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In this paper, we aim to establish the threshold-type dynamics of a diffusive herpes model that assumes a fixed relapse period and
nonlinear recovery rate. It turns out that when considering diseases with a fixed relapse period, the diffusion of recovered
individuals will lead to nonlocal recovery term. We characterize the basic reproduction number, R0, for the model through the
next generation operator approach. Moreover, in a homogeneous case, we calculate the R0 explicitly. By utilizing the principal
eigenvalue of the associated eigenvalue problem or equivalently byR0, we establish the threshold-type dynamics of the model in
the sense that the herpes is either extinct or close to the epidemic value. Numerical simulations are performed to verify the
theoretical results and the effects of the spatial heterogeneity on disease transmission.

1. Introduction

During the past three decades, the incidence of herpes has
increased in the developing countries [1]. One typical feature
of herpes is that the virus will be reactivated and reactivated
periodically by close physical or sexual contact, leading to a
relapse period of infectiousness (see, e.g., [1–5]). Mathe-
matical models have been used to explore the transmission
of herpes. It is highlighted in [5] that an ordinary differential
equations (ODEs) compartment model for herpes is also
suitable for pseudorabies in pigs [6]. In [5], the population
was divided into three disjoint classes, that is, susceptible
individuals (who have not previously been exposed to the
virus), infective individuals (who have been infected and
shed the virus), and recovered (or latency) individuals (who
have previously been infected with the virus but have not
shed the virus), denoted by S(t), I(t), and R(t), respectively.
Considering that the relapse phenomenon occurs when the
virus is reactivated, they used a relapse term from recovered
class to infective class to describe a disease with relapse,
giving the Susceptible-Infective-Recovered-Infective (SIRI)
model. With the standard incidence rate, R0 is determined

as the sharp threshold for determining whether the herpes is
extinct or close to the epidemic value. )e ODEs model in
[5] was further extended to the more with general incidence
function in [4], and similar threshold results were obtained.
Subsequently, Blower et al. [3] formulated a model to in-
vestigate how much resistance of herpes will be produced
when the rate of antiviral treatment is enlarged. For more
different herpes transmission models, we refer to [2].

Unlike the ODEs models for herpes that the relapse
period was assumed to obey negative exponential distri-
bution, van den Driessche and Zou et al. [7] utilized a more
general relapse distribution P(t) to explore the results of
distinct settings on the relapse period, where P(t) stands for
the proportion of recovered individuals still remaining in
recovered class after recovery. In particular, the authors took
a step function distribution for the relapse period and ob-
tained a delay differential equations (DDEs) model for
herpes. )ey also found that there is no sustained oscillatory
solutions. After determining R0, the threshold-type results
of the model were also addressed.

)e aforementioned models are for a spatially homo-
geneous environment, meaning that only ODE and DDEs
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models are involved. In recent years, spatial-temporal
dynamics of infectious diseases governed by the reaction-
diffusion models have attracted many researchers. )e
spatial heterogeneity (SH) and diffusion play important
roles in disease transmission. Under different infection
mechanisms, some new insights in disease control and
new phenomenon in disease spread will be obtained; see,
for instance, [8–13]. It is found in [8] that SH would
increase the risk of influenza transmission so that the SH
of the recovery rate and transmission rate must be in-
creased for controlling the influenza transmission. In [9],
the authors proposed a spatial nonlocal diffusive model
with delay and no-flux boundary condition. Here the
nonlocal delay is caused by introducing a fixed incubation
period in a continuous bounded domain. By utilizing the
classical theory, the threshold-type dynamics are deter-
mined byR0. Here,R0 was achieved by the spectral radius
of the next generation operator. In a homogeneous case
that all model parameters are constant, R0 can be ex-
plicitly obtained. Besides, another method of calculating
R0 in one-dimensional space was also presented in [9]. In
a recent work [14], the authors studied the dual-func-
tionality of physical contacts driven via variations of
individual spatial behavior and provided insights on
mechanisms that generate spatial heterogeneity. By using
an epidemic model with nonlocal delay and logistic
growth, the authors in [15] studied the dynamics of model
and investigated how nonlocal delay and logistic growth
affect the disease transmission. It was advocated in [16]
that the transitions between patterns are an emergent
property in spatial epidemics that can serve as a potential
trend indicator of disease spread when considering the
spread of diseases in both time and space. In [17], the
authors studied the existence and nonexistence of the
traveling wave solutions for the model with spatial
structure.

