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Critical types of infrastructure are provided by the state to maintain the people’s livelihood, ensure economic development, and
systematic government operations. Given the development of ever more complicated critical infrastructure systems, increasing
importance is being attached to the protection of the components of this infrastructure to reduce the risk of failure. Power facilities
are one of the most important kinds of critical infrastructure. Developing an effective risk detection system to identify potential
failure modes (FMs) of power supply equipment is crucial. *is study seeks to improve upon prior approaches for risk assessment
by proposing a hybrid risk-assessment model using the concepts of failure mode and effect analysis (FMEA) and multiple-criteria
decision-making (MCDM). *e proposed model includes a cost-based factor for decision-makers. *e subjectivity and un-
certainty in FM assessment are adjusted through the rough number method. *e original risk priority number (RPN) can be
expanded by including the entropy weights in the risk index. Furthermore, to rank the risk priorities in a rational manner, a
modified technique for order preference by similarity to ideal solution (modified TOPSIS) is adopted. *e applicability and
effectiveness of the proposed method were demonstrated by considering an example of a turbine steam engine in a nuclear
power plant.

1. Introduction

Critical infrastructure networks, such as technological
networks, information and communication technology
systems, transport networks, health care systems, and fi-
nance and government systems, are vital assets for every
country [1, 2]. When a piece of critical infrastructure is
destroyed, degraded, or rendered unavailable, lives can be
lost, and economic development can be hindered. For ex-
ample, in mid-August 2017, a large-scale unexpected power
outage occurred in Taiwan. *e primary reason for this
incident was that the supply pipeline for the power supply
plant stopped operating, which resulted in a large number of
generator sets being shut down. *e resultant blackout
indirectly caused one death and multiple injuries. *e area

affected by the incident included a metropolitan area with a
high population concentration. *e main effects of the
blackout included the suspension of business operations in
the area and loss of road lighting leading to traffic con-
gestion. To avoid critical infrastructure failure events like
this, many countries have begun to focus considerable efforts
on protecting critical infrastructure [2]. Interest in the field
of risk analysis has grown in recent years, and risk assess-
ment has emerged as a reliable and stable process that
supplements and complements many aspects of citizens’
lives [3, 4].

Critical infrastructure systems are interdependent, and
the infrastructure for producing electrical power is the key
system powering the functioning of other facilities [5, 6].*e
efficiency of nuclear power generation is higher than that of
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other power supply systems. One of the main pieces of
power generation equipment for nuclear power plants is the
turbine steam engine [7]. If the potential for failures can be
detected before a failure incident occurs, maintenance
measures and improvement strategies can be developed to
effectively reduce the probability of failure. *is is the
purpose of the failure mode and effect analysis (FMEA).
FMEA is one of the most popular risk detection tools used to
identify, assess, and remove potential or known failure
modes (FMs) to improve the safety and robustness of in-
tricate systems. t is intended to provide suggestions for risk
management decisions [8–10].

Basically, potential FMs in FMEA are assessed and sorted
according to the risk priority number (RPN), which is
obtained by multiplying three risk elements: severity (S),
occurrence (O), and detection (D) [11–13]. Unfortunately,
cost, which is often of most concern to the organization or
enterprise, is not included as a risk element in the FMEA [8].
In addition, there are only a few FMEA studies that discuss
the failure analysis of steam turbines in nuclear power
plants.

However, there are problems with the method for de-
termining RPN values when FMEA is applied to real-world
problems. *e method has been criticized because of the
equal weightings of its elements, its high duplication rate,
and its failure to address the subjective perceptions from
analysts. *ese shortcomings can significantly affect the
accuracy of the analysis results [8, 14]. It is also the case that
many current FMEA models use arithmetic averaging to
integrate the judgments of multiple experts/decision-
makers/analysts. *is means that outliers/extreme values are
ignored [9].

*is study develops an extension of the FMEA model
aimed at enhancing the effectiveness of the methodology.
Multiple-criteria decision-making (MCDM) techniques that
use analysts’ experience and judgment to strengthen the risk
assessment process are utilized for making critical risk
management strategies to enhance the efficacy and empirical
validity of risk analysis results. Numerous MCDM models
have been proposed to improve the FMEA methodology
[15, 16]. *e methods for determining the weights of three
risk elements include the analytic hierarchy process (AHP)
[17], the analytic network process (ANP) [18], data envel-
opment analysis (DEA) [19], and the best worst method
(BWM) [8]. *e FM sorting methods include the technique
for ordering preference by similarity to ideal solution
(TOPSIS) [9], grey relational analysis (GRA) [8], and
VIsekriterijumska Optimizacija i Kompromisno Resenje
(VIKOR) [20]. FMEA methods using MCDM techniques
have been increasingly used for solving real-world cases in
recent years. In one study, a hierarchical MCDM approach
based on the fuzzy concept and the VIKOR technique was
proposed to deal with site evaluation in municipal solid
waste management systems [21]. Silva et al. [22] proposed an
approach for risk assessment of information security
encompassing FMEA and fuzzy set theory. A modified
VIKOR method was used to explore the effects of FMs.
Researchers have applied the AHP method based on the
decision-making trial and evaluation laboratory

(DEMATEL) to obtain the influential weights [11]. Instead
of calculating the RPN, Safari et al. [23] prioritized risk
elements by using fuzzy VIKOR because of the drawbacks of
the conventional FMEA method. Mohsen and Fereshteh
[14] applied the Z-number technique to reflect the inherent
uncertainty in decision-makers’ perceptions and the Shan-
non entropy method to obtain objective weights. A fuzzy
VIKOR approach was applied to prioritize the potential
risks. Previous studies have significantly advanced risk
analysis with fuzzy linguistic information. However, if a risk-
assessment model is developed without suitably considering
the comprehensive risk elements, the model may produce
inaccurate solutions, which could lead to confusion in FM
ranking.

