modern power grid.

Conventional control strategies usually divide the PSP
system into hydraulic-mechanical and electrical subsystems,
thus facilitating the study of the control problem separately,
as shown in Figure 2, which is not conducive to the overall
control. (1) Studies of pump-turbine governing control
provide a detailed description of the hydraulic-mechanical
subsystem while the electrical subsystem is greatly simpli-
fied, such as researches on the frequency control of PSP
[7–10]. (2) Studies of synchronous generator excitation
control are rightly on the contrary. Attention is concentrated
on the electrical subsystem, and the dynamics of the hy-
draulic-mechanical subsystem are ignored. When studying
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the advantages of PSP in mitigating wind power variations
[11], a very simple linear model is adopted for pump-tur-
bine. Even more, the mechanical power is considered as a
constant in excitation regulation process, which is a standard
approach in textbook [12]. &e two subsystems have been
weakly coupled previously since the response of the hy-
draulic-mechanical system is relatively slow. But now, de-
mand for flexible and stable regulation of voltage and power
frequency by PSP has never been greater [13]. &erefore,
hydraulic-mechanical and electrical subsystems should be
put into a synchronous control framework. Unfortunately,
the coupling models integrated two subsystems and the
synchronous control problem have been seldom researched
and remained a challenging work.

Although the synchronous control methods about the
coupling system of PSPs are rarely studied, a lot of effort has
been devoted to improve the dynamic performance and
enhance the transient stability of the subsystems separately.
&e classical Proportional-Integral-Derivative (PID) or PID-
type controllers have been utilized in pump-turbine gov-
erning control [8,14,15]. At present, the combination of
automatic voltage regulator (AVR) and power system sta-
bilizer (PSS) is still the main excitationmode of synchronous
generator in engineering practice [16]. However, most of
these control strategies have been designed specifically for a
certain operating condition and thus cannot automatically
adjust control law while there are uncertain tasks or

disturbances of environmental effects in the plant. &e
control strategy may achieve satisfied control effect under
one condition but degrade the performance under the other
[17]. As a result, theories that can solve the nonlinear control
problem with variable conditions are needed to apply in a
large complicated power system. As an advanced control
strategy, model predictive control (MPC) can solve the time-
varying control problem with multivariable interactions. It
has been gradually used in the control of PSPs in recent years
[18–20], but none of them can adapt to the trend of system
descriptions toward nonlinear uncertain models. Recently,
with the breakthrough development of artificial intelligence
(AI) technology, the concept of MPC has been greatly ex-
panded, and many new MPC design ideas and researches
based on artificial neural networks (ANN) have sprung up.

&e use of ANN in MPC has grown significantly in
various applications over the years [21–24]. Most of these
applications are large-scale time control problems calculated
inminutes or even hours and employ back-propagation (BP)
algorithm to train or update the prediction model. If applied
in PSPs, where control laws are often determined within 40
milliseconds, and they may suffer from slow error conver-
gence and can only be trained offline. Hence, the prediction
models in these previous studies are not suitable for practical
use in PSPs [25]. To overcome the shortcomings of BP,
extreme learning machine (ELM), which is a fast machine
learning algorithm based on single hidden layer feedforward
networks (SLFNs), was proposed by Huang in 2006 [26].&e
key features of ELM compared with other famous neural
network algorithms are that the parameters in the hidden
nodes are generated randomly and the output weights are
calculated by the method of least square (LS). In real ap-
plications, data are often obtained one by one or chunk by
chunk, so the online sequential extreme learning machine
(OS-ELM) was proposed in [27] and used in MPC [28,29].
However, OS-ELM does not take time-varying factors into
consideration. With the time passing by, more attention
should be paid on the new observations, and the old samples
to the model should be ignored gradually. Since then, the
application of ELM in MPC remains stagnated due to the
lack of appropriate model updating mechanism.

Inspired by these ideas, this paper aims to use MPC to
deal with complicated coupling control problems of PSP
involved with multivariable interactions and strongly
nonlinear behavior while the conventional strategies have
been designed specifically for a certain working condition
and simplified the coupling model. &e key of MPC is the
prediction model, which is required to predict and update
the nonlinear behavior of the plant precisely and quickly. In
view of this, a newly proposed online sequential extreme
learning machine algorithm with forgetting factor (named
WOS-ELM) [30] is applied inMPC for the first time in order
to predict and modify the strongly nonlinear behavior of
PSP. In addition, a self-adaptive adjustment strategy
according to the prediction error for forgetting factor has
also been put forward in this paper and a recently proposed
artificial sheep algorithm (ASA) is used for optimizing the
initial learning parameters of the hidden layer in the WOS-
ELM. In order to avoid complex mathematical derivation
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Figure 1: IEA/World Energy Outlook 2018/prediction of global
energy consumption in 2040 [3].
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Figure 2: Comparison between conventional and proposed control
strategy.
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and reduce the amount of calculation, the ASA and stair-like
control strategy have been applied in the rolling optimi-
zation. Comparative experiments have been conducted to
verify the proposed approach in control under different
working conditions.

&e main contributions and novelty of this paper are
reflected in the following: (1) a detailed nonlinear model,
which combines hydraulic-mechanical and electrical sub-
systems is established to achieve precise simulations of
dynamic response in PSP; (2) based on the coupling system,
a synchronous control framework has been designed with
MPC for the first time to fulfil the coordination of hydraulic-
mechanical and electrical subsystems; (3) in the MPC
control framework, a novel prediction model of ELM with
self-adaptive forgetting mechanism is designed, which will
promote the prediction accuracy and timeliness.

&e remainder of this paper is organized as follows:
Section 2 introduces the background knowledge of PSP,
WOS-ELM, and ASA. Section 3 describes the proposed
approach of the WOS-ELM based NMPC method for PSP.
Section 4 presents the details of the experiment arrange-
ments and results. Finally, Section 5 summarizes our
conclusions.