)e authors in [18] studied the local and global long-
term dynamics of the Banana Black Sigatoka Disease with
delay and seasonality. In [19], the spatial-temporal char-
acteristics and effective control measures of brucellosis
transmission are investigated. Very recently, a human-
vector malaria transmission model incorporating age, time
since infection, and waning immunity was studied in [20],
where the well-posedness of the model, the existence of
endemic equilibria, and the effect of the above structural
variables on key important epidemiological traits of the
human-vector association are demonstrated. Wu and Zhao
[21] studied a nonlocal and delayed diffusive HIV latent
infection model with spatial heterogeneity and the effects of
spatial heterogeneity and delays on viral dynamics are in-
vestigated. With a simple mathematical model, Gaythorpe
and Adams [22] examine how demographic and environ-
mental heterogeneities, population behavior, and behav-
ioural change respond to the provision of facilities, and they
also studied how to reduce epidemic size and endemic
prevalence by the optimal configurations of limited numbers
of facilities.

)is paper is also inspired by nonlocal and delayed
reaction-diffusion systems in bounded domains [9, 10],

which discussed the common influence of incubation period
and SH on the spatial spread of disease. When considering
infectious diseases with a fixed incubation period, the mi-
gration of infected individuals will lead to nonlocal infection
[9, 10]. We assume that the host population lives in a
bounded spatial habitat Ω with smooth boundary zΩ. At
time t and location x, we denote by S(t, x), I(t, x), and
R(t, x) the densities of susceptible individuals, infectious
individuals, and recovered individuals, respectively. In the
absence of disease, susceptible individuals would approach a
steady state; that is, S(t, x) will be governed by the following
equation:

zS

zt
� dS△S + λ(x) − μS(x)S, t≥ 0, x ∈ Ω,

zS(t, x)

zn
� 0, t> 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where dS > 0 represents the dispersal rate of susceptible
individuals and Δ is the Laplacian operator. With respect to
space variable x, λ(x) and μS(x), respectively, represent the
recruitment rate and death rate of susceptible individuals
depending on spatial variable x. If infection occurs, we adopt
disease transmission functions as Beddington–DeAngelis
functional response and use the following equations to
describe the interactions between susceptible and infectious
individuals:

zS

zt
� dSΔS + λ(x) − μS(x)S −

β(x)SI
1 + a(x)S + b(x)I

, t> 0, x ∈ Ω,

zI

zt
� dIΔI +

β(x)SI
1 + a(x)S + b(x)I

− μI(x) + k(x)( 􏼁I, t> 0, x ∈ Ω,

zS(t, x)

zn
�

zI(t, x)

zn
� 0, t> 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where dI > 0 represents the diffusion rate of infective in-
dividuals. n is the outward normal along zΩ. β(x) is the
transmission rate between susceptible and infectious indi-
viduals. Note that the diffusion rate may be different from
susceptible to infectious individuals depending on the dis-
ease. Here, the Beddington–DeAngelis functional response
can be considered as the extensions of Holling’s type II and
saturation functional response, allowing a behavioural state,
namely, ’mutual interference with competitors.’ a(x)

measures the susceptible individuals interference. b(x)

determine how fast the transmission/infection rate will
approach saturation [23]. μI(x) and k(x), respectively,
represent the death rate and removed rate of infective in-
dividuals. All these functions are positive and Hölder
continuous functions, which allow the SH due to the fact that
spatial habitat environment is always different.

We introduce age a representing the relapse age to re-
covered individuals. With relapse age a, time t, and location
x, we denote by R(t, a, x) the density of recovered indi-
viduals. By the standard arguments as in [24], we suppose
recovered individuals are dominated by
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zR(t, a, x)

zt
+

zR(t, a, x)

za
� dRΔR(t, a, x) − μR(x) + r(a, x)( 􏼁R(t, a, x), t> 0, x ∈ Ω,

R(t, 0, x) �
k(x)I(t, x)

1 + m(x)I(t, x)
, t> 0, x ∈ Ω,

zR(t, a, x)

zn
� 0, t> 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where dR > 0 stands for the dispersal rate of recovered in-
dividuals. μR(x) is the death rate. r(a, x) represent the re-
lapse rate from recovered individuals to infectious
individuals with relapse age a and location x. m(x) measures
how fast the recovery rate of infectious individuals will
approach saturation.

