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In this work, the Haar collocation scheme is used for the solution of the class of system of delay integral equations for het-
erogeneous data communication. The Haar functions are considered for the approximation of unknown function. By substituting
collocation points and applying the Haar collocation technique to system of delay integral equations, we have obtained a linear
system of equations. For the solution of this system, an algorithm is developed in MATLAB software. The method of Gauss
elimination is utilized for the solution of this system. Finally, by using these coeflicients, the solution at collocation points is

obtained. The convergence of Haar technique is checked on some test problems.

1. Introduction

Integral equations (IEs) are equations in which the unknown
functions appear under one or more integral signs [1]. Delay
integral equations (DIEs) are those IEs in which the solution
of the unknown function is given in the previous time in-
terval [2]. DIEs are further classified into two main types:
Fredhom DIEs and Volterra DIEs on the basis of the limits of
integration. Fredhom DIEs are those IEs in which limits of
the integration are constant, while in Volterra DIEs, one of
the limits of the integration is a constant and the other is a
variable. A Volterra-Fredhom DIEs consist of disjoint
Volterra and Fredhom IEs [1]. The DIEs play an important
role in mathematics [3]. These equations are used for
modelling of various phenomena such as modelling of
systems with memory [4], mathematical modelling, electric
circuits, and mechanical systems [5].

Several researchers are trying to find out the numerical
solution of delay IEs. Darania [6] used the multistep

collocation method for solving DIEs. For each subinterval,
the solution is obtained through a fixed number of collo-
cation points and of previous steps in the current and next
subintervals. Avaji et al. [7] used the variational iteration
method for approximate solution of nonlinear and linear
Voterra DIEs. The Volterra DIEs are constructed using
general Lagrange multipliers that are defined by the varia-
tional theory and the initial approximations. Zhao et al. [8]
used the Sinc collocation method for solving the DIEs. This
technique reduces the DIEs of Volterra type to an explicit
algebraic equation. The solution of these algebraic equations
gives the solution of the Volterra DIEs. Yuzbasi and Ismailov
[9] solved Volterra IEs with proportion delays by the method
of differential transformation. In this technique, the solu-
tions obtained are in the series form. The solution of the
series expanded to Taylor series to find the unknown co-
efficients. For the system of nonlinear Volterra DIEs, Sekar
and Murugesan [10] used the Walash series method. This
technique reduces the Volterra IEs into a system of
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equations. The solution of an algebraic equation leads to the
solution of the Volterra IEs. Kurkcu [11] used generalized
Mott polynomials for the approximate solution of DIEs with
variable bounds. Maleknejad et al. [12] developed the nu-
merical method for the solution Volterra IEs of first, second,
and singular type of equations by the use of Bernstein ap-
proximation. Raza and Khan [13] found solution of neutral
delay differential equations. Ghasemia and Kajani [14]
utilized Chebyshev wavelets to find the solution time delay
systems. The method is based on the expansion of various
time functions and truncated Chebyshev wavelets. Wang
[15] used hybrid functions for the solution of system of DIEs.
The hybrid functions consist of Legendre polynomials and
block-pulse function. Samadi and Tohidi [16] used the
spectral method for solution of systems of Volterra IEs; also,
they used Spectral Galerkin approach for solution of two-
dimensional Volterra IEs [17]. Tohidi [18] utilized Taylor
matrix technique for solution of linear two-dimensional
Fredholm IEs. Demko et al. [19] presented data-type ag-
nostic algorithm calculating a concept lattice from hetero-
geneous and complex data. Luo et al. [20] investigated a
communication scheduling problem to address data com-
pression and data communication together. Ding and Zheng
[21] investigated the bounded consensus tracking problem
of heterogeneous nonlinear multiagent systems based on
asynchronous sampled-data communication. Plaz et al. [22]
presented MEdit4CEP-SP, the model-driven system that
integrates stream processing and complex event processing
technologies for consuming, processing, and analyzing
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heterogeneous data in real time. Alqarni et al. [23] proposed
a semicontrolled environment system which overcomes the
limitations of users’ age, gender, and smartwatch wearing
style. Mazzara et al. [24] proposed a surveys’ Internet of
things and smart and software-defined buildings’ technol-
ogies and their cooperation towards the realization of smart
spaces. Sohaib et al. [25] enhanced a new technology ac-
ceptance-based research with the artificial neural network
method to enable more precise and in-depth research results
as compared to the single-step SEM method. The Haar
technique for the solution of Fredholm and Volterra IEs was
used by Aziz and Islam [26]. Haar technique is used for
solution of different problems in literature. Some of the
recent are fractional-order delay differential equations [27],
distributed order time-fractional differential equations [28],
second-order linear and nonlinear integro-differential
equations [29], third-order linear and nonlinear boundary
value problems of integro-differential equations [30], and
second-order delay differential equations [31]. Amin et al.
[32] developed Haar technique for the approximate solution
of delay IEs. In this work, we will extend [32] for a system of
delay IEs by using Haar wavelet collocation (HWC)
technique.