2. Background Knowledge

2.1.NonlinearModel of PSP. PSP is a coupling system, which
is composed of hydraulic-mechanical and electrical sub-
systems, as shown in Figure 3. &e hydraulic-mechanical
subsystem includes servo, conduit system, and a pump-
turbine. Guide vane opening adjusts the mechanical output
of the pump-turbine. In the electrical subsystem, the exciter
generates the excitation voltage of the synchronous gener-
ator to sustain its terminal voltage to the given level. &e PSP
connected to the power grid is simplified as an infinite bus.

2.1.1. Hydraulic-Mechanical Subsystem. &e servomecha-
nism is the actuator of the governor, which is used to drive
the guide vanes of pump-turbine according to the output
signal of the controller. A standard first-order model [31] is
adopted for servomechanism, as described by (1). &e elastic
water column model of the conduit system [8] is adopted
and the frictional loss is considered here, as described in (2).
&e details of all the symbols in PSP are given in the
nomenclature.

Δy
Δσ

�
1

1 + Tys
, (1)

Δh
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2
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2. (2)

As the key component of the system, the pump-turbine
is of great importance to PSP. At present, the characteristic
curves have been extensively used for the nonlinear mod-
elling of pump-turbine. &e nonlinear model of pump-
turbine based on characteristic curves can be described by
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e
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&e functions fq and fm represent flow and moment
characteristic of the pump-turbine, respectively, as pre-
sented in Figure 4.&e “Inverted-S” area of the characteristic
curves exhibits a multi-valued characteristic, which brings in
difficulty for pump-turbine modelling. To overcome this
obstacle, a Logarithmic-Curve-Projection (LCP) method
[32] is introduced to convert the unit speed n11 by loga-
rithmic projection. &e transformation is described in (4).
&e curves obtained by the LCP method are presented in
Figure 5. &e LCP curves still take q11 and m11 as the or-
dinate values. Compared with the Suter or improved Suter
method [33], it can greatly simplify the calculation proce-
dure of the pump-turbine model.

2.1.2. Electrical Subsystem. A classical single machine
infinite bus power model is adopted for the electrical sub-
system. &e model of the generator and the network are
described by the classical fifth-order model [34], as shown in
(5) and (6), respectively. Resistances in the systems are ig-
nored. &e transformer and transmission line are simplified
as a reactance (Xs).
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(6)
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Figure 3: Structure of PSP and its interconnected infinite bus.
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Figure 4: &e characteristic curves of a pump-turbine. (a) Flow characteristic curve. (b) Moment characteristic curve.
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Figure 5: LCP of the characteristic curves. (a) Flow characteristic curve. (b) Moment characteristic curve.
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2.1.3. Hydraulic-Mechanical-Electrical Coupling System.
Based on LPC method and combined with the mathematical
models of servomechanism, conduit system, generator, and
network, a nonlinear simulation model of PSP is established.
&e block diagram of the hydraulic-mechanical-electrical
coupling system is shown in Figure 6. &e proposed NMPC
strategy and related experiments in this paper are carried out
using this simulation model.

2.2. Brief Overview of WOS-ELM

2.2.1. ELM. &e ELM shown in Figure 7 is a single hidden
layer feedforward network (SLFN), of which input weights
and biases of the hidden layer are generated randomly, and
the output weights of the hidden layer can be obtained by the
theory of least square method [26].

Given the training set (xi, ti)|xi ∈ RD, ti ∈ RC, i � 1, 2􏼈

, . . . , N}, the SLFN function with L hidden nodes and an
activation function f(·) can be formulated as the following:

􏽘

L

j�1
βjf wj, bj, xi􏼐 􏼑 � ti, i � 1, 2, . . . , N, (7)

where wj and bj are the learning parameters that will be
generated randomly; βj is the output weight connecting
the j-th hidden nodes and output nodes; xi and ti are the
training example and output of the i-th observation, re-
spectively. &e above N equations can be written into the
following form:

Hβ � T, (8)

where
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N×L

, (9)

H is called the hidden layer output matrix of the network.
&e coefficient β of the ELM can be obtained by solving the
least squares solution 􏽢β of the following equation:

‖H􏽢β − T‖ � min
β

‖Hβ − T‖. (10)

&e formula of 􏽢β can be expressed as

􏽢β � H†Y � HTH􏼐 􏼑
− 1
HTT, (11)

where H† is the Moore-Penrose generalized inverse of H.
According to the ridge regression theory, the generalization
ability of the ELM and the stability of the network can be
enhanced by adding a regularized constant 1/C to the di-
agonal matrix HTH. &us, the final output weight of the
ELM can be expressed as follows:

􏽢β � HTH +
1
C

􏼒 􏼓
− 1
HTT. (12)

2.2.2. OS-ELM. In practical applications, the training data
may be obtained chunk-by-chunk or one-by-one (a special

case of chunk). &e OS-ELM algorithm aims at online
training and constantly updates the output weights within a
short time [27]. When new chunk of sampling data come,
the model of ELM should be updated as follows:

H

δH
􏼢 􏼣β′ �

T

δT
􏼢 􏼣, (13)

where δH and δT are the newly generated hidden layer
output and obtained observations, respectively, and β′ is the
modified output weight matrix. &ere are two processes in
OS-ELM algorithm, an initialization process and a se-
quential process. &e initialization process is the same as the
ordinary ELM algorithm, while the output weight matrix β
will be updated in the sequential process through an iterative
way. &e OS-ELM algorithm can be summarized as follows:

Step 1: Initialization. Randomly generate the learning
parameters wj and bj (j � 1, 2, . . . , L). Set k � 0, where
k is the index representing the number of chunks of
data presented to the ELM. Calculate the initial hidden
layer output matrix H0 and the initial output weight
􏽢β

(0)
by n0 sets of initial observations.

H0 �
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⋮ ⋱ ⋮
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Step 2: Calculate the partial hidden layer output matrix
Hk+1 and the output weight 􏽢β

(k+1)
by nk+1 sets of newly

obtained observations.
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k+1Hk+1,

⎧⎪⎨

⎪⎩

(15)

where Pk is the updating matrix, and P0 � HT
0H0.

Step 3: Set k � k + 1, then return to Step 2.