Biologically, we suppose that τ > 0 is the average (fixed)
relapse period, denoted by

Re(t, x) � 􏽚
τ

0
R(t, a, x)da, Rr(t, x) � 􏽚

∞

τ
R(t, a, x)da. (4)

Assume that the function r(a, x) satisfies

r(a, x) �
0, for a ∈ [0, τ] andx ∈ Ω,

r(x), for a ∈ [τ,∞) andx ∈ Ω.
􏼨 (5)

We calculate the derivative of Re(t, x) and Rr(t, x) by
using (3) and (5) to get

zRe

zt
� dR△Re − μR(x)Re + R(t, 0, x) − R(t, τ, x), (6)

and

zRr

zt
� dR△Rr − μR(x) + r(x)( 􏼁Rr + R(t, τ, x) − R(t,∞, x),

(7)

respectively. Assuming that R(t,∞, x) � 0, this means that
zRe(t, x)/zt and zRr(t, x)/zt will be obtained if R(t, τ, x) is
known. To this end, we integrate (3) along the characteristic
line t � a + r by introducing ρ(r, a, x) � R(a + r, a, x), r≥ 0.
Hence, for a ∈ [0, τ], we directly have

zρ
za

�
zR

zt
+

zR

za
􏼢 􏼣

t�a+r

� dRΔρ − μR(x)ρ, (8)

with

ρ(r, 0, x) � R(r, 0, x) �
k(x)I

1 + m(x)I
. (9)

It then follows that

ρ(r, a, x) � 􏽚
Ω

G(a, x, y)
k(y)I(r, y)

1 + m(y)I(r, y)
dy, (10)

where G stands for the Green function to the operator
dRΔ − (μR(·) + r(x)). Changing the variable a by τ (hence
r � t − τ), we yield

R(t, τ, x) � ρ(t − τ, τ, x) � 􏽚
Ω

G(τ, x, y)
k(y)I(t − τ, y)

1 + m(y)I(t − τ, y)
dy, ∀t≥ τ. (11)

Putting (11) into (6) and (7), respectively, and noting
that Re(t, x) is decoupled from S, I, and Rr equation, we
arrive at the following system:
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zS

zt
� dSΔS + λ(x) − μS(x)S −

β(x)SI
1 + a(x)S + b(x)I

, t> 0, x ∈ Ω,

zI

zt
� dIΔI +

β(x)SI
1 + a(x)S + b(x)I

− μI(x) + k(x)( 􏼁I + r(x)Rr, t> 0, x ∈ Ω,

zRr

zt
� dR△Rr − μR(x) + r(x)( 􏼁Rr + 􏽚

Ω

G(τ, x, y)
k(y)I(t − τ, y)

1 + m(y)I(t − τ, y)
dy, t> 0, x ∈ Ω,

zS(t, x)

zn
�

zI(t, x)

zn
�

zRr(t, x)

zn
� 0, t> 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

For convenience, we denote

u1, u2, u3( 􏼁 � S, I, Rr( 􏼁, d1, d2, d3( 􏼁 � dS, dI, dR( 􏼁. (13)

)en in the sequel, we will study the following system:

zu1

zt
� d1Δu1 + λ(x) − μS(x)u1 −

β(x)u1u2

1 + a(x)u1 + b(x)u2
, t> 0, x ∈ Ω,

zu2

zt
� d2Δu2 +

β(x)u1u2

1 + a(x)u1 + b(x)u2
− μI(x) + k(x)( 􏼁u2 + r(x)u3, t> 0, x ∈ Ω,

zu3

zt
� d3Δu3 − μR(x) + r(x)( 􏼁u3 + 􏽚

Ω

G(τ, x, y)
k(y)u2(t − τ, y)

1 + m(y)u2(t − τ, y)
dy, t> 0, x ∈ Ω,

zu1(t, x)

zn
�

zu2(t, x)

zn
�

zu3(t, x)

zn
� 0, t> 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

We arrange the rest of this paper as follows. Section 2 is
devoted to the well-posedness of system (14). We follow the
standard procedures in [25] to defineR0 for (14) by the next
generation operator approach in Section 3. Moreover, in a
homogeneous case, we calculate R0 explicitly. In Section 4,
R0 will be verified that it takes a role of a threshold index for
herpes extinction and persistence.