In this study, a novel priority model is proposed by
applying MCDM methods for FM assessment and ranking
in FMEA. In addition, a risk element called the expected
cost (E) is added to the process of evaluating the RPN value
for financial considerations. *e four elements exploited in
the FMEA implementations encompass the large range of
causal factors leading to an FM, which can reduce the
probability of mistakes, uncertainties, and ambiguities in
evaluation. *e proposed method includes three important
steps. In the first step, the concept of rough numbers is
employed to handle the uncertainty, subjectivity, and
fuzziness arising from the analysts’ subjective perceptions
and differences in experience during the risk-assessment
process. Instead of using the arithmetic mean to obtain
crisp values, the rough number is used to effectively in-
tegrate analyst information for forming a set of interval
values. Next, the entropy technique is employed to generate
the objective weights of each risk element. *e modified
TOPSIS technique is then applied to rank the FMs. In
contrast to the traditional TOPSIS, all the alternatives and
weight preferences are considered in the modified TOPSIS.
Finally, a numerical example of critical infrastructure is
shown to illustrate the real application of the proposed
model. *is study can provide a reference for the industry
or organizations to evaluate and prioritize risk in different
scenarios. *e contributions of this study and the advan-
tages of this methodology are summarized below:

(i) Entropy is used to assign the weight of the risk
elements according to the FM assessment data. *e
proposed model does not require a pairwise com-
parison questionnaire of risk elements to be issued.

(ii) *e increased expected cost is considered a risk
element, the inclusion of which enhances the risk-
assessment ability of the FMEA.

(iii) *e proposed extended FMEA model effectively
assesses the potential FMs of nuclear power plants.

(iv) *e proposed FMEA model can be applied to other
kinds of critical infrastructure. *e time and quality
of the analysis are not affected by an increase in the
criteria and alternatives.

*e remainder of the article is organized as follows. A
review of the literature on critical infrastructure, risk
analysis, and FMEA is presented in Section 2. *e research
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methodology is discussed in Section 3. A real-world case
study demonstrating the application of the proposed model
is presented in Section 4. Section 5 describes the results and
subsequent discussion. Finally, some conclusions and sug-
gestions for future work are presented.

2. Literature Review

*is section briefly reviews the topics related to this study,
including the interdependence of critical infrastructure
systems, type of risk analysis, and FMEA.

2.1. Interdependence of Critical Infrastructure Systems.
Critical infrastructure refers not to a single facility but to a
collection of numerous facilities, including water, energy,
information, telecommunication, financial, transportation,
government, and emergency rescue systems [13, 24]. Critical
infrastructure is the backbone of the economy in many
countries. Energy sustainability, as well as economic and
social development, cannot be achieved if the operations of
critical infrastructure are at risk of damage or disruption
[25]. In recent years, natural disasters and terrorist attacks
have been frequently reported, and infrastructure systems
have failed, which affects the functioning of all aspects of
society [1].

Interdependencies between systems vary widely, and
according to their characteristics and effects on infra-
structure agents, there are four main categories of inter-
dependencies: cyber, geographic, physical, and logical
interdependencies [4]. Geographic interdependency occurs
when components of multiple structures are in close spatial
proximity. Physical interdependency is related to material
flows among infrastructures. Cyber interdependency occurs
when a state relies on information transmitted through the
internet infrastructure. Logical interdependency includes all
types of interdependencies that are not cyber, physical, or
geographic connections. *erefore, the reliability of each
component of critical infrastructure is the basis of all pro-
tective operations.

Huang et al. [5] noted that most types of critical in-
frastructure are interrelated, but the loss of the electrical
power supply is a major factor affecting other infrastructure
systems. For example, the water supply, communication,
and transportation systems require the provision of elec-
tricity to maintain normal operations. Wang et al. [6]
proposed a critical infrastructure responsibility framework
based on the concept of ethics. In today’s high-tech society,
electricity is the most basic energy demand, without which
all communication systems fail. Große and Olausson [26]
believed that when electrical equipment is unavailable, an
increasing number of disaster events, such as the inter-
ruption of financial transactions, blocked transportation,
and failure to monitor security, would occur that would
affect society. *erefore, they called for strengthening the
protection of energy infrastructure. Developing a com-
prehensive risk analysis method before an unpredicted
disaster occurs can significantly reduce reconstruction
costs.

2.2. Type of Risk Analysis. *ere are two types of risk as-
sessment methods: quantitative and qualitative risk analysis
approaches. Quantitative risk analysis methods, such as the
proportional risk-assessment technique [27, 28] and the
decisionmatrix risk-assessment technique [10], use the value
obtained from mathematical and statistical equations to
represent the degree of risk. However, it is difficult to
conduct risk evaluation by using mathematical measures
because of the complicated structures and widespread usage
of information systems. Qualitative risk assessment such as
in the FMEA what-if analysis method [12] is based on
analyst interviews, and evidence-based results are obtained
through soft computing tools rather than mathematical
calculations alone.