2.2.3. WOS-ELM. However, OS-ELM does not take time-
varying factors into consideration. With the time passing by, the
parameters of the model may change. Accordingly, WOS-ELM
pays more attention to the new observations and ignores the old
samples to the model gradually, which makes the trained model
closely track the changes of the system.&eupdating of the output
weight matrixβ in WOS-ELM is summarized as follows [30]:
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where λ(0< λ≤ 1) is the forgetting factor. When λ � 1,
WOS-ELM becomes the ordinary OS-ELM algorithm.

2.3. Brief Overview of ASA. &e ASA proposed in 2018 is a
new intelligent heuristic algorithm, which was inspired by
the herd behavior of the sheep flock [35]. &e herd indi-
viduals move freely within their own neighborhood. Overall,
they tend to gather toward the bellwether and follow the
natural mechanism of strong and experienced sheep in
search of high-quality grassland sources. &e algorithm has
two main search mechanisms, namely, the strong leading of
the bellwether and free strolling of individuals (shown in

Figure 8), which can help to obtain the global optimal so-
lution of high-dimensional and complex problems with a
relatively high probability [36].

In ASA, the influence of strong leading of the bellwether
is decisive. If the bellwether moves with a big stride, indi-
viduals will adjust their motion trajectory X(t) to follow the
bellwether closely. &e position of the bellwether XB(t)

should be recorded and inherited in every time of the it-
eration. &e influence Xbw

i (t) of the bellwether acting on the
i-th sheep (i� 1,. . ., popSize) is expressed as follows:

Xbw
i (t) � XB(t) + c2 · δi,

δi � c1 · XB(t) − Xi(t),

⎧⎨

⎩ (17)

where δi is the distance for each individual to the bellwether;
c1 � 1 + (1 − α) · rand1; c2 � 2w · rand1; rand1 is a random
number in [− 1, 1]; α is the coefficient of leading scope; w is a
dynamic weight decreased from 1 to 0 linearly over the
iterations. When strolling or playing, every individual of
sheep forage autonomously in a local area, and this behavior
is called free strolling of individuals. &e shelf-awareness
affecting the movement of the i-th individual is presented as
follows:

Xself
i (t) � Xi(t) + rand2 · εi,

εi � e
− β·rand1 · cos 2π · rand1( 􏼁 · δi,

⎧⎨

⎩ (18)

where rand2 is a random number generated from [0,1].
Based on the discussion above, the movement of a sheep is
affected by the summoning of the bellwether and its free
strolling. &e position of an individual in an artificial sheep
flock will automatically update as follows:
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Xi(t + 1) � φi · Xself
i (t) + 1 + φi( 􏼁 · Xbw

i (t),

φi � w · rand2.

⎧⎨

⎩ (19)

Published experimental results have shown that ASA
could obtain a better global optimal value compared with
other algorithms [37]. In this paper, ASA is applied in
optimizing the initial learning parameters of the WOS-ELM
and the control sequence searching of rolling optimization.

3. WOS-ELM-Based NMPC

MPC is mainly composed of three parts: output prediction,
rolling optimization, and feedback revision. Its control
principle structure is shown in Figure 9. &ey are coupled to
each other to achieve the goal of predicting future state.&ey
can process system constraints explicitly and resist distur-
bance with uncertain factors, so as to obtain better integrated
control performance.

3.1. Output Prediction. One of the basic features of MPC is
that the state and output information of the system in the
time-domain are predicted by the prediction model of the
controlled system based on the known input, output, and
state of information of current and historical process. MPC
algorithm is not restricted to the form of prediction model.
Impulse/step response model, state-space model, time series
model, neural network model, and hybrid system model can
be applied to the construction of the prediction model. Since
MPC has the ability to predict the dynamic behavior of the
system in the coming period at each sampling time, re-
searchers can compare the future output trajectory of the
system under different control strategies by inputting dif-
ferent control signals into the prediction model.

3.1.1. WOS-ELM Based Output Prediction. With the rapid
development of the modern control theory, the neural
network model shows obvious advantages in describing the
dynamic behavior of complex systems, and becomes the
mainstream of system analysis in control theory. Under this

background, MPC research using neural network model to
describe the system has become a research hotspot in the
past decades [28], and has gradually evolved from shallow
neural network model to deep neural network model. Since
the PSP in the proposed MPC is a MIMO nonlinear system,
the model can be expressed by state-space equation of the
affine nonlinear system, as shown in

x(k + 1) � f(x(k)) + g(x(k))u(k),

y(k) � h(x(k)).
􏼨 (20)

&e WOS-ELM is selected as the prediction model to
predict the output of the PSP. Output prediction process
based on WOS-ELM is shown in Figure 10. &e state, input,
and output variables are given in

x(k) � Eq
′(k), Eq
″(k), Ed

″(k), δ(k),ω(k), h(k), y(k)􏽨 􏽩,

u(k) � Ef(k), σ(k)􏽨 􏽩,

y(k) � ω(k), y(k), Vg(k)􏽨 􏽩.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

Within a prediction horizonNp, the state and outputs in
several steps in the future can be obtained step-by-step if the
input sequences in a prediction horizon are given. &e
WOS-ELM in kth sampling time remains unchanged, and it
is the prediction model of MPC in this paper.

3.1.2. ASA-Based Prior-Knowledge Learning. Compared
with the traditional BP neural network, the ELM model has
faster convergence speed and better generalization perfor-
mance. However, the input weights and hidden layer biases
of the WOS-ELM network are generated randomly, which
are relatively independent of the modelling data and cannot
effectively reflect the internal relations between the mod-
elling data. In order to obtain the initial weights and the bias
of the hidden layer, which can fully reflect the internal
relationship of the modelling data, ASA is introduced to
search proper input weights and biases. To realize prior-
knowledge learning, some actual control process data of the
system should be obtained in advance. For example, the data
of disturbance process controlled by PID, VAR, and PSS can
be obtained to estimate the initial parameters.

Bellwether

Leader ship of 
bellwether

Free strolling of sheep

Now

Next Next

Next

Figure 8: Social behaviors of sheep flock.