2. Well-Posedness of System

For convenience, we introduce the spaces and notations used
in this paper.

(i) Denote X ≔ C(Ω,R3) and the positive cone of X is
denoted by X+ ≔ C(Ω,R3

+)

(ii) Denote C � C([− τ, 0],X) and its positive cone is
denoted by C+ ≔ C([− τ, 0],X+), associated with
the norm ‖ϕ‖ � max

θ∈[− τ,0]
‖ϕ(θ)‖X, for τ ≥ 0

(iii) Denote by ut ∈ C the ut(θ) � u(t + θ), θ ∈ [− τ, 0],
where u: [− τ, σ)⟶ X for σ > 0

(iv) Denote Y ≔ C(Ω,R) and its positive cone is
denoted by Y+ ≔ C(Ω,R+)

(v) Denote by Ti(t)(i � 1, 2, 3): Y⟶ Y , t≥ 0, the
strongly continuous semigroups with respect to the
operators d1Δ − μS(·) , d2Δ − (μI(·) + k(·)), and
d3Δ − (μR(·) + r(·)), associated with no-flux
boundary condition, respectively

(vi) Denote E ≔ C([− τ, 0],Y ) × Y and its positive cone
is denoted by E+ ≔ C([− τ, 0],Y+) × Y +

Let u(t, ·) � (u1(t, ·), u2(t, ·), u3(t, ·)) be the solution
corresponding to initial data u0 � (u0

1(·), u0
2(·), u0

3(·)). Let
F � (F1, F2, F3): C+⟶ Y be defined as

F1(ϕ)(·) � λ(x) −
β(·)ϕ1(0, ·)ϕ2(0, ·)

1 + a(·)ϕ1(0, ·) + b(x)ϕ2(0, ·)
,

F2(ϕ)(·) �
β(·)ϕ1(0, ·)ϕ2(0, ·)

1 + a(·)ϕ1(0, ·) + b(·)ϕ2(0, ·)
+ r(·)ϕ3(0, ·)

F3(ϕ)(·) � 􏽚

Ω

G(τ, ·, y)
k(y)ϕ2(− τ, y)

1 + m(y)ϕ2(− τ, y)
dy,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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∀x ∈ Ω, ϕ � (ϕ1,ϕ2, ϕ3)
T ∈ C+. It allows us to rewrite (14) as

u � 􏽥u(t)ϕ + 􏽚
t

0
􏽥u(t − s)F ut(s)( 􏼁ds, t> 0

u0 � ϕ ∈ C
+
,

⎧⎪⎪⎨

⎪⎪⎩
, (16)

where 􏽥u(t) � (T1(t), T2(t), T3(t))T. According to [26]
[Section 7.1 and Corollary 7.2.3]), we obtain that T1(t), T2(t),
and T3(t) are compact and strongly positive on Y . Further,
for small enough σ > 0, we have

ϕ(0, ·) + σF(ϕ)(·) �

ϕ1(0, ·) + σ λ(·) −
β(·)ϕ1(0, ·)ϕ2(0, ·)

1 + a(·)ϕ1(0, ·) + b(·)ϕ2(0, ·)
􏼠 􏼡

ϕ2(0, ·) + σ
β(·)ϕ1(0, ·)ϕ2(0, ·)

1 + a(·)ϕ1(0, ·) + b(·)ϕ2(0, ·)
+ r(·)ϕ3(0, ·)􏼠 􏼡

ϕ3(0, ·) + σ 􏽚
Ω

G(τ, ·, y)
k(y)ϕ2(− τ, y)

1 + m(y)ϕ2(− τ, y)
dy􏼠 􏼡,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ ϕ1(0, ·) 1 − σ
β

b)ϕ2(0, ·)ϕ3(0, ·)
),􏼠􏼠

(17)

where β � max
x∈Ω

β(x) and b � min
x∈Ω

b(x). It follows that

lim
σ⟶0+

1
σ
dist(ϕ(0) + σF(ϕ),X) � 0,∀ϕ ∈ C

+
. (18)

It then follows from [27] [Corollary 4] and [28] [Cor-
ollary 8.1.3]) that, for any u0 � ϕ ∈ C+, there exists a unique
noncontinuable mild solution u(t, ϕ) on [0, tmax). Moreover,
u(t, ϕ) ∈ X, ∀t ∈ [0, tmax) and u(t, ϕ) is a classical solution of
(14) for t> τ.