In this study, the HWC scheme is used for the solution of
system of linear delay IEs in heterogeneous data commu-
nication. The accuracy and efficiency will be checked on
some test problems. The system of delay Volterra-Fredholm
IE (DVFIE) >0 is [33]
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We get the 2N x 2N linear system of algebraic equations
with unknowns a; and b,. Solving this system, we obtain the
values of unknown constants a; and b;. The required solution
is obtained by putting these unknowns in equation (2).

Remark 1. If we take K =0 and N = 0, then system (1) is
known as system of delay Fredholm IEs (DFIEs), and if we
take M = 0, then system (1) is known as system of delay
Volterra IEs (DVIEs). Similarly, HWC technique can be
developed for DFIEs and DVIEs.
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3. Test Problems

In this section, the HWC scheme is used for solution of some
examples. To show the convergence of this scheme, the
maximum absolute errors with a different choice of CPs is
glven in tables. If W, () denotes the exact solution and
appr (t) denotes the approximate solution at CPs, then L,
maximum absolute error is L., = max|W ., (¢) - W appr (t)|
and the M , mean square root error in CPs is defined as

Mcp = \/I/N(Z;I\:Il |Wexa (1) - Wappr (t)lz)
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Problem 1. Consider the following system of delay VIEs
[33]:
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where w, (0) = 0 and w, (0) = 1 and delay condition w, (¢) = Problem 3. Consider the following system of delay VIEs

sin ¢t and w, (t) = cos ¢, for -1 <t <0, and the exact solution [34]:
is w; (t) =sin t and w, (t) = cos t

[ 1 t
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where initial conditions w, (0) = 1 and w, (0) = 0 and delay ~ Problem 4. Consider the following system of delay FIEs:
conditions w;, (t) = cos t and w, (t) =sin t for —1<t<0.
The exact solution is w; (t) = cos t and w, (t) = sin ¢.
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TaBLE 1: L, and M, errors for Problem 1.
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L

(o)

w, (t)

wy (t)

cp

W, (1)

NG W N~

128
256

7.227277 x107%2
3.651301 x107%2
2.021651 x107%2
9.590612 x107%
4.865959 x107%
2.360761 x107%
1.174814 x107%

3.535106 x107%2
1.949725 x107%2
1.171350 x107°2
5.528632 x10™%
2.838307 x107%
1.363338 x107%
6.766049 x10~%

3.642416 x1072
1.331555 x107%%
5.561894 x107%
1.911783 x107%
7.213247 x107%
2.513415 x107%
8.963455 x107%

3.642416 x1072
1.331555 x107
5.561894 x107%
1.911783 x107%
7.213247 x107%
2.513415 x107%
8.963455 x107%

TaBLE 2: L, and M, errors for Problem 2.
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wq (t)

L

(69

w, (t)

wq (t)

cp

w, (t)

AN U W= O

o W~ N

—
[e)}

64
128

1.971049 x10°
1.810205 x107%
1.164381 x107%
6.956396 x107%
3.726557 x107%
1.964274 x107%
1.000512 x107%

5.864174 x107%2
4.057245 x107%
2.319242 x1072
1.312505 x107%2
6.850666 x107%
3.565292 x107%
1.804582 x10~%

1.393799 x107°
9.051023 x107%
4.353520 x107%
1.796679 x107%
7.173199 x107%
2.635402 x107%
9.855819 x10~ %

4.181707 x1072
2.029205 x1072
9.135788 x107%
3.464783 x107%
1.363234 x107%
4.894977 x107%
1.826391 x107%*

TaBLE 3: L, and M, errors for Problem 3.

N = 2]+1

wq (t)

L

[o8)

w, (1)

wy ()

cp

w, (1)

QN Ul W DN = O

7.068456 x10702
4.219307 x107%2
2.291424 x10792
1.260881 x1072
6.573418 x107%
3.399905 x107%
1.723213 x107%

2.845448 x107%2
3.246160 x107%
3.324980 x107%3
3.159590 x107%
1.744969 x107%
1.098218 x107%
5.586336 x107%

5.381595 x10~2
2.141376 x107%2
9.682159 x107%
3.464271 x107%
1.377181 x107%
4.897071 x107%4
1.832585 x107%

2.076129 x1072
1.862447 x1079
1.804969 x107%
9.044071 x107%
3.610467 x107%
1.544038 x107%
5.548257 x107%

TaBLE 4: L, and Mcp errors for Problem 4.