System Plant

Output 
prediction

Rolling 
optimization

Feedback 
revision

State observation

X U

X

Y

U Y

Figure 9: &e structure of MPC control system.
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&e basic idea of the prior-knowledge learning of WOS-
ELM based on ASA can be expressed as: the unknown input
weights and hidden layer biases of the WOS-ELM are taken
as the decision variables of the optimization algorithm. &e
output weight can be calculated by (12). &e objective is to
minimize the deviation between the simulation state vari-
ables and the measured values. &e optimal parameters are
obtained through iterations of the populations of the al-
gorithm. &e general structure of the prior-knowledge
learning for WOS-ELM based on ASA is presented in
Figure 11. &e parameters of the WOS-ELM model
areθ � [w, b, β] and a cost function of the mean squared
error (MSE) is minimized. It is expressed in (22), where n is
the number of learning data.

MSE(􏽢θ) �
1
n

􏽘

n

k�1
‖x(k) − 􏽢x(k)‖

2
. (22)

3.2. Rolling Optimization

3.2.1. Objective Function. Rolling optimization needs to take
output trajectory tracking, control action limitation, as well
as terminal state penalty into consideration. It is generally
assumed that the state x(k|k) of the system can be measured
at time k, where the prediction horizon isNp. &e online
optimization problem of MPC is expressed as follows:

J � 􏽘

Np− 1

i�0
y(k + i) − yref(k + i)

����
����
2
Q

+‖Δu(k + i)‖
2
R􏼔 􏼕 + x k + Np􏼐 􏼑 − xref k + Np􏼐 􏼑

�����

�����
2

P
􏼔 􏼕, (23)

subject to

x(k + i + 1|k) � 􏽢f(x(k + i|k), u(k + i|k)),

y(k + i|k) � 􏽢h(x(k + i|k)),

⎧⎨

⎩ (24)

u ∈ Umin,Umax􏼂 􏼃,

Δu ∈ ΔUmin,ΔUmax􏼂 􏼃,
􏼨 (25)

x k + Np􏼐 􏼑 − xref k + Np􏼐 􏼑 ∈ Ω, (26)

where Q ∈ Rr×r, R ∈ Rm×m, P ∈ Rr×r are the weighting
matrices for the output, control input, and terminal state
penalty costs, respectively. Ω � x|xTPx ≤ α􏼈 􏼉 is the terminal
region for stability. At each sampling time, only the first item
of the optimized predictive control law sequence is applied
to the system, while at the next sampling time, the online
optimization process is repeated.

U (k|k)

Y (k|k)

U (k + 1|k) U (k + Np|k)

Y (k + 1|k) Y (k + Np|k)

U (k + i|k)

Y (k + i|k)

X (k|k)
X

(k + 1|k)

WOS-ELM WOS-ELM WOS-ELM WOS-ELM

WOS-ELM
Y (k + i|k)

X (k + i – 1|k)
X (k + i|k)

U (k + i|k)

E′q (k + i – 1|k)
E″q (k + i – 1|k)

Ef (k + i – 1|k)

E″d (k + i – 1|k)

E′q (k + i|k)

E″q (k + i|k)

E″d (k + i|k)δ (k + i – 1|k)
δ (k + i|k)h (k + i – 1|k)
h (k + i|k)y (k + i – 1|k)
y (k + i|k)ω (k + i – 1|k)
ω (k + i|k)
Vg (k + i|k)

σ (k + i – 1|k)

Figure 10: WOS-ELM based output prediction process in kth sampling time.
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3.2.2. ASA-Based Rolling Optimization in MPC. &e PSP
proposed in MPC is a MIMO nonlinear system, and the
rolling optimization belongs to the nonlinear programming
with inequality constraints. It is very difficult to obtain the
analytical solution of a rolling optimization problem like the
linear system. In this paper, a heuristic rolling optimization
intelligent solution method based on ASA is proposed.

&e excitation system of synchronous generator re-
sponds quickly and the transient process is very short. &e
sampling period of the controller is small (usually
0.01–0.04 s), so there is a high requirement for online
solving speed of its control law. &e rolling optimization
of MPC is essentially to solve constrained nonlinear
programming online in each sampling period of the
controller. According to the optimization theory, the
predictive time-domain length of MPC increases and the
number of decision variables (i.e. predictive control se-
quence) to be solved increases. &us, the corresponding
online optimization computation increases exponentially.
In order to limit the dimension of decision variables in
optimization problems, the idea of stair-like control
[38–40] is introduced into model predictive control. By
constraining the increment of each step, the trend of
change is stair-like.

It is assumed that the control increment in the prediction
horizon follows the stair-like rule and changes exponentially
in one direction. &e stair-like change formulas for con-
trolling increment are shown in (27) and (28).

ΔEf k + Np|k􏼐 􏼑

ΔEf k + Np − 1|k􏼐 􏼑
� · · · �
ΔEf(k + 1|k)

ΔEf(k|k)
� μ1 μ1 ≥ 0( 􏼁,

(27)

Δσ k + Np|k􏼐 􏼑

Δσ k + Np − 1|k􏼐 􏼑
� · · · �
Δσ(k + 1|k)

Δσ(k|k)
� μ2 μ2 ≥ 0( 􏼁, (28)

where μ is the stair factor. If the stair factor μ> 1, the system
emphasizes on limiting the change of real-time control
quantity and changing the control input in the future. If the
stair factor satisfies 0< μ< 1, the system emphasizes on
improving the tracking ability of the system through the
action of real-time control quantity, and the closer its value
is to 1, the smoother the whole control process is, but the
slower the response is; the closer it is to 0, the stronger the
tracking effect is, but the more the change of the control
quantity is.

Once the stair-like control is used in MPC, rolling op-
timization only needs to search the appropriate value of real-
time control variableu(k|k), and then the control sequence is
calculated by the principle of stair-like control. As a result,
the dimension of the optimization problem decreases sig-
nificantly from m × Np tom, where m is the dimension of
the input variables of the system. &e lower dimension
makes the online optimization much faster. In addition,
once the first elements in the control sequence satisfy the

Actual system

ASA

System input

Fitness function

ELM

Least squares 
solution

[E′q, E″q, E″d, δ, ω, h, y, Vg]

[E′q, E″q, E″d, δ, ω, h, y, Vg]

θ = [w, b, β]

[w, b]

β

Fitness (θ)

Figure 11: &e general structure of the prior-knowledge learning for WOS-ELM based on ASA.
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incremental limit, other incremental constraints in predic-
tion horizon are automatically met.