Before going into details, we first introduce a useful
lemma; see also in [10] Lemma 1.

Lemma 1. Consider the following system:

zω
zt

� d1Δω + λ(x) − μS(x)ω, t> 0, x ∈ Ω,

zω(t, x)

zn
� 0, t> 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

/en system (19) admits a unique and global asymptotic
stable positive steady state (PSS) E(x) in Y+. Moreover, if
both λ and μS are positive constants, then U � v/μS.

Notice that zu1/zt≤d1Δu1 + λ(x) − μS(x)u1. By the
comparison theorem,

lim sup
t⟶∞

u1(t, x)≤ lim sup
t⟶∞

ω(t, x) � E(x), uniformly forx ∈ Ω.

(20)

Hence, there exists K> 0 such that

u1(t, x)
����

����≤K, t≥ 0, (21)

where K depends on initial data.

Theorem 1. For each ϕ ∈ C+, (14) admits a unique solution
u(t, ϕ) on [0,∞). Let Φ(t) � ut(·): C+⟶ C+, t≥ 0 be
the solution semiflow of (14), defined by (Φ(t)ϕ)

(θ, x) � u(t + θ, x, ϕ),∀θ ∈ [− τ, 0], x ∈ Ω, which has a
global compact attractor.

Proof. It follows from (20) that u1(t, ϕ) is bounded on
[0, tmax). )en there exists Q> 0 such that u3-equation of
(14) is dominated by

zω
zt

� d3Δω − μR(x) + r(x)( 􏼁ω + Q, t> 0, x ∈ Ω,

zω(t, x)

zn
� 0, t> 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

By the comparison principle and Lemma 1, u3(t, ϕ) is
bounded on [0, tmax). Similarly, u2(t, ϕ) is bounded on
[0, tmax). Hence, u(t, ϕ) � (u1(t, ϕ), u2(t, ϕ), u3(t, ϕ))T is
bounded on [0, tmax), and hence tmax � +∞ for each ϕ ∈ C+.
)erefore, the solution semiflow of system (14) is well
defined.

For any ϕ ∈ C+, there exists t1 > 0, and we have

zu3

zt
≤d3Δu3 − μR(x) + r(x)( 􏼁u3 +

k

m, t> t1, x ∈ Ω,
zu3(t, x)

zn
� 0, t> t1, x ∈ zΩ,

⎧⎪⎨

⎪⎩
(23)

Complexity 5



where k � max
x∈Ω

k(x), m � min
x∈Ω

m(x). Again, from Lemma 1,

there is a time t2(ϕ)> t1 such that u3(t, ϕ)≤ 2k/m(μR + r),
∀t> t2, where μR � min

x∈Ω
μR(x)􏼈 􏼉 and r � min

x∈Ω
r(x){ }. Further,

zu2(t, x)

zt
≤ d2Δu2(t, x) +

βλ
b μs

− μI(x) + k(x)( 􏼁u2(t, x) + 2
rk

m μR + r􏼐 􏼑
, t> t2, x ∈ Ω,

zI(t, x)

zn
� 0, t> t2, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where λ � max
x∈Ω

λ(x) and μs � min
x∈Ω

μs(x). By Lemma 1, there
is t2(ϕ)> t1 such that u2(t, ϕ)≤ 2βλm (μR + r)+

2 b μS rk/ b μS m(μR + r)(μI + k), ∀t> t2, where μI � min
x∈Ω

μI

(x) and k � min
x∈Ω

k(x). Hence, Φ(t): C+⟶ C+ is point

dissipative. Further from [28] [)eorem 2.1.8],
Φ(t): C+⟶ C+ is compact for any t> τ. Hence, the last
assertion directly follows from [29] [)eorem 3.4.8]. □

Lemma 2. For each u0 � ϕ ∈ C+, denote by u(t, x, ϕ) the
solution of (14).

(i) If u2(t0, ·, ϕ)≠ 0 for some t0 ≥ 0, then u2(t0, ·, ϕ)≠ 0
and u2(t, x, ϕ)> 0, ∀t> t0, x ∈ Ω.

