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In this work, the Haar collocation scheme is used for the solution of the class of system of delay integral equations for het-
erogeneous data communication.,e Haar functions are considered for the approximation of unknown function. By substituting
collocation points and applying the Haar collocation technique to system of delay integral equations, we have obtained a linear
system of equations. For the solution of this system, an algorithm is developed in MATLAB software. ,e method of Gauss
elimination is utilized for the solution of this system. Finally, by using these coefficients, the solution at collocation points is
obtained. ,e convergence of Haar technique is checked on some test problems.

1. Introduction

Integral equations (IEs) are equations in which the unknown
functions appear under one or more integral signs [1]. Delay
integral equations (DIEs) are those IEs in which the solution
of the unknown function is given in the previous time in-
terval [2]. DIEs are further classified into two main types:
FredhomDIEs andVolterra DIEs on the basis of the limits of
integration. Fredhom DIEs are those IEs in which limits of
the integration are constant, while in Volterra DIEs, one of
the limits of the integration is a constant and the other is a
variable. A Volterra-Fredhom DIEs consist of disjoint
Volterra and Fredhom IEs [1]. ,e DIEs play an important
role in mathematics [3]. ,ese equations are used for
modelling of various phenomena such as modelling of
systems with memory [4], mathematical modelling, electric
circuits, and mechanical systems [5].

Several researchers are trying to find out the numerical
solution of delay IEs. Darania [6] used the multistep

collocation method for solving DIEs. For each subinterval,
the solution is obtained through a fixed number of collo-
cation points and of previous steps in the current and next
subintervals. Avaji et al. [7] used the variational iteration
method for approximate solution of nonlinear and linear
Voterra DIEs. ,e Volterra DIEs are constructed using
general Lagrange multipliers that are defined by the varia-
tional theory and the initial approximations. Zhao et al. [8]
used the Sinc collocation method for solving the DIEs. ,is
technique reduces the DIEs of Volterra type to an explicit
algebraic equation. ,e solution of these algebraic equations
gives the solution of the Volterra DIEs. Yuzbasi and Ismailov
[9] solved Volterra IEs with proportion delays by themethod
of differential transformation. In this technique, the solu-
tions obtained are in the series form. ,e solution of the
series expanded to Taylor series to find the unknown co-
efficients. For the system of nonlinear Volterra DIEs, Sekar
and Murugesan [10] used the Walash series method. ,is
technique reduces the Volterra IEs into a system of
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equations. ,e solution of an algebraic equation leads to the
solution of the Volterra IEs. Kurkcu [11] used generalized
Mott polynomials for the approximate solution of DIEs with
variable bounds. Maleknejad et al. [12] developed the nu-
merical method for the solution Volterra IEs of first, second,
and singular type of equations by the use of Bernstein ap-
proximation. Raza and Khan [13] found solution of neutral
delay differential equations. Ghasemia and Kajani [14]
utilized Chebyshev wavelets to find the solution time delay
systems. ,e method is based on the expansion of various
time functions and truncated Chebyshev wavelets. Wang
[15] used hybrid functions for the solution of system of DIEs.
,e hybrid functions consist of Legendre polynomials and
block-pulse function. Samadi and Tohidi [16] used the
spectral method for solution of systems of Volterra IEs; also,
they used Spectral Galerkin approach for solution of two-
dimensional Volterra IEs [17]. Tohidi [18] utilized Taylor
matrix technique for solution of linear two-dimensional
Fredholm IEs. Demko et al. [19] presented data-type ag-
nostic algorithm calculating a concept lattice from hetero-
geneous and complex data. Luo et al. [20] investigated a
communication scheduling problem to address data com-
pression and data communication together. Ding and Zheng
[21] investigated the bounded consensus tracking problem
of heterogeneous nonlinear multiagent systems based on
asynchronous sampled-data communication. Plaz et al. [22]
presented MEdit4CEP-SP, the model-driven system that
integrates stream processing and complex event processing
technologies for consuming, processing, and analyzing