One major drawback of qualitative risk analysis is that it
often does not yield exactly the same results. Furthermore,
because qualitative methods do not apply mathematical
tools to model the risk, the risk-assessment results are quite
dependent on the perceptions of the people who conduct the
risk evaluation. *e danger of obtaining subjective results
when employing qualitative risk analysis approaches exists.
Today’s information systems have more complicated
structures than previous information systems and more
widespread usage. Consequently, the intensive mathematical
measures used to model risk for complex environments
make the risk-assessment process increasingly difficult.
Quantitative methods may actually increase the difficulty of
the evaluation process. Risk assessment tools based on
qualitative measures are more appropriate than other risk-
assessment methods for today’s intricate risk environment of
information systems [10, 29]. A hybrid risk-assessment
model is proposed in this study based upon the concepts of
qualitative risk analysis, FMEA, and rough numbers. *e
rough number technique is applied to handle subjectivity
and uncertainty, which are significant weaknesses in qual-
itative risk evaluation.

2.3. FMEA. *e purpose of FMEA is to identify all possible
risk elements and assess their causes as well as their sub-
sequent effects on the function of the system under con-
sideration [9]. FMEA is a reliable qualitative method applied
for accident prevention and risk detection. *is technique
can be applied to discover and eliminate recognized or
potential FMs to enhance the robustness and safety of
complex products or systems [8]. In contrast to other risk
analysis tools, the major focus of FMEA is to engage in
proactive prevention rather than finding a solution after
system failure occurs. *is proactive prevention can help
decision-makers adjust existing strategies, add compensa-
tory provisions, apply the recommended actions to decrease
the likelihood of failures, reduce the probability of risk, and
minimize accident hazards [11, 12]. Due to its effectiveness,
FMEA has been widely applied and proven to be successful
in many fields related to the knitting process [30], the
aerospace [31], automotive [32], andmedical [33] industries,
to name a few [34, 35]. *e most common way to assess the
risk of failure in FMEA involves determining the RPN,
which is the product of the S, O, and D. However, when
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applied in real-world problems, the crisp RPN method also
has some shortcomings and limitations. *e limitations of
the conventional FMEA model are as follows
[8, 9, 11, 17, 36]:

(i) *e three elements applied in FMEA analysis do
not encompass the entire range of causal risk
elements

(ii) *e measurement of S and D is relative and
subjective, with no holistic characterization of
group judgment

(iii) *e S, O, and D are difficult to evaluate precisely in
numerical form

(iv) *e S, O, and D are often given no or equal im-
portance weights

(v) RPN values are not continuous, and there exists no
mechanism to interpret the meaning of the dif-
ferences among different RPNs

(vi) Different combinations of S, O, and D may pro-
duce the same RPN, thereby causing some high-
risk FMs to be ignored

(vii) Many numbers in the 1–1,000 range cannot be
formed from the product of S, O, and D

(viii) Small variations in each rating may lead to con-
siderably different effects on the RPN

*e conventional FMEA method has been proven to be
one of the most important early preventative initiatives for
systems, processes, and services; however, the aforemen-
tioned limitations may reduce the reliability of the con-
ventional FMEA model. To deal with the drawbacks of the
conventional FMEAmodel, the entropy-based rough FMEA
method is proposed. A detailed introduction of the proposed
method is provided in Section 3, and the practical appli-
cation of the proposed method is described in Section 4.

3. Proposed Extended FMEA Model

In this section, we introduce the mathematical tools used in
the proposed method, including rough numbers, entropy,
and the modified TOPSIS method. *e analysis process of
the proposed model is illustrated in Figure 1.

3.1. Determination of Risk Elements. *e S, O, and D used in
the FMEA execution process do not encompass the entire
range of causative risk elements that need to be considered
during decision-making. An increasing number of decision-
makers also consider the expected cost when prioritizing FM
for prevention. *erefore, for a more comprehensive evalua-
tion of the FMs, the proposed FMEA is not limited to the
conventional three risk elements. An additional risk element,
namely the expected cost (E), is added as a criterion for de-
cision-making. During the risk assessment procedure, analysts
selected a linguistic term to describe the degree of S,O,D, and E
for every FM. *e corresponding scores for these terms are
presented in Table 1. If an analyst decided that the expected cost
for a specific FM was close to the original price, the relative
score for the expected cost for that FM would be 10. For

example, turbine blade breakage is hazardous (H), and the
maintenance cost when the blade fails is extremely high (EH);
however, risk detection is very high (VH), and the failure does
not occur frequently (very slight, VS). *e assessment score
would thus be represented as follows: S: 10,O: 3,D: 2, and E: 9.

3.2. Integration of Analyst Opinions byUsing RoughNumbers.
In practice, FM evaluation is an uncertain and subjective
group decision-making process because the analysts on the
FMEA team judge the importance of risk elements and
assess different FMs according to their own knowledge and
experience. *us, practitioners and engineers should find a
reliable method to solve the problems of the analysts’
subjectivity as well as uncertain or insufficient information.
As a new soft computing tool for adjusting the uncertainty
and ambiguity of information, rough numbers can provide
potential new knowledge without any prior information as
well as a relatively objective and reasonable description of
the decision issue.

*e rough number method is a mathematical extension
of the rough set theory proposed by Pawlak [37] and an
effective tool for handling vague, imprecise, and uncertain
information. *ere is some overlap with several other
theories for dealing with fuzziness and uncertainty, espe-
cially with fuzzy set theory. Nevertheless, rough numbers
can be viewed as an independent and complementary dis-
cipline [38].*e steps involved in the rough number method
are described in the following explanation.

