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Unsteady magnetohydrodynamics (MHD) flow of fractionalized Brinkman-type fluid over a vertical plate is discussed. In the
model of problem, additional effects such as heat generation/absorption and chemical reaction are also considered. The model is
solved by using the Caputo fractional derivative. The governing dimensionless equations for velocity, concentration, and
temperature profiles are solved using the Laplace transform method and compared graphically. The effects of different parameters
like fractional parameter, heat generation/absorption Q, chemical reaction R, and magnetic parameter M are discussed through
numerous graphs. Furthermore, comparison among ordinary and fractionalized velocity fields are also drawn. From the figures, it
is observed that chemical reaction and magnetic field have decreasing effect on velocity profile, whereas thermal radiation and

mass Grashof numbers have increasing effect on the velocity of the fluid.

1. Introduction

The important significance of non-Newtonian fluids can be
seen in applied mathematics, engineering, and physics. It has
various significances in many areas, such as uses of lubricants,
biological fluid food processing, or plastic manufacturing.
Some commonly examples of non-Newtonian fluids are
custard, colloids, melted butter, paint, ketchup, starch sus-
pensions, blood, toothpaste, gels, shampoo, and corn starch.

Mass transfer and heat transfer occurs mostly in nature
due to temperature and concentration differences, respec-
tively. Today, research work in magnetohydrodynamics
(MHD) has substantial significance as these flows are ab-
solutely prevailing in nature.

Convection flow with porous media has numerous ap-
plications such as flows in soils, solar power collectors, heat
transfer correlated with geothermal systems, heat source in
the field of agricultural storage system, heat transfer in
nuclear reactors, heat transfer in aerobic and anaerobic
reactions, heat evacuation from nuclear fuel detritus, and
heat exchangers for porous material.

MHD fluid has many implementations in meteorology,
distillation of gasoline, energy generators, geophysics, ac-
celerators, petroleum industry, astrophysics, polymer
technology, aerodynamics, and boundary layer control and
in material processes such as glass fiber drawing, extrusion,
and casting wire. The flow of viscous fluid through a per-
pendicular plate is analyzed by Swamy et al. [1]. The effect of
mass diffusion on MHD fluid with porosity has been ob-
served by Chaudhary et al. [2]. Exact solution for magne-
tohydrodynamics flow through a perpendicular plate in the
existence of porosity is obtained by Sivaiah et al. [3]. The
solution for unsteady flow of viscous fluid with porosity is
obtained by Das and Jana [4].

Furthermore, convection flow in the existence of po-
rosity has wide applications such as ground water hydrology,
oil extraction, geothermal systems, cooling systems, storage
of nuclear waste materials, energy-eflicient drying processes,
solid matrix heat exchangers, and wall-cooled catalytic re-
actors. Kataria and Patel [5] analyzed the impact of magnetic
field with heat transfer over a plate. The authors of [6]
discussed the solution of viscous fluid flow with thermal
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radiation. Chamkha [7] discussed the effect of heat source on
MHD fluid through a moving plate.

The authors of [8] studied the flow of polar fluid through
a plate. Rahman and Sattar [9] studied the flow of fluid with a
heat source. Rajesh and Varma [10] studied the influence of
mass diffusion on magnetohydrodynamic fluid flow. The
authors of [11] analyzed the solution of convection flow
through a vertical plate. They also discussed the solution for
time-dependent concentration and temperature. Convec-
tion flow immersed in a porous media through a surface is
discussed in [12-14].

The impact of conjugate flow of MHD fluid is discussed
by Khan et al. [15]. Rajesh et al. [16] discussed the MHD flow
through a moving plate. MHD flow through an accelerated
surface in the existence of porous media is discussed by
Chaudhary et al. [17]. The authors also analyzed the solution
of velocity field graphically. Das [18] analyzed the solution of
magnetohydrodynamics of convection flow through a plate.
Pal et al. [19] examined the solution of viscous fluid with
thermal radiation on magnetohydrodynamics flow, whereas
the solution for convection flow with nonuniform tem-
perature through a moving plate is obtained by Seth et al.
[20]. The solution of nanofluid with ramped temperature is
studied by Khalid et al. [21].