heterogeneous data in real time. Alqarni et al. [23] proposed
a semicontrolled environment system which overcomes the
limitations of users’ age, gender, and smartwatch wearing
style. Mazzara et al. [24] proposed a surveys’ Internet of
things and smart and software-defined buildings’ technol-
ogies and their cooperation towards the realization of smart
spaces. Sohaib et al. [25] enhanced a new technology ac-
ceptance-based research with the artificial neural network
method to enable more precise and in-depth research results
as compared to the single-step SEM method. ,e Haar
technique for the solution of Fredholm and Volterra IEs was
used by Aziz and Islam [26]. Haar technique is used for
solution of different problems in literature. Some of the
recent are fractional-order delay differential equations [27],
distributed order time-fractional differential equations [28],
second-order linear and nonlinear integro-differential
equations [29], third-order linear and nonlinear boundary
value problems of integro-differential equations [30], and
second-order delay differential equations [31]. Amin et al.
[32] developed Haar technique for the approximate solution
of delay IEs. In this work, we will extend [32] for a system of
delay IEs by using Haar wavelet collocation (HWC)
technique.

In this study, the HWC scheme is used for the solution of
system of linear delay IEs in heterogeneous data commu-
nication. ,e accuracy and efficiency will be checked on
some test problems. ,e system of delay Volterra-Fredholm
IE (DVFIE) ξ > 0 is [33]

W(t) �
W(t − ξ) + 􏽚

t

0
K(t, s)W(s)ds + 􏽚

1

0
M(t, s)W(s − ξ)ds + 􏽚

t−ξ

0
N(t, s)W(s)ds + F(t),

Φ(t), t ∈ [−ξ, 0),

⎧⎪⎪⎨

⎪⎪⎩
(1)

with initial conditions w1(0) � λ1 and w2(0) � λ2, where

W(t) �
w1(t)

w2(t)
􏼠 􏼡 is vector function of the solution of

system (1), Φ(t) �
Φ1(t)

Φ2(t)
􏼠 􏼡 is the delay conditions, K �

[ki,j]2×2 and M � [mi,j(t, s)]2×2 are sufficiently smooth
functions known as kernels of integration, and

F(t) �
f1(t)

f2(t)
􏼠 􏼡 are given functions. For explicit derivation

of the HWC technique, we consider ξ � 1.

2. Numerical Method

In this section, the HWC scheme is developed for the so-
lution of the system of DVFIE (1). Let

W(t) � W(t) �
w1(t)

w2(t)
􏼠 􏼡 ∈ L2[0, 1); then,

w1(t) � 􏽘
N

i�1
aihi(t),

w2(t) � 􏽘

N

i�1
bihi(t).

(2)

,e system of DVFIE (1) can be written as

w1(t) �

w1(t − ξ) + 􏽚
t

0
k11(t, s)w1(s)ds + 􏽚

t

0
k12(t, s)w2(s)ds + 􏽚

1

0
m11(t, s)w1(s − ξ)ds

+ 􏽚
1

0
m12(t, s)w2(s − ξ)ds + 􏽚

t−ξ

0
n11(t, s)w1(s)ds + 􏽚

t−ξ

0
n12(t, s)w2(s)ds + f1(t),

Φ1(t), t ∈ [−ξ, 0),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩
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w2(t) �

w2(t − ξ) + 􏽚
t

0
k21(t, s)w1(s)ds + 􏽚

t

0
k22(t, s)w2(s)ds + 􏽚

1

0
m21(t, s)w1(s − ξ)ds

+ 􏽚
1

0
m22(t, s)w2(s − ξ)ds + 􏽚

t−ξ

0
n21(t, s)w1(s)ds + 􏽚

t−ξ

0
n22(t, s)w2(s)ds + f2(t),

Φ2(t), t ∈ [−ξ, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

By applying Haar approximation to the above system, we
get the expression as

􏽘
N

i�1
aihi(t) �

Φ1(t − ξ) + 􏽚
t

0
k11(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t

0
k12(t, s) 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m11(t, s)Φ1(s − ξ)ds + 􏽚

1

0
m12(t, s)Φ2(s − ξ)ds

+ 􏽚
t−ξ

0
n11(t, s)Φ1(s)ds + 􏽚

t−ξ

0
n12(t, s)Φ2(s)ds + f1(t), for t< 0,

􏽘

N

i�1
aihi(t − ξ) + 􏽚

t

0
k11(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t

0
k12(t, s) 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m11(t, s) 􏽘

N

i�1
aihi(s − ξ)ds + 􏽚

1

0
m12(t, s) 􏽘

N

i�1
bihi(s − ξ)ds

+ 􏽚
t−ξ

0
n11(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t−ξ

0
n12(t, s) 􏽘

N

i�1
bihi(s)ds + f1(t), for t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