3.2.1. Step 1: Construct the Initial Assessment Matrix.
After obtaining the corresponding scores of risk elements
from the linguistic form (see Table 1), the analyst assesses the
risk scores of all FMs. Suppose the FMEA team has k an-
alysts, i FMs, and j risk elements, where k� 1, 2, . . ., p; i� 1,
2, . . .,m; and j� 1, 2, . . ., n.*e initial assessment matrixA is
represented as follows:

Feedback from the experts
List the potential failure modes

Determination of risk elements
Assign a rating for each failure modes

Integration of analyst opinions by using rough numbers
Step 1. Construct the initial assessment matrix
Step 2. Convert the crisp matrix into the rough interval form

Calculation of the objective weight by using the entropy
Step 3. Construct the normalized assessment matrix
Step 4. Calculate the value of the decision information entropy
Step 5. Calculate the difference degree
Step 6. Calculate the entropy weight

Ranking of FMs by using the modified TOPSIS
Step 7. Construct the weighted normalized assessment matrix
Step 8. Define the PIS and NIS
Step 9. Measure the relative closeness to the ideal solution
Step 10. Calculate the ranking index

Figure 1: Analysis process of the proposed model.
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for FM i under risk element j.

3.2.2. Step 2: Convert the CrispMatrix into the Rough Interval
Form. Next, the rough assessment matrix RN(A) is

generated by converting the crisp assessment score into the
rough interval form to generate the rough assessment ma-
trix. *e rough number calculation is discussed in detail in
Lo et al. [9].
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subsequent entropy and modified TOPSIS operations, as
given in equation (4). *e final assessment matrix Y is
represented as follows:
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3.3. Calculation of the ObjectiveWeight by Using the Entropy.
In this study, the entropy method was used to eliminate the
problem of no or equal relative weights for different risk

elements and generate the objective weight of the assessment
indicators in FMEA.

*e entropy method originated from the thermody-
namics field and was initially used to describe the irreversible
phenomenon of a motion or process. Shannon [39] then
introduced the entropy method into information theory.
Entropy is defined as the degree of uncertainty in a random
variable. *erefore, the entropy method can be used to
determine the degree of disorder and its utility in the system
information. If the evaluated parameters have a considerable
dissimilarity from each other for a specific risk element, the
entropy is small, which indicates that the risk element
provides effective information and should be assigned a large
weight. By contrast, the smaller the dissimilarity, the larger
the value of the entropy weight.

*e entropy approach is based on inherent information
and is used to obtain the index objective weight. *us, the
method can eliminate the effect of subjective elements and
provide a reasonable solution. When adopting the entropy
method, only one calculation needs to be performed to
obtain a set of weights suited for all FMs.

Table 1: Corresponding scores of linguistic terms [9].

Severity Occurrence Detection Expected cost Corresponding scores
No (N) Almost never (AN) Almost certain (AC) Almost no cost (N) 1
Very slight (VS) Remote (R) Very high (VH) Remote (R) 2
Slight (S) Very slight (VS) High (H) Low (L) 3
Minor (MI) Slight (S) Moderately high (MH) Relatively low (RL) 4
Moderate (MO) Low (L) Moderate (M) Moderate (M) 5
Significant (SI) Medium (M) Low (L) Moderately high (MH) 6
Major (M) Moderately high (MH) Very low (VL) High (H) 7
Extreme (E) High (H) Remote (R) Very high (VH) 8
Serious (SE) Very high (VH) Very remote (VR) Extremely high (EH) 9
Hazardous (H) Almost certain (AC) Absolute uncertainty (VU) Almost or close to original price (O) 10
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*e entropy method is generally used in the problem of
supplier selection; however, in this study, the entropy
method was adopted to obtain the weight of the risk-as-
sessment factors in FMEA. *e process of calculation is
described below.

3.3.1. Step 3: Construct the Normalized Assessment Matrix.
*e final assessment matrix Y is obtained through rough
number calculation. *e matrix is used to normalize the
rating through equation (5) for eliminating the effect of the
rating dimension on incommensurability. Many normalized
approaches exist, but in this study, the following equation is
selected for normalization:

rij �
yij

�������


m
i�1 y

2
ij

 . (5)

3.3.2. Step 4: Calculate the Value of the Decision Information
Entropy. *e evaluation information for each risk element
can be represented by

fj � −k 
m

i�1
rij ln rij, (6)

where k � (1/ln n).

3.3.3. Step 5: Calculate the Difference Degree. *e difference
degree is calculated using

gj � 1 − fj. (7)

3.3.4. Step 6: Calculate the Entropy Weight. *e entropy
weight of the risk element j index is determined using

wj �
gj


n
j�1 gj

. (8)

In this study, the entropy weight represents useful in-
formation of the risk-evaluating factors. Consequently, the
larger the entropy weight, the more useful the risk element.

3.4. Ranking of FMs by Using the Modified TOPSIS. Due to
the drawbacks of the conventional FMEA method men-
tioned in Section 2, a more comprehensive and flexible
FMEA approach for ranking potential risk elements is
proposed in this section. *e proposed method is based on
the traditional TOPSIS, with some modifications made to
eliminate flaws.*emodified TOPSIS was then used to solve
the problem of crisp multiplication in the traditional FMEA.

*e TOPSIS technique, which was proposed by Hwang
and Yoon [40], has been widely applied in different research
areas. *e TOPSIS approach is a ranking method based on
the concept of a compromise solution. We attempted to
determine the solutions farthest from the negative ideal
solution (NIS) and nearest to the positive ideal solution (PIS)
simultaneously. In the past decades, many studies have

attempted to extend the TOPSIS. *e modified TOPSIS
method used in this study was proposed by Kuo [41]. *e
ranking index in the traditional TOPSIS does not consider
the weights of the separations of an alternative from the PIS
and NIS. *erefore, Kuo [41] proposed a new ranking index
to deal with this drawback. *e proposed solution steps are
as follows:

3.4.1. Step 7: Construct the Weighted Normalized Assessment
Matrix. *eweighted assessment matrix V is determined by
multiplying the normalized assessment elements rij and the
corresponding entropy weights wj, as given in the following
equation:

vij � rij · wj . (9)

3.4.2. Step 8: Define the PIS and NIS. *e PIS is composed of
the maximum of every risk element from the weighted
decisionmatrix, and the NIS is composed of theminimum of
every risk element from the weighted decision matrix. *e
PIS and NIS are determined as follows:
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+
1 , v

+
2 , . . . , v

+
j , . . . , v

+
n ,

NIS � v
−
1 , v

−
2 , . . . , v

−
j , . . . , v

−
n .