(ii) u1(t, x, ϕ)> 0, ∀t> 0, x ∈ Ω and

liminf
t⟶∞

u1(t, x)≥
λ

μS + β/ b
, uniformly forx ∈ Ω, (25)

where λ � min
x∈Ω

λ(x), μS � max
x∈Ω

μS(x).

Proof. It is easy to see that u2-equation satisfies

zu2

zt
≥d2Δu2 − μI + k􏼐 􏼑u2, t> 0, x ∈ Ω,

zu2(t, x)

zn
� 0, t> 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(26)

where μI � max
x∈Ω

μI(x). )en (i) holds directly from the

comparison principle.
Denote by 􏽢u1(t, x, ϕ) the solution of

z􏽢u1

zt
≥d1Δ􏽢u1 + λ(x) − μS(x) +

β
b

􏼠 􏼡􏽢u1,
z􏽢u1(t, x)

zn
� 0, x ∈ zΩ.􏼨

(27)

)en from Lemma 1, and the comparison principle,
u1(t, x,ϕ)≥ 􏽢u1(t, x, ϕ)> 0, ∀t> 0, x ∈ Ω, and last assertion
of (ii) directly follows. )is completes the proof. □

3. Basic Reproduction Number

By setting u2 � 0, it is easy to find that the density of the
susceptible individuals satisfies (19). Equation (14) possesses
a disease-free steady state (DFSS), denoted by (E(x), 0, 0).
Linearizing system (14) at DFSS,

zu2

zt
� d2Δu2 +

β(x)E(x)

1 + a(x)E(x)
− μI(x) − k(x)􏼠 􏼡u2 + r(x)u3, t> 0, x ∈ Ω,

zu3

zt
� d3Δu3 − μR(x) + r(x)( 􏼁u3 + 􏽚

Ω
G(τ, x, y)k(y)u2(t − τ, y)dy, t> 0, x ∈ Ω,

zu2

zn
�

zu3

zn
� 0, t> 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

which is a time-delayed and nonlocal linear system. In this
circumstance, we first consider the following system:
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zu2

zt
� d2Δu2 +

β(x)E(x)

1 + a(x)E(x)
− μI(x) − k(x)􏼠 􏼡u2 + r(x)u3, t> 0, x ∈ Ω,

zu3

zt
� d3Δu3 − μR(x) + r(x)( 􏼁u3 + 􏽚

Ω

G(τ, x, y)k(y)u2(t, y)dy, t> 0, x ∈ Ω,

zu2

zn
�

zu3

zn
� 0, t> 0, ∀x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

)e following nonlocal eigenvalue problem is obtained
by inserting u2 � eλtψ(x) and u3 � eλtψ(x) into (29):

λψ1(x) � d2Δψ1(x) +
β(x)E(x)

1 + a(x)E(x)
− μI(x) − k(x)􏼠 􏼡ψ1(x) + r(x)ψ2(x), x ∈ Ω,

λψ2(x) � d3Δψ2(x) − μR(x) + r(x)( 􏼁ψ2(x) + 􏽚

Ω

G(τ, x, y)k(y)ψ1(y)dy, x ∈ Ω,

zψ1(x)

zn
�

zψ2(x)

zn
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

A direct application of the result in [26] [)eorem 7.6.1]
gives that (30) admits a principal eigenvalue λ(E) equipped
with a positive eigenvector.

We now focus our attention on system (28). For any
ψ ∈ E+/ 0{ }, denote by u(t,ψ), t≥ 0, the solution of (28). )e
following claim is valid.

(i) u2(t,ψ)(x)> 0 and u3(t,ψ)(x)> 0 for all x ∈ Ω and
t> τ.

In fact, if ψ1(0, ·) ≡ 0 or ψ2(0, ·) ≡ 0, we then directly
have

u2(t,ψ)(x)> 0, and u3(t,ψ)(x)> 0, for allx ∈ Ω, t> τ,

(31)

from parabolic maximum principle. If there is some
θ0 ∈ (0, τ) that ψ1(− θ0, ·) ≡ 0, then u3(τ − θ0,ψ) ≡ 0. If
u3(τ − θ0,ψ) ≡ 0, we have
zu3 τ − θ0, x( 􏼁

zt
� 􏽚
Ω

G(τ, x, y)
k(y)u2 − θ0, y( 􏼁

1 + m(y)u2 − θ0, y( 􏼁
dy> 0, ∀x ∈ Ω.