N=2

wy (t)

L

0

w, (t)

wy (t)

cp

w, (t)

QN U W N~

co

32
64
128

2.640119 x107%!
6.953929 x107%2
1.784413 x10792
4.519613 x107%
1.137303 x107%3
2.852556 x107%

1.372997 x107%
3.415118 x107%2
8.547046 x107%
2.136780 x107%3
5.341455 x107%
1.335397 x107%

1.736979 x107!
4.329946 x107°2
2.703951 x107%2
1.081759 x107%
6.759601 x107%4
1.689883 x107%

1.230985 x107%
3.057921 x107%2
1.907584 x107%2
7.633199 x1079
4.768514 x107%
1.192101 x10~%

TaBLE 5: Ly, and M, errors for Problem 5.

wy (t)

L

o0

w, (t)

wy (t)

cp

w, (t)

AN U1 v W N~

128

3.510916 x107%*
3.115079 x107%2
2.035756 x107%?
1.126852 x107%2
5.900960 x10~%
3.019204 x107°

4.831041 x107%2
1.559781 x107%2
4267191 x1079
2.023585 x107%
5.002232 x10~%
3.746060 x10~%

2.519685 x107%%
1.340721 x107%2
5.730156 x107%
2.119183 x107%
7.759655 x10™ %
2.803629 x10~ %

3.029705 x107%2
1.093659 x107%2
2.242606 x107%
8.120494 x10~ %
2.083728 x10~ %
8.009401 x10~ %
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1.2 T T T T T T T T T

—— Exact solution wy (t) —— Exact solution w, (t)
+ Approximate solution o  Approximate solution

Ficure 1: Comparison of exact and approximate solution for N = 32 for Problem 1.

X

—— Exact solution w; (t) —— Exact solution w, (t)
+ Approximate solution =~ © Approximate solution

FiGure 2: Comparison of exact and approximate solution for N = 32 for Problem 2.

where initial conditions w,(0) =w,(0) =1 and delay  Problem 5. Consider the following system of delay VFIEs:
conditions w, (t) = €* and w, (¢) = cos(2t), for —~1 <t <0.
The exact solution is w, (t) = e* and w, (t) = cos(2t).

¢ 2@ —3-2t+e(1+¢(2+4t -2 cos 2 +sin 2))

w, (t) = e —e 3 +tcos” tsin® t
4e

+ I; ((t + s)w; (s) + tsw, (s))ds + w, (£ — 1) + J;(tezsw1 (s) +t cos(2s)w, (s))ds,

1 _ _
w, (t) = sin (2t - 2) _Z(_l +4(-1+e)e ™ +e +cos t —cos(3t) + t(2 + sin2(2))) +w,(t-1)

+ J-;(et“w1 (s) +t cos(2s)w, (s))ds + J; ((t = s)wy (s) +t cos(t)w, (s))ds,
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— Exact solution w; (f)

+ Approximate solution

— Exact solution w, (f)
o  Approximate solution

FiGgure 3: Comparison of exact and approximate solution for N = 32 for Problem 3.

— Exact solution w; (t)

+ Approximate solution

— Exact solution w, (f)
o  Approximate solution

F1GURrE 4: Comparison of exact and approximate solution for N = 32 for Problem 4.

where initial conditions w, (0) = 1 and w, (0) = 0 and delay
conditions w; (t) = e and w, (¢) = sin(2t), for -1 <t <0.
The exact solution is w, (t) = e™* and w, (¢) = sin ¢.

4. Results and Discussion

Ly, and M, errors are calculated for each example using
different number of CPs. From results, we see that both L,
and M, errors are decreased by increasing number of CPs.
Even better accuracy can be obtained by taking more CPs.

The results are presented in Table 1 for Problem 1, Table 2
for Problem 2, Table 3 for Problem 3, Table 4 for Problem
4, and Table 5 for Problem 5, demonstrating the proposed
techniques improved accuracy and efficiency. The L
errors of [33] are decreased up to 107°°, while the result of
our method is also decreased up to 107%°. Figures 1-5 show
a comparison of approximate and exact solutions for
various numbers of CPs for Problems 1-5 respectively. We
see from the figures that the approximate and exact so-
lutions coincide.
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1.4 T T T T T T T T T

12 4

— Exact solution w, (f)
+ Approximate solution

— Exact solution w, (t)
O  Approximate solution

Ficure 5: Comparison of exact and approximate solution for N =
32 for Problem 5.

5. Conclusion

For the numerical solution of system of linear delay Vol-
terra-Fredholm IEs using ICs in heterogeneous data com-
munication, a HWC technique is developed. The numerical
technique is used to test the accuracy and efficiency of the
HWC scheme on several examples. Tables shows the L, and
M., errors of each example for various numbers of CPs.
Comparison of exact and approximate solution is also
shown in figures. The Haar technique can be applied to the
system of nonlinear IEs, the system of integro-differential
equations, and the system of integro-partial differential
equations.
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