􏽘
N

i�1
bihi(t) �

Φ2(t − ξ) + 􏽚
t

0
k21(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t

0
k22(t, s) 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m21(t, s)Φ1(s − ξ)ds + 􏽚

1

0
m22(t, s)Φ2(s − ξ)ds

+ 􏽚
t−ξ

0
n21(t, s)Φ1(s)ds + 􏽚

t−ξ

0
n22(t, s)Φ2(s)ds + f2(t), for t< 0,

􏽘

N

i�1
aihi(t − ξ) + 􏽚

t

0
k21(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t

0
k22(t, s) 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m21(t, s) 􏽘

N

i�1
ai(s − ξ)ds + 􏽚

1

0
m22(t, s) 􏽘

N

i�1
bi(s − ξ)ds

+ 􏽚
t−ξ

0
n21(t, s) 􏽘

N

i�1
aihi(s)ds + 􏽚

t−ξ

0
n22(t, s) 􏽘

N

i�1
bihi(s)ds + f2(t), for t> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

discretizing the above two equations at CPs tj; where j �

1, 2, 3, · · · , N, we get the following expression:
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􏽘

N

i�1
aihi tj􏼐 􏼑 �

Φ1 tj − ξ􏼐 􏼑 + 􏽚
tj

0
k11 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj

0
k12 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m11 tj, s􏼐 􏼑Φ1(s − ξ)ds + 􏽚

1

0
m12 tj, s􏼐 􏼑Φ2(s − ξ)ds

+ 􏽚
tj−ξ

0
n11 tj, s􏼐 􏼑Φ1(s)ds + 􏽚

tj−ξ

0
n12 tj, s􏼐 􏼑Φ2(s)ds + f1 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
aihi tj − ξ􏼐 􏼑 + 􏽚

tj

0
k11 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj

0
k12 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m11 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s − ξ)ds + 􏽚

1

0
m12 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s − ξ)ds

+ 􏽚
tj−ξ

0
n11 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj−ξ

0
n12 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds + f1 tj􏼐 􏼑, for tj > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

􏽘
N

i�1
bihi tj􏼐 􏼑 �

Φ2 tj − ξ􏼐 􏼑 + 􏽚
tj

0
k21 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj

0
k22 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m21 tj, s􏼐 􏼑Φ1(s − ξ)ds + 􏽚

1

0
m22 tj, s􏼐 􏼑Φ2(s − ξ)ds

+ 􏽚
tj−ξ

0
n21 tj, s􏼐 􏼑Φ1(s)ds + 􏽚

tj−ξ

0
n22 tj, s􏼐 􏼑Φ2(s)ds + f2 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
aihi tj − ξ􏼐 􏼑 + 􏽚

tj

0
k21 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj

0
k22 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds

+ 􏽚
1

0
m21 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s − ξ)ds + 􏽚

1

0
m22 tj, s􏼐 􏼑 􏽘

N

i�1
bihi(s − ξ)ds

+ 􏽚
tj−ξ

0
n21 tj, s􏼐 􏼑 􏽘

N

i�1
aihi(s)ds + 􏽚

tj−ξ

0
n22 sj, s􏼐 􏼑 􏽘

N

i�1
bihi(s)ds + f2 tj􏼐 􏼑, for tj > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