(32)

By u3(t,ψ)≥ 0, t≥ 0, and u3(τ − θ0,ψ)(x) � 0, ∀x ∈ Ω,
which implies that zu3(τ − θ0, x)/zt≤ 0, a contradiction.
)is results in u3(t,ψ)(x)> 0, ∀t> τ − θ0, x ∈ Ω. Similarly,
u2(t,ψ)(x)> 0, ∀t> τ − θ0, x ∈ Ω.

With the help of [30] [)eorem 2.2], we give the result on
the following eigenvalue problem:

λψ1(x) � d2Δψ1(x) +
β(x)E(x)

1 + a(x)E(x)
− μI(x) − k(x)􏼠 􏼡ψ1(x) + r(x)ψ2(x), x ∈ Ω,

λψ2(x) � d3Δψ2(x) − μR(x) + r(x)( 􏼁ψ2(x) + e
− λτ

􏽚
Ω

G(τ, x, y)k(y)ψ1(y)dy, x ∈ Ω,

zψ1(x)

zn
�

zψ2(x)

zn
� 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)
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Lemma 3. Eigenvalue problem (33) has a principal eigen-
value λ(E, τ) with a strongly positive eigenvector. Moreover,
λ(E, τ) has the same sign as λ(E), τ ≥ 0.

Inspired by the standard procedures in [25], we next
define R0 for (14) by the next generation operator approach.

(i) Suppose that both the infective and the recovered
individuals are near DFSS.

(ii) Introduce (ψ2(x),ψ3(x))T as the spatial initial
distribution of the infective and recovered
individuals.

(iii) At time t, denote by S(t)ψ ≔ (T2(t)ψ2, T3(t)ψ3)
T

the remaining distribution of infective and recovered
individuals.

(iv) ∀ψ ∈ Y × Y , let

V(ψ)(x) � V1(ψ)(x), V2(ψ)(x)( 􏼁, x ∈ Ω, (34)

where

V1(ψ)(x) �
β(x)E(x)

1 + a(x)E(x)
ψ2(x) + r(x)ψ3(x), (35)

and

V2(ψ)(x) � 􏽚
Ω

G(τ, x, y)k(y)ψ2(y)dy. (36)

As a result, V(S(t)ψ) is the newly infective and recovered
distribution. Hence, by the general results in [31] (see also in
[31], Lemma 2.2),

L(ψ) ≔ 􏽚
∞

0
V(S(t)ψ)dt � V 􏽚

∞

0
S(t)ψdt􏼒 􏼓, (37)

which is the total infective and recovered distribution, which is
called the next infection operator. /e spectral radius of L is
defined as R0 of (14), i.e.,

R0 ≔ r(L). (38)

/e following observation comes from [31].

Lemma 4. R0 − 1 has the same sign as λ(E) (or λ(U, τ)).
Generally, the above definition of R0 is inconvenient for

an application. For a special case, we compute it when all
parameters are all independent of space variable, that is,

λ(x) ≡ λ, μS(x) ≡ μS, β(x) ≡ β, a(x) ≡ a, b(x) ≡ b,

μI(x) ≡ μI, k(x) ≡ k, r(x) ≡ r, μR(x) ≡ μR, m(x) ≡ m.

(39)

/en (14) reduces to

zu1

zt
� d1Δu1 + λ − μSu1 −

βu1u2

1 + au1 + bu2
, t> 0, x ∈ Ω,

zu2

zt
� d2Δu2 +

βu1u2

1 + au1 + bu2
− μI + k( 􏼁u2 + ru3, t> 0, x ∈ Ω,

zu3

zt
� d3Δu3 − μR + r( 􏼁u3 + 􏽚

Ω
G(τ, x, y)

ku2(t − τ, y)

1 + mu2(t − τ, y)
dy, t> 0, x ∈ Ω,

zu1(t, x)

zn
�

zu2(t, x)

zn
�

zu3(t, x)

zn
� 0, t> 0, x ∈ zΩ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Clearly, system (40) has the disease-free equilibrium
(λ/μS, 0, 0). /e next generation operator [L] of (40) is given
by