Since the control increment can be explicitly limited in
the ASA search process and the sampling frequency of the
system is high, the range of the control signal at each
sampling time is relatively small. In the process of solving the
control sequence, the population number popSize and the
maximal iteration maxGen in ASA can be chosen as a small
one. By implementing the above auxiliary operations, the
computational complexity of ASA-based rolling optimiza-
tion process can be significantly reduced.

In each sampling period of the MPC controller, the
prediction model iteratively calculates the state and output
using the control sequence generated by a sheep in the
population. &en, the fitness of each sheep is calculated by
the rolling optimization solver according to the cost function
in (23). &en, ASA updates the optimal fitness of the
population and sets its corresponding coordinates as the
current bellwether. &e rolling optimization flow based on
ASA is shown in Figure 12.

3.3. Feedback Revision. In practice, it is impossible to
obtain an accurate model of the object. As a basic pre-
diction model, it is only a rough description of the dy-
namic characteristics of the object. Because of the
uncertainties such as nonlinearity, time-varying, model
mismatch, and disturbance in the actual system, the
prediction based on the invariant model cannot be exactly
consistent with the actual situation, which requires ad-
ditional prediction methods to supplement the inade-
quacy of the model prediction, or online correction of the
prediction model. &erefore, in each control sampling
period, feedback correction mechanism should be in-
troduced into MPC to correct or compensate the state and
output prediction errors caused by disturbance or model
deviation in real time, so that the whole controlled system
becomes a closed-loop control system with feedback
mechanism. Only on the basis of feedback revision can
rolling optimization show its superiority.

Feedback revision has various forms. It can predict and
compensate future errors on the basis of keeping the pre-
diction model unchanged. It can also directly modify the
prediction model according to the principle of online
identification. Since the WOS-ELM is adopted in this paper,
the prediction model can be modified online according to
(16), where a suitable value for forgetting factor λ plays a
significant role in online learning.

When the predicted output agrees well with the newly
obtained data, the forgetting factor λ should be close to 1. On
the contrary, larger prediction error means the impact of old
data becomes weaker. &en, λ should tend to λmin, which is
set in advance. &e following adjustment formula (29) can
meet the above requirements.

λ �
1 − λmin

π
− a tan ep − es􏼐 􏼑 +

π
2

􏼔 􏼕 + λmin, (29)

where a tan is the arc tangent function, ep is the norm of
prediction error, and es the setting error, as shown in

Figure 13. &e forgetting factor can be changed smoothly
according to the prediction error.

3.4. Feasibility and Stability. &e feasibility of the optimi-
zation problem in MPC is that there exists at least one set of
control sequences in each sampling period. When they are
applied to the prediction model, the states and output
trajectories meet all nonlinear constraints (especially ter-
minal inequality constraints) in the system.&e feasibility of
the MPC algorithm is the precondition of closed-loop sta-
bility analysis. A famous lemma about the feasibility of
optimization problem is introduced [41].

Lemma 1. For a nonlinear system, ignoring the possible
disturbance, the feasibility of an open-loop optimal control
problem with equation (23) subject to equations (24)–(26) at
time t� 0 implies the feasibility for t> 0.

From Lemma 1, if the online optimization of MPC at the
initial sampling time is feasible, the feasibility of the whole
control process can be guaranteed. &e detailed derivation
process of this lemma has been described in literature [41],
which will not be covered in this paper. &e closed-loop
stability proof of MPC proposed in this paper is given in
detail below.

Theorem 1. Suppose that

(1) For any x ∈ Ω,there exists a control input Kf(x) ∈ U
satisfying the inequality (30) [41].

f x,Kf(x)􏼐 􏼑
�����

�����
2

P
− ‖x‖

2
P +‖x‖

2
Q + Kf(x)

�����

�����
2

R
≤ 0. (30)

(2) Ie open-loop online optimization is feasible at time
t� 0

For a sufficiently small sampling interval, the closed-loop
system is asymptotically stable.

Proof. At time k, solving the cost function (23), a group of
feasible control sequences are obtained as shown in (31).&e
inputs in this control sequence satisfy the stair-like strategy
(27) and (28).

U∗(k) � u∗(k|k), u∗(k + 1|k), . . . ,u∗ k + Np − 1|k􏼐 􏼑􏽨 􏽩.

(31)

&e related state with the control sequence can be
presented in

X∗(k) � x∗(k + 1|k), x∗(k + 2|k), . . . , x∗ k + Np|k􏼐 􏼑􏽨 􏽩.

(32)

And, the objective function at time k can be obtained in

J
∗
(k) � J k;U∗(k),X∗(k)( 􏼁. (33)

From the ASA-based optimization mechanism, it can be
learned that there exists a control sequence, which makes the
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Figure 12: Flow chart of rolling optimization process based on ASA.
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relevant part from the optimal solution to lead the state into
the terminal region at the next sample time, as shown in

U(k + 1) � u∗(k + 1|k), u∗(k + 2|k), . . . ,u∗ k + Np − 1|k􏼐 􏼑,Kf x∗ k + Np|k􏼐 􏼑􏼐 􏼑􏽨 􏽩. (34)

&e corresponding state is

x∗(k + 1|k), . . . , x∗ k + Np|k􏼐 􏼑, f x∗ k + Np|k􏼐 􏼑,Kf x∗ k + Np|k􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽮 􏽯, (35)

J∗(k + 1) can be obtained after re-optimizing J(k + 1) at
time k+ 1. According to the optimality principle, there will
exist J∗(k + 1)≤ J(k + 1), and we have

J
∗
(k + 1) − J

∗
(k)≤ J(k + 1) − J

∗
(k)

� f x∗ k + Np|k􏼐 􏼑,Kf x∗ k + Np|k􏼐 􏼑􏼐 􏼑􏼐 􏼑
�����

�����
2

P
− x∗ k + Np|k􏼐 􏼑

�����

�����
2

P
+ x∗ k + Np|k􏼐 􏼑

�����

�����
2

Q

+ Kf x∗ k + Np|k􏼐 􏼑􏼐 􏼑
�����

�����
2

R
− x∗(k|k)

����
����
2
Q

− ‖u(k|k)‖
2
R.