The discussion of mass diffusion has empirical use in
numerous areas of engineering and applied sciences. These
phenomena play a vital role in cooling of a nuclear reactor and
tabular reactor, chemical industry, mixture of terracotta
material, petroleum industry, and decomposition of rigid
materials. Seddeek et al. [22] examined the MHD fluid flow
with thermal radiation. An intensive study of chemical re-
action with heat source/sink is studied by Shah et al. [23]. Seth
et al. [24] obtained the solution of unsteady magnetohy-
drodynamic flow of the fluid over a plate with ramped
condition. The solution of convection flow of MHD fluid over
a plate with heat generation/absorption is obtained by Shateyi
and Motsa[25]. MHD fluid flow with Ohmic heating and heat
generation is analyzed by Kasim et al. [26]. The exact solution
of MHD fluid with mass transfer immersed in a porous media
is discussed by Ali et al. [27]. The exact solution of magne-
tohydrodynamic flow of a Brinkman fluid perpendicular to
the plate is analyzed by Khan et al. [28]. The analytical in-
vestigation of Brinkman fluid flow with variable concentra-
tion, temperature, and velocity is obtained by Ali et al. [29].
The flow of nanofluid with thermal radiation is studied in
[30-35]. Patel et al. [36] studied the effect of Joule’s heating on
terrofluid. The influence of Brownian motion and thermo-
phoresis is studied by Mittal and Kataria [37]. Kataria [38]
studied the effect of radiation and magnetic field on Casson
fluid. Hashemi et al. [39] analyzed the solution of a circular
rod. Some flows of fluids with numerical and computational
methods are discussed in [40-42].

In this problem, the model of unsteady magnetohy-
drodynamic free convection flow of Brinkman fluid through
a plate is considered. The impact of chemical reaction and
heat absorption/generation is added into account. Firstly,
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the governing equations have been made nondimensional
and then solved semianalytically. The results for velocity
profile, temperature profile, and concentration profile are
obtained and then analyzed graphically. Various graphs are
plotted and discussed for different parameters, which are
used in the flow model. The comparison between ordinary
and fractionalized fluid is drawn graphically and shows that
Caputo fractional derivative is the best choice for controlled
fluid velocity.

2. Mathematical Description of the Model

The magnetohydrodynamic flow of Brinkman fluid through
a plate with mass and heat transfer is considered. The fluid is
flowing along the x* axis. The motion of fluid depends on
y'-axis and time ¢,. The plate and fluid have concentration
C., and temperature T at constant t; = 0 with zero ve-
locity. But, for ¢; >0, the plate starts to move in the plane
with uniform velocity U,e®1. The concentration and tem-
perature of the plate increased linearly to C;, and T, with
time t'. A constant strength f3, of magnetic field is applied
normally. In view of the above assumption and using
Boussinesq’s approximation, the convection flow of
Brinkman fluid with chemical reaction, and magnetic field
through a plate, the linear momentum equation is

uy (1)) or(y.1)
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— auléy-, tl). (2)
y
Thermal equation is
o (y.t) _ 9 (y>1) _
= T-T,).
Pcp atl ay + Q1 ( oo) (3)
According to Fourier’s Law, g, (y',t}) is given by
N o (v.t
q(y,t)) = —%#- (4)
Diffusion equation is
oC (1) _ oL(y.1) _c
or ay R (C-C,). (5)
According to Fick’s Law, J; (y',t}) is given by
o aC (yt,
L (yst) = _Dm—(y 1)- (6)

oy

The boundary conditions for the flow model are
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To write the flow model in dimensionless form, we used
the following dimensionless variables:
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Using nondimensional variables from equations in (10)
into the equations (1)-(9), we have
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where Gr, B, Sc, Q, M, Pr, Gm, and v represent the Grashof

number for heat transfer, Brinkman parameter, Schmidt

number, nondimensional heat source, magnetic field,

Prandtl number, mass Grashof number, and velocity of the
fluid, respectively.

mn

>

3. Generalized Model

Equation (12) is frictionally generalized by Blair and Caffyn
[43]:

_gou(y,t)

r=L, 4D;F 5

1>4>0. 19
y 2p> (19)

Equation (14) is generalized by using Fourier Law de-
fined by Povstenko and Hristov [44, 45]:

1T (3,1)

q=-m,_,D, 5y 1>y>0. (20)

By using Fick’s Law, equation (16) is generalized as
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where P, =K L, g =1 when f — 1, P, = K,m,_, = 1/Pr
when y — 1, Py =K;n,_,=1/Sc when a« — 1, and
D¢v(y,t) represents the Caputo fractional derivative of
v(y,t) as
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and the left inverse operator of the derivative operator is

1 t
I}g(y,t) :@ J'Og(y,s)(t—s)“flds, (29)
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1}*“897 f—; 8 _ Dig(y,t). (30)

4, Solution of the Problem

Equations (25)-(27) with initial and boundary conditions
are solved semianalytically.

4.1. Calculation of Concentration. Solution of equation (27)
is

ICs)_ ,Clys)

s“C(y,s) = P, : — (31)
oy s
Boundary conditions satisfying equation (31) are
C(0,s)=s ",
C(y,s) —0, (32)
y — 00.

Equation (31) is solved by using conditions given in
equation (32), and we have

E(y, s) = S—le—y (l/P3)((5+R)/517a)’

which is complicated and cannot be solved analytically. The
numerical result of equation (33) is obtained by using the
algorithm in [46, 47].

(33)

4.2. Calculation of Temperature. Solution of equation (26) is

e
T >

19) ()2/ s)+
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T(y,s)
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Boundary conditions satisfying equation (34) are
T(@0,s)=s",
T(y,s) — 0, (35)

y — o0.

Equation (34) is solved by using conditions given in
equation (35), which results in

- L () (G- Qs
T(ys) = e VR, (36)

which is complicated one and cannot be solved analytically.
The numerical result of equation (36) is obtained by using
the algorithm in [46, 47].

4.3. Calculation of Velocity. Solution of equation (25) is
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Boundary conditions satisfying equation (37) are
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Equation (37) is solved by using conditions given in
equation (38), and we obtain

Gr
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which is much complicated, so it cannot be solved analyt-
ically. Numerical result of equation (39) will be obtained by
using the algorithm in [46, 47].

5. Results and Discussion

Semianalytical solution for MHD flow of Brinkman fluid
with a combined concentration and temperature gradient
over a plate is obtained. The generalized model is solved with
a Caputo fractional derivative. The graph of concentration
profile, temperature profile, and velocity profile are plotted
for different parameters.

Figure 1 represents the effect of B on v(y,t). It is noted
that the v(y,t) decreases with increasing values of the
Brinkman parameter. Physically, Brinkman is the relation
between drag force and density; therefore, drag force in-
creases with increasing values of the Brinkman parameter
which decays down the fluid motion. The behavior of Gm is
reported in Figure 2. From this graph, it is concluded that the
magnitude of fluid velocity rises by raising the values of Gm.
Gm is the relative strength of viscous force and concen-
tration buoyancy force. As Gm increases, the motion of fluid
is accelerated due to an increment of buoyancy force. Fig-
ure 3 represents the impact of different values of Gr on
v(y,t). From this graph, it is noted that velocity distribution
is directly proportional with Gr. Physically, Gr is a relation
between viscous force and buoyancy force. Therefore, with

s—a s(slfﬁ) [(PI/PZ)( (s-— Q)/slfy) - ((s + H)/slfﬁ)]

Gm

(39)
s(slfﬁ) [(Pl/P3)( (s+ R)/SH‘) - ((s + H)/slfﬁ)]

an increment in the values of Gr, buoyancy force is increased
which raises the magnitude of v(y,t).

Figure 4 displays the behavior of M and Q on fluid
motion. The speed of fluid layer is reduced for raising values
of M as shown in the graph. Physically, the Lorentz force
creates the low resistivity which increases the thickness or
width of momentum boundary layer in the solution. The
impact of Q on fluid velocity is displayed in Figure 4. The
v(y,t) is increased by increasing values of Q as depicted in
the figure. Physically, when the values of heat generation
parameter are increased, the thermal conductivity becomes
dominant. Fluid particles attract each other weakly which
improve the fluid motion.