(10)

3.4.3. Step 9: Measure the Relative Closeness to the Ideal
Solution. *e distance of every feasible solution from the
PIS and NIS is determined using equations (11) and (12),
respectively. In this paper, the PIS and NIS are expressed as
the highest risk and the lowest risk, respectively. *is can
facilitate decision-makers to understand the relative risks of
these failure modes.

d
+
i �

���



 n

j�1
v

+
j − vij 

2
, (11)

d
−
i �

���



 n

j�1
vij − v

−
ij 

2
. (12)

3.4.4. Step 10: Calculate the Ranking Index. Compared with
the traditional TOPSIS, the modified TOPSIS, which is
presented in equation (13), has two advantages in the de-
cision-making process. First, the “relative importance” is
considered for two criteria in the modified TOPSIS by
adding weights. *us, if a decision-maker prefers to separate
an alternative from the PIS, the modified TOPSIS can
provide a different ranking index that caters to the re-
quirements. Second, the ranking index is more compre-
hensive, thus avoiding the unrecognized ranking of certain
alternatives.

In attempting to find a compromise solution, the ranking
index in equation (13) is more intelligible than and superior
to the original TOPSIS. *e calculation process of the
ranking index (RCi) is given as follows:
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RCi � w
+ d

−
i


m
i�1 d

−
i

  − w
− d

+
i


m
i�1 d

+
i

 , (13)

where w+ and w− denote the weights that reflect the cor-
responding importance of the two separation measures
obtained from the decision-makers.

4. Empirical Case: Steam Turbine at a Nuclear
Power Plant

*e proposed methodology was applied to an empirical case
for a steam turbine in a nuclear power plant. *e smooth
functioning of a steam turbine is essential for the reliability
and stability of operations in a nuclear power plant. A steam
turbine is simply a heat engine that performs mechanical
work by using steam as its working fluid. Compared with
traditional steam engines of the reciprocating type, steam
turbines have considerable improved heat transfer efficiency
and are commonly used in thermal and nuclear power
plants. To ensure the reliability of the turbine system, the
potential FMs of the system should be evaluated, and risk
assessment conducted. *e effectiveness of the proposed
FMEA model was verified by comparison with the con-
ventional FMEA approach.

4.1. Survey Data. *is study investigated a nuclear power
plant in Taiwan as an example to demonstrate the use-
fulness and practicability of the proposed FMEA model.
*e FMEA team consisted of 24 analysts, including gov-
ernment regulators, professors in the relevant fields, and
nuclear power plant engineers. Each analyst had at least 10
years of work experience in the nuclear power industry.
Currently, two major nuclear power plants are in operation
in Taiwan. *e occurrence of unplanned downtime at a
nuclear power plant has a significant impact on the
functioning of society. Nuclear power plants contain nu-
merous and complex pieces of equipment, but we selected
the most critical component, namely the “steam turbine,”
for investigation. Twelve major potential FMs were iden-
tified for nuclear power plants by the group of analysts:
high temperature of the engine (FM1), clogged lubricating
oil system (FM2), foreign objects within the system (FM3),
fracture of the vane (FM4), loose valve (FM5), bearing
damage (FM6), broken chassis (FM7), mechanical trans-
mission breakdown (FM8), rotor breakdown (FM9), sensor
malfunction (FM10), leakage of the pipeline (FM11), and
measurement instrument breakdown (FM12).

4.2. Ranking Priority of FMs. After identifying the major
potential FMs, the 24 analysts subjectively ranked the im-
portance of these risk elements using a questionnaire format.
To save space, we have only presented one criterion, namely
the severity scores of analysts for the 12 FMs (Table 2).

*e rough assessment matrix comprises the interval
values obtained from the analysts’ feedback, which includes
the uncertainty of their subjective judgments. *e rough
number method provides a larger amount of implicit in-
formation than the arithmetic meanmethod does.*e rough

assessment matrix (Table 3) can be obtained using equations
(1) and (2). Here, use the fourth FM (FM4) as a rough
number calculation case, as shown in Appendix A.

Using equations (3) and (4), the intervals obtained from
Table 3 were transformed into final crisp values. *en, by
executing the entropy calculation program described in
Section 3.3 (equations (5)–(8)), the weights of the risk el-
ements were obtained as follows: wS � 0.4925, wO � 0.1944,
wD � 0.0806, and wE � 0.2325. *e severity (S) was rated as
the most important risk element, with a weight value of
0.4926.*e expected cost (E) was the secondmost important
risk element, which indicated that cost considerations are
necessary for critical infrastructure risk-assessment systems.
In fact, the government allocates maintenance budgets for
critical infrastructure in specific cycles. Finally, the modified
TOPSIS was used to calculate the ranking of the FMs, as
described in Section 3.4. Table 4 presents the ranking, d+

i

value, and di value of the FMs.