(36)

Once the feasible solution exists, there is
x(k + Np|k) ∈ Ω. &us, the assumption (1) will result in the
inequality

J
∗
(k + 1) − J

∗
(k)≤ − x∗(k|k)

����
����
2
Q

− ‖u(k|k)‖
2
R < 0. (37)

&erefore, it can be concluded that J∗(k + 1) − J∗(k) is
negative. Because the cost function is quadratic, its value is
always positive. &erefore, taking the cost function of rolling
optimization in equation (23) as the Lyapunov function of
the control system, the closed-loop system is asymptotically
stable.

4. Case Study

&e simulation experiments are mainly divided into three
parts, prior-knowledge learning, control performance
analysis, and coupling effect analysis. (1) &e first part fo-
cuses on the prior-knowledge learning of the optimal
structure of the ELM model using the normal data set of the
voltage regulation process. (2) &e second part focuses on
the effectiveness and robustness of the proposed MPC
strategy. &e proposed MPC strategy is compared to con-
ventional PI controller with AVR and PSS, which is designed
specifically for a certain operating condition to verify its
superiority in the control performance of uncertain con-
ditions.&e control structure of PI with AVR and PSS can be
referenced in [17]. (3)&e third part focuses on the influence
of coupling effect on control performance. In this part, two
implementations of the proposed MPC strategy are com-
pared. One considers the coupling effect as applied in the
second part. &e other only takes the electrical subsystem
into account but neglects the regulating influence of the

hydraulic-mechanical subsystem for its short time span, i.e.,
guide vane opening control signalσ(t) is considered as a
constant.

Simulation experiments have been carried out based
on the data of PSP in the Jiangxi province of China, as
shown in Figure 2. All simulations are implemented using
MATLAB 2018a. In order to make the experiment results
more convincing and reliable, a sudden step up in ter-
minal voltage, three-phase short circuit fault, and load
scheduling cases are selected as the research conditions of
robustness analysis. &e three-phase short circuit fault
case is also selected as the coupling analysis object. &e
basic parameters and initial steady state of PSP are
presented as follows:

(1) System parameters of PSP:

Generator:Xd � 0.768, Xd
′ � 0.249, Xd

″ � 0.187, Xq

� 0.512, Xq
″ � 0.189, Td0′ � 5.01, Td0″ � 0.053, Tq0″ �

0.1, Tj � 7.0
Transformer and line: Xs � 0.3
Servomechanism: Ty � 0.2
Pump-turbine: the characteristic curves are adopted
from a real turbine (shown in Figure 3)
Water column:Tw � 1.30, Te � 0.978, f � 0.01 (the
rated water head is 195m, the rate discharge is
176.1m3/s, and the length of the conduit is
L� 489.4m)

(2) Condition settings of PSP
Initial steady-state condition: Ef0 � 1.28, P0 �

0.9, y0 � 0.9, δ0 � 0.68
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Range and rate limitations: 0≤ σ ≤ 1, 0≤Ef ≤ 3,

− 0.002≤Δσ ≤ 0.002, − 0.5≤ΔEf ≤ 0.5
(3) Parameter settings of MPC: Np � 50, μ1 � μ2 �

0.3,maxGen � 5, popSize � 30, α � 0, β � 2, Q �

diag 1000, 1, 1{ }, R � 0, P � diag 1, 1, 1, 1, 1, 1, 1{ }, α �

1.0 × 10− 5, λmin � 0.95, es � 1.0 × 10− 7

4.1. Prior-Knowledge Learning. A normal data set of voltage
regulation process is applied for optimizing the optimal
structure of the ELMmodel. &e inputs and outputs of ELM
have been presented in Section 3, and the optimal number of
hidden layer nodes is selected by the minimum MSE be-
tween measured outputs and predicted outputs. A tanh
nonlinear function is used for the hidden layer, and the
transfer function of the output layer is a linear one. &e
accuracy of ELM models with different number of hidden
nodes from 8 to 14 are compared in Table 1 and the numbers
of model parameters (input weights, biases, and output
weights) are also presented. As the number of hidden layer
nodes increases, the MSE decreases while the MSE increases
from 11 hidden nodes. Accordingly, the optimal number of
hidden layer nodes is chosen as 11. Comparison between the
outputs of the ELM model with 11 hidden nodes and the
actual system are shown in Figure 14.

4.2. Control Performance Analysis. Most of the control
strategies have been designed specifically for a certain op-
eration condition and, thus, cannot automatically identify
the change and adjust control law, while there are changes of
conditions or environmental disturbances of in the plant. A
control strategy may achieve satisfactory control perfor-
mance under one condition but degrade the performance of
the control system under the other. As a result, theories that
can solve the nonlinear control problem with uncertain
conditions are needed to be applied in a large complicated
power system. As an advanced control strategy, MPC can
solve the complicated, nonlinear, time-varying control
problem with multivariable interactions. In this part, the
proposed MPC strategy is compared with conventional PI
controller with AVR and PSS to verify its superiority in the
control performance of uncertain conditions. In order to
obtain satisfactory control performances, the parameters of
the PI controller with AVR and PSS are optimized by the
ASA with the integral of time multiplied absolute error
(ITAE) criterion, as studied in many publications [14,15].
&e optimized parameters of the PI controller with AVR and
PSS are presented in Table 2, where C1 represents the voltage
step condition, C2 represents the three-phase short circuit
fault condition, and C3 represents the load adjustment
condition. &e nomenclature of the parameters is the same
as those in [17].

4.2.1. Scenario 1: Sudden Step in Terminal Voltage.
A+10% sudden step up in terminal voltage is given at 1s, and
simulation results are shown in Figure 15. It is shown that
the proposed MPC strategy performs much better than the

optimized PI controller with VAR and PSS in voltage re-
sponse, with nearly no overshoot and oscillation. &e rotor
speed oscillations of MPC are quicker to calm down. Ac-
cordingly, the proposed MPC has presented better perfor-
mance in voltage regulation and oscillation suppression of
the rotor speed, which is beneficial to enhance the stability of
the system.