and let

L1i tj􏼐 􏼑 � 􏽚
tj

0
k11 tj, s􏼐 􏼑hi(s)ds,

L2i tj􏼐 􏼑 � 􏽚
tj

0
k12 tj, s􏼐 􏼑hi(s)ds,

L3i tj􏼐 􏼑 � 􏽚
1

0
m11 tj, s􏼐 􏼑Φ1(s − ξ)ds,

L4i tj􏼐 􏼑 � 􏽚
1

0
m12 tj, s􏼐 􏼑Φ2(s − ξ)ds,

L5i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n11 tj, s􏼐 􏼑Φ1(s)ds,

L6i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n12 tj, s􏼐 􏼑Φ2(s)ds,

L7i tj􏼐 􏼑 � 􏽚
1

0
m11 tj, s􏼐 􏼑hi(s − ξ)ds,

L8i tj􏼐 􏼑 � 􏽚
1

0
m12 tj, s􏼐 􏼑hi(s − ξ)ds,

L9i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n11 tj, s􏼐 􏼑hi(s)ds,

L10i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n12 tj, s􏼐 􏼑hi(s)ds,

L11i tj􏼐 􏼑 � 􏽚
tj

0
k21 tj, s􏼐 􏼑hi(s)ds,

L12i tj􏼐 􏼑 � 􏽚
tj

0
k22 tj, s􏼐 􏼑hi(s)ds,

L13i tj􏼐 􏼑 � 􏽚
1

0
m21 tj, s􏼐 􏼑Φ1(s − ξ)ds,

L14i tj􏼐 􏼑 � 􏽚
1

0
m22 tj, s􏼐 􏼑Φ2(s − ξ)ds,

L15i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n21 tj, s􏼐 􏼑Φ1(s)ds,

L16i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n22 tj, s􏼐 􏼑Φ2(s)ds,

L17i tj􏼐 􏼑 � 􏽚
1

0
m21 tj, s􏼐 􏼑hi(s − ξ)ds,

L18i tj􏼐 􏼑 � 􏽚
1

0
m22 tj, s􏼐 􏼑hi(s − ξ)ds,

L19i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n21 tj, s􏼐 􏼑hi(s)ds,

L20i tj􏼐 􏼑 � 􏽚
tj−ξ

0
n22 tj, s􏼐 􏼑hi sj􏼐 􏼑(s)ds,

(6)
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so

􏽘

N

i�1
aihi tj􏼐 􏼑 �

Φ1 tj − ξ􏼐 􏼑 + 􏽘
N

i�1
aiL1i tj􏼐 􏼑 + 􏽘

N

i�1
biL2i tj􏼐 􏼑 + L3i tj􏼐 􏼑 + L4i tj􏼐 􏼑

+L5i tj􏼐 􏼑 + L6i tj􏼐 􏼑 + f1 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
aihi tj − ξ􏼐 􏼑 + 􏽘

N

i�1
aiL1i tj􏼐 􏼑 + 􏽘

N

i�1
biL1i tj􏼐 􏼑 + 􏽘

N

i�1
aiL7i tj􏼐 􏼑 + 􏽘

N

i�1
biL8i tj􏼐 􏼑

+ 􏽘
N

i�1
aiL9i tj􏼐 􏼑 + 􏽘

N

i�1
biL10i tj􏼐 􏼑 + f1 tj􏼐 􏼑, for tj > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

􏽘
N

i�1
bihi tj􏼐 􏼑 �

Φ2 tj − ξ􏼐 􏼑 + 􏽘
N

i�1
aiL11i tj􏼐 􏼑 + 􏽘

N

i�1
biL12i tj􏼐 􏼑 + L13i tj􏼐 􏼑 + L14i tj􏼐 􏼑

+L15i tj􏼐 􏼑 + L16i tj􏼐 􏼑 + f2 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
aihi tj − ξ􏼐 􏼑 + 􏽘

N

i�1
ai + 􏽘

N

i�1
biL12i tj􏼐 􏼑 + 􏽘

N

i�1
aiL17i tj􏼐 􏼑 + 􏽘

N

i�1
biL18i tj􏼐 􏼑

+ 􏽘
N

i�1
aiL19i tj􏼐 􏼑 + 􏽘

N

i�1
biL20i tj􏼐 􏼑 + f2 tj􏼐 􏼑, for tj > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

􏽘
N

i�1
ai hi tj􏼐 􏼑 − L1i tj􏼐 􏼑􏼐 􏼑 − biL2i tj􏼐 􏼑􏽨 􏽩 � Φ1 tj − ξ􏼐 􏼑 + L3i tj􏼐 􏼑 + L4i tj􏼐 􏼑 + L5i tj􏼐 􏼑

+L6i tj􏼐 􏼑 + f1 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
ai hi tj􏼐 􏼑 − hi tj − ξ􏼐 􏼑 − L1i tj􏼐 􏼑 − L7i tj􏼐 􏼑 − L9i tj􏼐 􏼑􏼐 􏼑 − bi L2i tj􏼐 􏼑 − L8i tj􏼐 􏼑 − L10i tj􏼐 􏼑􏼐 􏼑􏽨 􏽩