4.3. Results and Management Implications. Steam turbines
are a key mechanism for energy conversion in nuclear power
plants. According to the information provided by the 24
experts, the results of our analysis indicate that rotor
breakdown (FM9), fracture of the vane (FM4), foreign ob-
jects (FM3), a clogged lubricating oil system (FM2), bearing
damage (FM6), and mechanical transmission breakdown
(FM8) are the top 6 FMs leading to the failure of steam
turbines. *e modified TOPSIS can provide the relative risk
level of the FMs through the ranking index (RCi). Because
the sum of RCi is equal to 0, when RCi is greater than 0, the
FMs have a high-risk level. For example, rotor breakdown
(FM9) is the highest-ranking FM.*is mode has the shortest
distance from the PIS (d+

9 � 0.0396) and farthest distance
from the NIS (d−

9 � 0.1083). In addition, RC9 is positive and
represents the largest ranking index (0.0391) of the FMs.

*e purpose of FMEA is captured in the phrase “An
ounce of prevention is worth a pound of cure.”*e results of
FMEA can provide engineers with guidance as to what
precautionary measures should be taken before an accident
occurs. We conducted detailed interviews with the analysts
to identify the prevention methods for the six aforemen-
tioned FMs. Several inspection and maintenance measures
were obtained, as presented in Table 5.

4.4. FMEA Model Comparison. To demonstrate the effec-
tiveness of the proposed method, it was compared with the
conventional and cost-based RPN methods. In the con-
ventional RPN method, which is based on an engineering
perspective, S, O, and D are multiplied. In the cost-based
RPN method, the expected cost is considered as a risk el-
ement, and then S, O, D, and E are multiplied. Both the cost-
based RPN and proposed methods consider the manage-
ment perspective to reflect the actual budget constraints of
risk management. *e calculation results obtained with the
three approaches are listed in Table 6.

*e correlation coefficient between the ranking re-
sults of the conventional and cost-based RPN methods
was 0.78, which indicates that the ranking results
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Table 2: Crisp severity (S) ratings from the analysts for the 12 FMs.

Analysts FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10 FM11 FM12

1 SI H M H MI E MO M H MO S SI
2 SI M M H M H SE H M MI MI SE
3 SI SI M H M SI MI SE SE VS MO MO
4 SI SE SE H SI SI SI SI SE SI MO SI
5 SE M M H M E SE SE SE MO MO MO
6 MO M H H MO M H E SE S MO MO
7 S M SE H SI SI SE SE SE S S MO
8 SI SE H H MO H SI S H S S S
9 SI SE SE H SI M SE SE H SI M SI
10 MO SE SI H SI M SI SI SE MO SE SI
11 M SE M M M M MO M M MO MO MO
12 MO SE SE H M M SI SI SE MO SI MO
13 VS M SE H MO M MI S SE S S N
14 M E E SE MO SI SI E E N MI SI
15 SI SE M SE SI E E M SE MO MO MI
16 MI SE M E SI M SI M H S MO M
17 MO E SE H M M SE SI H S MO MI
18 M M E E E E E E E SI MO MI
19 SI M M SE SI SI SI M SE S SI S
20 MI M SE E M M MI M SE VS MI M
21 SI E SE H M SE SI M H N M SI
22 M SE E SE E SE M E M MI SI MI
23 MO SE E SE M SI M SI E S M SI
24 SI H SE SE MI E M E E MI SI MO

Table 3: Rough assessment matrix.

FMi S O D E
FM1 [4.635, 6.541] [2.497, 4.451] [1.504, 3.444] [3.613, 6.115]
FM2 [7.456, 8.863] [3.114, 5.545] [2.101, 4.209] [4.463, 6.392]
FM3 [7.411, 8.832] [3.383, 6.571] [3.706, 6.42] [3.435, 6.515]
FM4 [8.854, 9.834] [1.799, 3.927] [2.536, 5.71] [4.936, 7.299]
FM5 [5.466, 6.906] [4.018, 6.478] [2.827, 4.656] [3.628, 5.584]
FM6 [6.632, 8.212] [2.284, 5.524] [2.327, 4.182] [3.813, 6.974]
FM7 [5.526, 8.007] [1.724, 5.113] [2.332, 5.076] [3.96, 6.121]
FM8 [5.926, 8.214] [2.706, 5.611] [2.589, 4.876] [4.15, 6.638]
FM9 [8.216, 9.407] [2.434, 5.007] [2.201, 3.961] [5.626, 8.394]
FM10 [2.718, 4.754] [5.522, 7.931] [2.843, 5.832] [3.617, 5.688]
FM11 [4.154, 6.169] [5.316, 7.489] [2.745, 4.617] [3.809, 6.172]
FM12 [4.008, 6.202] [3.589, 6.674] [3.33, 5.626] [3.698, 5.646]

Table 4: Results of the modified TOPSIS calculation.