&e optimized PI controller with AVR and PSS of two
other conditions are also tested in this situation. It is found
that the strategy optimized under the other situation could
not adapt well to the current operating condition. Despite
the optimized conventional strategy of C2 condition pro-
viding a smaller peak-to-peak value of rotor speed, the
setting time is much bigger than that of C1 condition. In
addition, the terminal voltage presents a bigger steady-state
error. &e control performance of the optimized conven-
tional strategy of C3 condition is similar to that of the C1
condition, but it has a relatively bigger peak-to-peak value
and longer setting time in rotor speed and voltage
regulation.

4.2.2. Scenario 2: Iree-phase Short Circuit Fault. A three-
phase short circuit fault occurs at the high voltage side of a
boost transformer (as shown in Figure 2) at 1 s and is
eliminated after 0.1 s. &e comparison results of transition
processes between proposed MPC and conventional PI
controller with AVR and PSS are given in Figure 16. It can be
seen from Figure 16(a) that the proposed MPC provides
much stronger damping capability for rotor speed with rapid
convergence rates, smaller peak-to-peak value, and less
oscillation times. From Figure 16(b), it is shown that the
proposed MPC strategy possesses a much quicker voltage
response speed with nearly no overshoot.

Similarly, the PI controller with AVR and PSS optimized
under this condition is not a halfpenny the worse, which
owns good performance in response to rotor speed and
terminal voltage. However, in order to ensure the control
quality under normal working conditions (C1 and C3
conditions), the parameters of PI controller with VAR and
PSS are not specifically designed for a three-phase short
circuit fault condition. In other words, the control param-
eters of normal working conditions are applied when a
three-phase short circuit fault occurs. It can be found from
Figure 16 that the parameters of the normal situation could
not adapt well to the fault condition, which can easily lead to
low frequency oscillations in the power system. On the other

Table 1: Different number of hidden nodes on the complexity and
the accuracy of ELM.

Hidden nodes Model parameters MSE (10− 7)
8 144 8.7969
9 162 6.4314
10 180 1.6794
11 198 0.8034
12 216 1.0751
13 234 2.8128
14 252 6.1366
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hand, if the control parameters designed for three-phase
short circuit fault are used in normal conditions, the control
quality of the system cannot be guaranteed (seen Figures 15
and 17). At this point, the advantages of the proposed MPC
strategy are prominent for its good adaptability and flexi-
bility in varied conditions.

4.2.3. Scenario 3: Load Adjustment. &e load starts to adjust
from 90% to 85% at 1s, and the results of the load adjustment

process are shown in Figure 17. It can be seen that the guide
vane opening strictly follows the objective function while the
electrical power has an obvious anti-regulation at the be-
ginning, which is caused by the water hammer effect. Seen
from Figure 17, the proposed MPC strategy not only pro-
vides a smaller anti-regulation than the PI with VAR and
PSS optimized under load adjustment condition but it also
has a rapid load response speed and, thus, can undertake the
task of fast adjustments on load when a large-scale RE is
connected to the grid.
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Figure 14: Comparison between the outputs of the ELM model and the actual system.

Table 2: &e optimized parameters of the PI controller with AVR and PSS under different conditions.

Condition Ka Tr Ks T0 T1 T2 Kp Ki

C1 292.81 0.006 19.02 4.63 0.34 0.252 1.67 0.11
C2 37.10 0.017 14.05 1.38 0.91 0.005 0.21 7.71
C3 207.85 0.015 12.79 1.46 0.70 0.415 9.83 7.90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

0.9985

0.999

0.9995

1

1.0005

Ro
to

r s
pe

ed
 (p

u)

PI, VAR and PSS of C1
PI, VAR and PSS of C2
PI, VAR and PSS of C3
Proposed MPC strategy

Under voltage step condition
PI with VAR and PSS of C1
Peak-to-peak value: 1.7∗10–3

Setting time (s): 1.04
Oscillation times: 1.5

PI with VAR and PSS of C2
Peak-to-peak value: 1.1∗10–3

Setting time (s): 2.20
Oscillation times: 1.5

PI with VAR and PSS of C3
Peak-to-peak value: 1.9∗10–3

Setting time (s): 1.28
Oscillation times: 1.5

Proposed MPC strategy
Peak-to-peak value: 1.1∗10–3

Setting time (s): 0.92
Oscillation times: 0.5

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

PI, VAR and PSS of C1
PI, VAR and PSS of C2
PI, VAR and PSS of C3
Proposed MPC strategy

Under voltage step condition
PI with VAR and PSS of C1
Overshoot (%): 13
Setting time (s): 1.24
Oscillation times: 2

PI with VAR and PSS of C2
Overshoot (%): 9
Setting time (s): >5
Oscillation times: 1

PI with VAR and PSS of C3
Overshoot (%): 18
Setting time (s): 1.41
Oscillation times: 2

Proposed MPC strategy
Overshoot (%): 0
Setting time (s): 0.94
Oscillation times: 0

1

1.02

1.04

1.06

1.08

1.1

1.12

Te
rm

in
al

 v
ol

ta
ge

 (p
u)

(b)

Figure 15: Response comparison under terminal voltage step condition. (a) Rotor speed response. (b) Terminal voltage response.
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&e PI controller with AVR and PSS optimized under
this condition performs a little better than those opti-
mized under the other condition, but it cannot meet the
requirements of rapid load scheduling, which is caused by
the inherent defects of the PI controller. Setting larger PI
parameters may increase the response rate of load ad-
justment, but it is easy to cause low frequency oscillations
in the power system (seen from Figure 16) when the
system is subjected by external disturbances. &is is the
contradiction that the conventional PI with VAR and PSS
control methods has to face, but the proposed MPC
strategy can easily solve this contradiction due to its local
optimization capability.

4.3. Coupling Effect Analysis. &e influence of coupling
factors on control performance is studied in this part.
Two implementations of the proposed MPC strategy are
compared. One implementation considers the coupling

effect of hydraulic-mechanical-electrical system, as ap-
plied in Section 4.2. &e other only takes the electrical
subsystem into account but neglects the regulating in-
fluence of hydraulic-mechanical subsystem for its short
time span, i.e., guide vane opening control signal σ(t) is
considered as a constant, as shown in Figure 18 [38].