Figure 5 represents the behavior of R and Pr on the
v(y,t). The graph shows that v(y,t) falls down for larger
values of R. The impact of various values of Pr on v(y,t) is
displayed in Figure 5. Pr represents the ratio of momentum
(product of mass and velocity) diffusion to thermal diffu-
sion. In the problems of heat transfer, Pr manages the
thickness of boundary layer and momentum (velocity). For
larger value of Pr, diffusion of heat becomes slow as com-
pared to the fluid momentum (velocity) which decreases the
thermal conductivity (thickness) and raises the boundary
layer momentum. The influence of R on fluid motion is
shown in Figure 5. From the figure, it is concluded that fluid
motion decays by increasing the values of R. Physically,
boundary layer thickness is increased by increasing values of
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v(y;t)
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FIGURE 2: Profiles of velocity v(y,t) for various values of the mass Grashof number Gm at R = 1.4,Q = 0.4,Gr = 9, M = .85,5c = 4.5,

a=p=y=05B=0.2, andPr = 4.0.

R which slows down the velocity distribution. Figure 6 shows
the influence of Sc and «, 8, and y on v(y,t). The graph
shows that for increasing values of Sc, the diffusion of the
molecule increases which reduces the fluid level. However,
fluid velocity rises with increasing values of fractional
parameters.

The behavior of heat generation Q and Pr on T(y,t) is
displayed in Figure 7. This figure shows that temperature
increases with increment in the values of Q. Figure 7 in-
dicates the influence of Pr on temperature T (y,t). Tem-
perature distribution is accelerated with decreasing values of
Pr as shown in the graph. Physically, the increase in Pr
minimizes viscosity which reduces the thermal boundary
layer.

The behavior of chemical reaction R and Sc on C(y,t) is
shown in Figure 8. The concentration level is accelerated
with decreasing R as depicted in the graph. Physically,
boundary layer thickness is increased by increasing values of
R which slows down the concentration distribution. Figure 8
shows the influence of Sc on C( y, t). The concentration level
increases with reducing values of Sc as highlighted in the
figure. The graph shows that for increasing values of Sc, the
diffusion of molecule increases which reduces the fluid level.
Figure 9 shows the comparison of Brinkman-type fractional
fluid with Olisa [48]. From the figure, it is concluded that
fractional derivative is the best choice to enhance the fluid
motion. Figure 9(b) represents that if we take fractional
parameters S =y =a — 1,Gm = F(s) = 0, and B = 0, the
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FIGURE 3: Velocity profile v(y,t) for various values of Gr at R=1.4,Q=04,Gm =6,M =.85,Sc=4.5a==y=0.5B=0.2,
and Pr = 4.0.
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fluid profiles are identical which shows the authenticity of
the present work. Figure 10 represents the validity of in-
version algorithms for concentration and temperature
profiles. The overlapping velocity profiles show the validity
of inversion algorithms as shown in Figure 11.

6. Conclusion

Solution of free convection magnetohydrodynamic flow of
Brinkman-type fluid has been obtained via Laplace trans-
form. Different parameters used in the model are plotted and
discussed. The model is solved with a fractional derivative
known as Caputo fractional derivative.

Here are the main points which have been summarized
for this model:

(i) Velocity distribution retards with decreasing
values of fractional parameter

(ii) Thermal buoyancy forces lead to accelerate the
v(y,t)

(iii) The v(y,t) decreases as magnetic parameter,
chemical reaction parameter, Prandtl number, and
Sc increases

(iv) The Brinkman parameter is a decreasing function
of velocity field

(v) The larger values of Q increased the T (y,t)
(vi) The larger values of Pr reduced the T'(y,t)

(vii) The concentration level is a decreasing function of
Sc

(viii) The smaller values of R reduce the concentration
profile

(ix) Caputo fractional derivative is the best choice to
enhance the fluid motion as compared to ordinary
fluid
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