FMi d+
i d−

i RCi Ranking

FM1 0.0915 0.0386 −0.0329 11
FM2 0.0441 0.0925 0.0271 4
FM3 0.0415 0.0943 0.0298 3
FM4 0.0481 0.1163 0.0386 2
FM5 0.0738 0.0581 −0.0108 8
FM6 0.0568 0.0769 0.0104 5
FM7 0.0709 0.0628 −0.0063 7
FM8 0.0598 0.0708 0.0050 6
FM9 0.0396 0.1083 0.0391 1
FM10 0.1182 0.0478 −0.0436 12
FM11 0.0894 0.0522 −0.0237 9
FM12 0.0933 0.0409 −0.0326 10
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obtained with the conventional and cost-based RPN
methods were somewhat similar. However, certain large
differences were observed between them, such as the
differences in FM4 and FM9. *ese differences were
caused by the inclusion or exclusion of the expected cost
as a risk element in the FMEA. In both the cost-based
RPN and proposed methods, S, O, D, and E are con-
sidered to be risk elements. Nevertheless, the correlation
coefficient between the results of the cost-based RPN and
proposed methods was 0.4511. *e ranking results ob-
tained with these two methods were different, especially
for FM2, FM6, FM10, FM11, and FM12. *e proposed
method provides a more rational risk assessment than the
other two methods because it addresses the drawbacks in
the calculation of the RPN. Rezaee et al. [42] increased the
cost element in the conventional FMEA model to opti-
mize the model. *ey applied the optimized model to data
in the marble processing industry. Rezaee et al. [42]
verified that the analysis results obtained with the opti-
mized FMEA model were closer to reality than the results
obtained using the conventional FMEA model. In the
proposed method, linguistic variables and rough num-
bers are used to capture and express analysts’ subjective
opinions regarding the importance of each risk element
in FMEA.*e weights of the risk elements were generated
using the concept of entropy, and the ranking index was
obtained using the modified TOPSIS.

After analyzing the FMEA calculation results, four main
differences were observed among the three methods.

4.4.1. Comprehensively Consider Available and Significant
Factors for Decision-Making. *ree risk elements, namely
severity, occurrence, and detection difficulty, are used in the
conventional RPN method. However, the conventional RPN
method does not encompass the entire range of causal
factors. It does not consider the expected cost, which is an
important element. If two FMs receive the same ratings for S,
O, and D, the FM with a higher expected cost should have a
higher priority. It is not possible for any organization,
whether a government agency or private enterprise, to assign
unlimited resources to ensure the system or product reli-
ability. In Taiwan, the government allocates a certain budget
to the Homeland Security Office every year for maintaining
critical infrastructure. *erefore, the cost-based RPN and
proposed methods, which consider the expected cost as a
risk element, are more suitable for obtaining a sufficient
decision-making index.

4.4.2. Evaluate the Ratings and Consider Subjectivity during
FM Evaluation. In the conventional RPN method, the final
score of every risk element is derived from the arithmetic
average, but information loss may occur during the calcu-
lation process. In many cases, the obtained score may be
unrepresentative because of some uncertain ratings. How-
ever, in the proposed method, the subjectivity and uncer-
tainty in FMEA can be adjusted. *e rough number
mechanism in the proposed FMEA method can provide
reasonable and realistic risk element ratings because the

Table 5: Top six FMs as well as the inspection and maintenance measures for them.

Ranking FMi Failure mode Inspection and maintenance measures

1 FM9 Rotor breakdown Monitor the vibration and temperature of bearings and perform nondestructive inspections
on a regular basis to ensure that there is no degradation of the components.

2 FM4 Fracture of vane Set standard operating hours and perform regular inspections of turbine vanes.
3 FM3 Foreign objects Implement a foreign material exclusion (FME) control system.

4 FM2
Clogged lubricating oil

system
Regular cleaning or replacement of related devices. In addition, the quality of the lubricating

oil must be monitored and tested regularly.
5 FM6 Bearing damage Regular maintenance, inspection, and replacement of bearings with lubricating oil.

6 FM8
Mechanical transmission

breakdown
Monitor the speed and vibration of the machinery and perform nondestructive tests on a

regular basis.

Table 6: Calculation results and rankings obtained with the three methods.

FMi

Conventional RPN
(S, O, and D)

Cost-based RPN
(S, O, D, and E) Proposed FMEA method

RPN Ranking RPN Ranking RCi Ranking
FM1 36 12 180 12 −0.0329 11
FM2 96 9 480 9 0.0271 4
FM3 200 1 1,000 1 0.0298 3
FM4 108 7 648 3 0.0386 2
FM5 120 3 600 5 −0.0108 8
FM6 84 10 420 10 0.0104 5
FM7 84 10 420 10 −0.0063 7
FM8 112 5 560 7 0.0050 6
FM9 108 7 756 2 0.0391 1
FM10 112 5 560 7 −0.0436 12
FM11 120 3 600 5 −0.0237 9
FM12 125 2 625 4 −0.0326 10
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flexible and dynamic rough interval represents the subjec-
tivity in the determination of the risk element scores.

4.4.3. Deploy Objective Weights for Every Risk Element.
*e conventional RPN method assumes that every risk el-
ement has equal weight. *is method fails to examine the
importance of each risk element. In addition, some im-
portant elements tend to be ignored. In the proposed
technique, the entropy weight method, which is based on
inherent information, is used to determine the index weight.
*erefore, the proposed method not only considers the
weight of each element but also determines the weights in an
objective manner. Our determining weights method is
different from the studies of Lo et al. [9], Lo and Liou [8], and
Yucesan and Gul [35], since they generate weights based on
the judgment of experts. *is method requires the design of
another questionnaire (such as AHP, ANP, or BWM
questionnaires). Undoubtedly, these documents all pointed
out that risk elements (S, O, D, and E) should have corre-
sponding importance weights.

4.4.4. Lower the Repetition Ratio for Prioritization. *e
simplemultiplication used in the conventional FMEAmeans
that many repeated ranking values are obtained (Table 6).
When the conventional RPN method was used, the third,
fifth, seventh, and tenth ranks were repeated twice. *e
priority orders assessed were identical with a high frequency,
and the repetition rate was over 66%. In this situation, the
decision-maker may find it difficult to decide which FM to
prioritize. With the cost-based RPN method, the repetition
rate was less than 50%. However, the aforementioned
problem still persisted. With the proposed method, the
repetition rate among all FMs was 0%, which indicates that
the method could clearly distinguish the priorities for all the
FMs. *e main differences between the conventional RPN,
cost-based RPN, and proposed methods are presented in
Table 7.