&e common ranges of some basic time constants in
PSP are shown in Figure 19. &ree time constants affecting
electromagnetic power are marked in red and the other
three time constants affecting mechanical power are
shown in green. Generally, time constants Td0″ and Tq0″ are
very small, the influence of which on the coupling effect of
the PSP system can be ignored. &erefore, time constant
Td0′ is selected as the study factor. Parameter settings of the
noncoupling strategy are the same as the coupling
strategy. &e three-phase short circuit fault is selected as
the study condition.

&e response comparisons under the three-phase
short circuit fault of different transient constant times
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Figure 16: Response comparison under a three-phase short circuit fault condition. (a) Rotor speed response. (b) Terminal voltage response.

Under load adjustment condition 

PI with VAR and PSS of C1
Overshoot(%): -
Setting time (s): >5

PI with VAR and PSS of C2
Overshoot(%): -
Setting time (s): >5

PI with VAR and PSS of C3
Overshoot(%): -
Setting time (s): >5

Proposed MPC strategy
Overshoot(%): 4.3
Setting time (s): 2.5

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

G
ui

de
 v

an
e o

pe
ni

ng
 (p

u)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

PI, VAR and PSS of C1
PI, VAR and PSS of C2
PI, VAR and PSS of C3
Proposed MPC strategy

(a)

Under load adjustment condition

PI with VAR and PSS of C1
Anti-regulation(%): 13.43
Setting time (s): >5

PI with VAR and PSS of C2
Anti-regulation(%): 29.30
Setting time (s): >5

PI with VAR and PSS of C3
Anti-regulation(%): 88.73
Setting time (s): >5

Proposed MPC strategy
Anti-regulation(%): 78.97
Setting time (s): 4

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

El
ec

tr
ic

al
 p

ow
er

 (p
u)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

PI, VAR and PSS of C1
PI, VAR and PSS of C2
PI, VAR and PSS of C3
Proposed MPC strategy

(b)

Figure 17: Response comparison under load adjustment condition. (a) Guide vane opening. (b) Electrical power response.
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Figure 20: Response comparison under a three-phase short circuit fault condition of different transient time constants of the d-axis. (a) Rotor speed
response. (b) Terminal voltage response.
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Td0′ are shown in Figure 20. It is shown that with the
increase of time constant Td0′ , the effect on control per-
formance from coupling factors is becoming greater. &is
is because when the time constant Td0′ is small, the
regulation speed of the hydraulic-mechanical subsystem
is much slower than that of the electrical subsystem.

Currently, even considering the regulation influence
of the hydraulic-mechanical system is not effective for the
control of the coupling system. But, when the constant
time Td0′ becomes larger, the response speed of the
electrical subsystem is close to that of the hydraulic-
mechanical subsystem. Accordingly, the coupling influ-
ence from hydraulic-mechanical subsystem can be con-
siderable. Considering the coupling effect of the
hydraulic-mechanical-electrical system in this situation,
the control quality can be greatly improved.

5. Conclusions

In this paper, an NMPC strategy is proposed based on the
WOS-ELM prediction model and ASA rolling optimization
for the hydraulic-mechanical-electrical coupling system of
PSP. Specifically, the initial weights and the bias of the
hidden layer in ELM, which can fully reflect the internal
relationship of the modelling data, is optimized by ASA,
while the output weights are still calculated by the least
squares method. Besides, the ASA is also used in the rolling
optimization mechanism of NMPC to replace the existing
complex differential geometric solutions. In order to reduce
the computational burden, the idea of stair-like control
strategy is introduced into rolling optimization. What’s
more, the forgetting factor is adjusted adaptively according
to the prediction error in the feedback revision.

&e proposed MPC method has been verified and tested
with comparative experiments, while the nonlinear simu-
lation model based on a PSP in China is adopted as the study
object.&e conventional PI controller with AVR and PSS are
compared with the proposed MPC method under diverse
working conditions. Experimental results on the sudden step
up in terminal voltage, three-phase short-circuit fault, and
load adjustment conditions have proven the effectiveness
and robustness of the proposed method. &e results indicate
that the proposed MPC strategy has superiority in control
performance under uncertain conditions. Besides, the in-
fluence on control performance from coupling factors can be
considerable, and the proposed MPC strategy, which takes
the regulation effect of hydraulic-mechanical subsystem into
account, has a significant advantage over the one that only
considers the electrical effect.

Abbreviations

Ef: Excitation EMF (pu)
Eq
′: Transient EMF of q-axis (pu)

Ed
″: Sub-transient EMF of d-axis (pu)

Eq
″: Sub-transient EMF of q-axis (pu)

f: Water head loss coefficient
h: Water head (pu)
Id: Iq Armature current of d- and q-axes (pu)

mt: Mechanical moment (pu)
m11: Unit mechanical moment (pu)
n11: Unit rotational speed (pu)
Pe: Electric active power (pu)
Pm: Mechanical power (pu)
q: Discharge at pump-turbine (pu)
q11: Unit discharge (pu)
Td0′ : Transient time constant of d-axis (s)
T’′

d0: Sub-transient time constant of d-axis (s)
Tq0″: Sub-transient time constant of q-axis (s)
Tj: Mechanical time constant (s)
Te: Reflection time of water hammer (s)
Tw: Water starting time constant (s)
Ty: Servo response time (s)
Vg: Voltage at the generator terminal (pu)
VdVq: Terminal voltage of d- and q-axes (pu)
Vs: Voltage of the infinite bus (pu)
Xd: Synchronous reactance of d-axis (pu)
Xd
′: Transient reactance of d-axis (pu)

Xd
″: Sub-transient reactance of d-axis (pu)

Xq: Synchronous reactance of q-axis (pu)
Xq
″: Sub-transient reactance of q-axis (pu)

Xs: Total reactance of transmission line (pu)
y: Guide vane opening (pu)
σ: Input of servomechanism (pu)
δ: Rotor angle (rad)
ω: Rotor angular speed (pu)
ω0: Synchronous angular speed (rad/s)
Δ: Deviation from the initial value.
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