� f1 tj􏼐 􏼑, for tj > 0,

􏽘

N

i�1
ai L11i tj􏼐 􏼑􏼐 􏼑 − bi hi tj􏼐 􏼑 − L12i tj􏼐 􏼑􏼐 􏼑􏽨 􏽩 � Φ2 tj − ξ􏼐 􏼑 + L15i tj􏼐 􏼑

+L16i tj􏼐 􏼑 + f1 tj􏼐 􏼑, for tj < 0,

􏽘

N

i�1
ai −hi tj − ξ􏼐 􏼑 − L11i tj􏼐 􏼑 − L17i tj􏼐 􏼑 − L19i tj􏼐 􏼑􏼐 􏼑 + bi hi tj􏼐 􏼑 − L12i tj􏼐 􏼑 − L18i tj􏼐 􏼑 − L20i tj􏼐 􏼑􏼐 􏼑􏽨 􏽩

� f2 tj􏼐 􏼑, for tj > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

We get the 2N × 2N linear system of algebraic equations
with unknowns ai and bi. Solving this system, we obtain the
values of unknown constants ai and bi.,e required solution
is obtained by putting these unknowns in equation (2).

Remark 1. If we take K � 0 and N � 0, then system (1) is
known as system of delay Fredholm IEs (DFIEs), and if we
take M � 0, then system (1) is known as system of delay
Volterra IEs (DVIEs). Similarly, HWC technique can be
developed for DFIEs and DVIEs.

3. Test Problems

In this section, the HWC scheme is used for solution of some
examples. To show the convergence of this scheme, the
maximum absolute errors with a different choice of CPs is
given in tables. If Wexa(t) denotes the exact solution and
Wappr(t) denotes the approximate solution at CPs, then L∞
maximum absolute error is L∞ � max|Wexa(t) − Wappr(t)|,
and the Mcp mean square root error in CPs is defined as
Mcp �

��������������������������
1/N(􏽐

N
i�1 |Wexa(t) − Wappr(t)|2)

􏽱
.
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Problem 1. Consider the following system of delay VIEs
[33]:

W(t) �

F(t) + 􏽚
t

0

s 1

1 s
􏼠 􏼡w(s)ds + 􏽚

t−1

0

s − 1 1

1 s
􏼠 􏼡w(s)ds, 0≤ t< 1,

e
−t

t
3

⎛⎝ ⎞⎠, −1≤ t< 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

,e function F(t) is so that the exact solution is

W(t) �
e

− t

t
3

⎛⎝ ⎞⎠. (9)

Problem 2. Consider the following system of delay VIEs
[34]:

w1(t) + tw2(t) � sin t + t cos t − sin(t − 1) + 􏽚
t

0
t
2 cos sw1(s) − t

2 sin sw2(s)􏼐 􏼑ds + w1(t − 1),

w2(t) − 2tw1(t) � cos t − 2t sin t − cos(t − 1) + 􏽚
t

0
sin t cos sw1(s) − sin t sin sw2(s)( 􏼁ds + w2(t − 1),

0≤ t< 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

where w1(0) � 0 and w2(0) � 1 and delay condition w1(t) �

sin t and w2(t) � cos t, for −1< t≤ 0, and the exact solution
is w1(t) � sin t and w2(t) � cos t

Problem 3. Consider the following system of delay VIEs
[34]:

w1(t) �
1
4

(cos(t − 1) − cos(t + 1)) + cos t(2 + sin t − t cos t) −
t

2
sin(t − 1) − 1

−cos(t − 1) + w1(t − 1) + 􏽚
t

0
sin((t − s) − 1)w1(s) +(1 − s cos t)w2(s)( 􏼁ds,

w2(t) � w2(t − 1) + sin t − t − sin(t − 1) + w2(t − 1) + 􏽚
t

0
w1(s) +(t − s)w2(s)􏼈 ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where initial conditions w1(0) � 1 and w2(0) � 0 and delay
conditions w1(t) � cos t and w2(t) � sin t for −1< t≤ 0.
,e exact solution is w1(t) � cos t and w2(t) � sin t.