On the other hand, we use sensitivity analysis to explore
whether changes in risk element weights will affect the
ranking of failure modes. *e sensitivity analysis method
refers to Lo and Liou’s [8] study. *e severity (the highest
risk element weight) among all the risk elements is assigned
from 0.1 to 0.9, with the other weights assigned in pro-
portion. Table 8 presents the results of nine weight con-
figurations. *e “severity weight” changes from run 1 to run
9 in units of 0.1. Figure 2 is the ranking result of the failure
mode after nine runs of the sensitivity analysis. Under the

change of the risk element S, the failure modes will have a
significant change, which means that our model is highly
sensitive to the change of the risk element weight. *erefore,
the relative importance of risk elements must be evaluated.
In this case, it is reasonable to use entropy to determine the
objective weights of the risk elements, and the analysis re-
sults are also unanimously approved by experts.

5. Conclusions and Remarks

Critical infrastructure systems are important for the normal
functioning of society and economic development [43].
Natural disasters and accidents are often not predictable in
advance. Adopting suitable prevention strategies can sig-
nificantly reduce the cost and time of reconstruction after a

Table 7: Main differences in the three methods.

Method selection
Factors considered

Expected cost consideration Rating Consideration of parameter weight Reduce ranking repeatability
Conventional RPN method Partial No No No
Cost-based RPN method Yes No No Partial
Mohsen and Fereshteh [14] No No Yes Yes
Lo and Liou [8] Yes No Yes Yes
Yucesan et al. [36] No No Yes Yes
Proposed FMEA method Yes Yes Yes Yes

Table 8: All the risk element weights change according to severity.

S O D E
Entropy 0.493 0.194 0.081 0.233
Run 1 0.100 0.345 0.143 0.412
Run 2 0.200 0.306 0.127 0.367
Run 3 0.300 0.268 0.111 0.321
Run 4 0.400 0.230 0.095 0.275
Run 5 0.500 0.191 0.079 0.229
Run 6 0.600 0.153 0.063 0.183
Run 7 0.700 0.115 0.048 0.137
Run 8 0.800 0.077 0.032 0.092
Run 9 0.900 0.038 0.016 0.046
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Figure 2: *e ranking result of the failure mode after nine runs of
the sensitivity analysis.
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disaster. Many major incidents of critical infrastructure
failure have occurred, and governments have actively de-
veloped risk management policies to cope with them. *e
FMEA method, which can reveal the potential causes and
problems of failure modes during the process of risk eval-
uation, is widely used in many fields to control the stability
and reliability of any facility [36, 44, 45]. However, some
intrinsic problems in the conventional FMEA method exist.
*e entropy-based rough FMEA method proposed in this
study has four advantages, which can alleviate the problems
of the conventional FMEA method. *e proposed approach
considers the uncertainty of information provided by ana-
lysts with varied backgrounds. It determines the weight of
the relationship among evaluation parameters and reduces
the repetition rate for prioritization. Consequently, decision-
makers can more effectively identify high-risk FMs and take
the appropriate corresponding measures in advance.

To validate the applicability of the proposed approach
under a vague and subjective environment, an illustrative
example, for a nuclear power plant, was taken into con-
sideration. Via the collection of data from the analysts, the
results obtained using three risk-assessment methods,
namely the conventional RPN, cost-based RPN, and pro-
posed methods, were compared. *e comparison reveals
that the proposed method provides a more reasonable and

robust ranking system than the other two methods. Sensi-
tivity analysis also confirmed the necessity of risk elements
weights evaluation. Decision-makers or risk analysts can use
the failure mode risk ranking to determine which part we
first maintain and improve. *e concept of this article
overcomes the traditional methods of qualitative risk as-
sessment. It is feasible and effective to show the degree of risk
of failure modes through quantitative calculations. In ad-
dition to steam turbine failure mode assessment, the pro-
posed method can also be applied to other nuclear power
plant systems or components. Future studies can apply the
proposed methodology in other interdisciplinary fields.

Appendix

A. Example of Rough Number Calculation

For the fourth FM (FM4), the 24 analysts’ crisp rankings are
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 7, 10, 10, 9, 9, 8, 10, 8, 9, 8,
10, 9, 9, and 9. By applying the rough number calculation
process, the rough interval of the severity importance for the
fourth FM is obtained as described in the following text.

Step 1. Obtain the lower and upper limits of the rough
numbers

Lim (10) �
1
24

(10 + 10 + · · · + 9) � 9.375, Lim(10) �
14
14

(10 + 10 + · · · + 10) � 10,

⇒RN(10) � [9.375, 10],

Lim (7) �
1
1

(7) � 7, Lim(7) �
1
24

(10 + 10 + · · · + 9) � 9.375,

⇒RN(7) � [7, 9.375],

Lim (9) �
1
10

(7 + 9 + · · · + 9) � 8.5, Lim(9) �
1
20

(10 + 10 + · · · + 9) � 9.7,

⇒RN(9) � [8.5, 9.7],

Lim (8) �
1
4

(7 + 8 + 8 + 8) � 7.75, Lim(8) �
1
23

(10 + 10 + · · · + 9) � 9.478,

⇒RN(8) � [7.75, 9.478].

(A.1)

Step 2. Obtain the interval values of the rough numbers *e set of scores can be obtained by averaging as
follows:

RN a4S(  �
(9.375 + 7 + 8.5 + 7.75)

4
,
(10 + 9.375 + 9.7 + 9.478)

4
  � [8.854, 9.834]. (A.2)
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