Problem 4. Consider the following system of delay FIEs:

w1(t) − tw2(t) � e
2t

− t cos(2t) −
1
2

t(2 + sin 2) − e
−2(t− 1)

+ 􏽚
1

0
te

− 2s
w1(s) + tw2(s)􏼐 􏼑ds + w1(t − 1),

tw1(t) + w2(t) � te
2t

+ cos(2t) −
1
4

1 + 3e
t 1 + e

2
􏼐 􏼑 − cos 2 + 2(−1 + t)sin 2􏼐 􏼑 − cos(2t − 2)

+ 􏽚
1

0
(t − s)w1(s) +(t + s)

2
w2(s)􏼐 􏼑ds + w2(t − 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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Table 1: L∞ and Mcp errors for Problem 1.

J N � 2J+1 L∞ Mcp

w1(t) w2(t) w1(t) w2(t)

1 4 7.227277 ×10−02 3.535106 ×10−02 3.642416 ×10−02 3.642416 ×10−02

2 8 3.651301 ×10−02 1.949725 ×10−02 1.331555 ×10−02 1.331555 ×10−02

3 16 2.021651 ×10−02 1.171350 ×10−02 5.561894 ×10−03 5.561894 ×10−03

4 32 9.590612 ×10−03 5.528632 ×10−03 1.911783 ×10−03 1.911783 ×10−03

5 64 4.865959 ×10−03 2.838307 ×10−03 7.213247 ×10−04 7.213247 ×10−04

6 128 2.360761 ×10−03 1.363338 ×10−03 2.513415 ×10−04 2.513415 ×10−04

7 256 1.174814 ×10−03 6.766049 ×10−04 8.963455 ×10−05 8.963455 ×10−05

Table 2: L∞ and Mcp errors for Problem 2.

J N � 2J+1 L∞ Mcp

w1(t) w2(t) w1(t) w2(t)

0 2 1.971049 ×10−03 5.864174 ×10−02 1.393799 ×10−03 4.181707 ×10−02

1 4 1.810205 ×10−03 4.057245 ×10−02 9.051023 ×10−04 2.029205 ×10−02

2 8 1.164381 ×10−03 2.319242 ×10−02 4.353520 ×10−04 9.135788 ×10−03

3 16 6.956396 ×10−04 1.312505 ×10−02 1.796679 ×10−04 3.464783 ×10−03

4 32 3.726557 ×10−04 6.850666 ×10−03 7.173199 ×10−05 1.363234 ×10−03

5 64 1.964274 ×10−04 3.565292 ×10−03 2.635402 ×10−05 4.894977 ×10−04

6 128 1.000512 ×10−04 1.804582 ×10−04 9.855819 ×10− 06 1.826391 ×10−04

Table 3: L∞ and Mcp errors for Problem 3.

J N � 2J+1 L∞ Mcp

w1(t) w2(t) w1(t) w2(t)

0 2 7.068456 ×10−02 2.845448 ×10−02 5.381595 ×10−02 2.076129 ×10−02

1 4 4.219307 ×10−02 3.246160 ×10−03 2.141376 ×10−02 1.862447 ×10−03

2 8 2.291424 ×10−02 3.324980 ×10−03 9.682159 ×10−03 1.804969 ×10−03

3 16 1.260881 ×10−02 3.159590 ×10−03 3.464271 ×10−03 9.044071 ×10−04

4 32 6.573418 ×10−03 1.744969 ×10−03 1.377181 ×10−03 3.610467 ×10−04

5 64 3.399905 ×10−03 1.098218 ×10−03 4.897071 ×10−04 1.544038 ×10−04

6 128 1.723213 ×10−03 5.586336 ×10−04 1.832585 ×10−04 5.548257 ×10−05

Table 4: L∞ and Mcp errors for Problem 4.

J N � 2J+1 L∞ Mcp

w1(t) w2(t) w1(t) w2(t)

1 4 2.640119 ×10−01 1.372997 ×10−01 1.736979 ×10−01 1.230985 ×10−01

2 8 6.953929 ×10−02 3.415118 ×10−02 4.329946 ×10−02 3.057921 ×10−02

3 16 1.784413 ×10−02 8.547046 ×10−03 2.703951 ×10−02 1.907584 ×10−02

4 32 4.519613 ×10−03 2.136780 ×10−03 1.081759 ×10−03 7.633199 ×10−03

5 64 1.137303 ×10−03 5.341455 ×10−04 6.759601 ×10−04 4.768514 ×10−04

6 128 2.852556 ×10−04 1.335397 ×10−04 1.689883 ×10−04 1.192101 ×10−04

Table 5: L∞ and Mcp errors for Problem 5.

J N � 2J+1 L∞ Mcp

w1(t) w2(t) w1(t) w2(t)

1 4 3.510916 ×10−02 4.831041 ×10−02 2.519685 ×10−02 3.029705 ×10−02

2 8 3.115079 ×10−02 1.559781 ×10−02 1.340721 ×10−02 1.093659 ×10−02

3 16 2.035756 ×10−02 4.267191 ×10−03 5.730156 ×10−03 2.242606 ×10−03

4 32 1.126852 ×10−02 2.023585 ×10−03 2.119183 ×10−03 8.120494 ×10− 04

5 64 5.900960 ×10−03 5.002232 ×10− 04 7.759655 ×10− 04 2.083728 ×10− 04

6 128 3.019204 ×10−03 3.746060 ×10− 04 2.803629 ×10− 04 8.009401 ×10− 05
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where initial conditions w1(0) � w2(0) � 1 and delay
conditions w1(t) � e2t and w2(t) � cos(2t), for −1< t≤ 0.
,e exact solution is w1(t) � e2t and w2(t) � cos(2t).

Problem 5. Consider the following system of delay VFIEs:

w1(t) � e
−2t

− e
−2(t− 1)

−
−3 − 2t + e

2
(1 + t(2 + 4t − 2 cos 2 + sin 2))

4e
2 + tcos2 tsin2 t

+ 􏽚
1

0
(t + s)w1(s) + tsw2(s)( 􏼁ds + w1(t − 1) + 􏽚

t

0
te

2s
w1(s) + t cos(2s)w2(s)􏼐 􏼑ds,

w2(t) � sin(2t − 2) −
1
4

−1 + 4(−1 + e)e
−1+t

+ e
−2t

+ cos t − cos(3t) + t 2 + sin2(2)􏼐 􏼑􏼐 􏼑 + w2(t − 1)

+ 􏽚
1

0
e

t+s
w1(s) + t cos(2s)w2(s)􏼐 􏼑ds + 􏽚

t

0
(t − s)w1(s) + t cos(t)w2(s)( 􏼁ds,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)
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Figure 1: Comparison of exact and approximate solution for N � 32 for Problem 1.
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Figure 2: Comparison of exact and approximate solution for N � 32 for Problem 2.
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where initial conditions w1(0) � 1 and w2(0) � 0 and delay
conditions w1(t) � e−2t and w2(t) � sin(2t), for −1< t≤ 0.
,e exact solution is w1(t) � e−2t and w2(t) � sin t.

4. Results and Discussion

L∞ and Mcp errors are calculated for each example using
different number of CPs. From results, we see that both L∞
and Mcp errors are decreased by increasing number of CPs.
Even better accuracy can be obtained by taking more CPs.

,e results are presented in Table 1 for Problem 1, Table 2
for Problem 2, Table 3 for Problem 3, Table 4 for Problem
4, and Table 5 for Problem 5, demonstrating the proposed
techniques improved accuracy and efficiency. ,e L∞
errors of [33] are decreased up to 10−05, while the result of
our method is also decreased up to 10−05. Figures 1–5 show
a comparison of approximate and exact solutions for
various numbers of CPs for Problems 1–5 respectively. We
see from the figures that the approximate and exact so-
lutions coincide.
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Figure 3: Comparison of exact and approximate solution for N � 32 for Problem 3.
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Figure 4: Comparison of exact and approximate solution for N � 32 for Problem 4.
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5. Conclusion

For the numerical solution of system of linear delay Vol-
terra-Fredholm IEs using ICs in heterogeneous data com-
munication, a HWC technique is developed. ,e numerical
technique is used to test the accuracy and efficiency of the
HWC scheme on several examples. Tables shows the L∞ and
Mcp errors of each example for various numbers of CPs.
Comparison of exact and approximate solution is also
shown in figures. ,e Haar technique can be applied to the
system of nonlinear IEs, the system of integro-differential
equations, and the system of integro-partial differential
equations.
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