[L](ψ) ≔ 􏽚
∞

0
V(S(t)ψ)dt � V 􏽚

∞

0
S(t)ψdt􏼒 􏼓, ψ ∈ Y × Y ,

(41)

where

V �

βU

1 + aU
r

k􏽚
Ω

G(τ, x, y)dy 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (42)

and

S(t)ψ �

􏽚
Ω

G2(t, ·, y)dyψ2

􏽚
Ω

G3(t, ·, y)dyψ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ψ ∈ Y × Y . (43)

Recall that Gi(t, ·, y)(i � 2, 3) are Green functions asso-
ciated with d2Δ − (μI + k) and d3Δ − (μR + r) obeying the
no-flux boundary condition. /en 􏽒ΩG2(t, ·, y)dy � e− (μI+k)t

and 􏽒ΩG3(t, ·, y)dy � e− (μR+r)t. For any s> 0, we get

􏽚
Ω

G(s, x, y)dy � e
− μR+r( )s

. (44)

/en the next infection operator defined by (41) becomes
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[L]

ψ2

ψ3

⎛⎝ ⎞⎠ �

βU

1 + aU
r

ke− μR+r( )τ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
μI + k

0

0
1

μR + r

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ2

ψ3

⎛⎝ ⎞⎠

�

βU

μI + k( 􏼁(1 + aU)

r

μR + r

ke− μR+r( )τ

μI + k
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ2

ψ3

⎛⎝ ⎞⎠.

(45)

It follows that

R0􏼂 􏼃 �
βU

2 μI + k( 􏼁(1 + aU)
+

��������������������������������

β2U2

4 μI + k( 􏼁
2
(1 + aU)

2 +
kre− μR+r( )τ

μI + k( 􏼁 μR + r( 􏼁

􏽶
􏽴

. (46)

4. Threshold Dynamics

Theorem 2. For any u0 � ϕ ∈ C+, denote by u(t, x, ϕ) the
solution of (14). /e DFSS is globally attractive provided that
R0 < 1.

Proof. From Lemma 4, we know that λ(E)< 0. Due to

lim
ε⟶0

λ(E + ε) � λ(E)< 0, (47)

we can choose ε0 > 0 where λ(E + ε0)< 0. Fixing ε0 > 0, by
Lemma 1, and choosing t0 � t0(ϕ) as u1 ≤E(x) + ε0, ∀t≥ t0,
x ∈ Ω. It follows that

zu2

zt
≤ d2Δu2 +

β(x) E(x) + ε0( 􏼁

1 + a(x) E(x) + ε0( 􏼁
− μI(x) − k(x)􏼠 􏼡u2 + r(x)u3, t≥ t0, x ∈ Ω,

zu3

zt
≤ d3Δu3 − μR(x) + r(x)( 􏼁u3 + 􏽚

Ω
G(τ, x, y)k(y)u2(t − τ, y)dy t≥ t0, x ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(48)

From Lemma 3, let ψ0 be the strongly positive eigen-
function to λ(E + ε0, τ)< 0. Hence the linear system

zv1

zt
� d2Δv1 +

β(x) E(x) + ε0( 􏼁

1 + a(x) E(x) + ε0( 􏼁
− μI(x) − k(x)􏼠 􏼡v1 + r(x)v2, t> 0, x ∈ Ω,

zv2

zt
� d3Δv2 − μR(x) + r(x)( 􏼁v2 + 􏽚

Ω
G(τ, x, y)k(y)v1(t − τ, y)dy, t> 0, x ∈ Ω,

zv1(t, x)

zn
�

zv2(t, x)

zn
� 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

has a solution v(t, ·) � eλ(E+ε0 ,τ)tψ0(·). Choose α> 0 large
enough that

u2(t, ·, ϕ), u3(t, ·, ϕ)( 􏼁
T ≤ αv(t, ·), ∀t ∈ t0 − τ, t0􏼂 􏼃. (50)

From the comparison principle, we directly have

Complexity 9



u2(t, ·, ϕ), u3(t, ·, ϕ)( 􏼁
T ≤ αe

λ E+ε0 ,τ( )tψ0(·), ∀t≥ t0, (51)

which implies that

lim
t⟶∞

u2(t, x,ϕ), u3(t, x, ϕ)( 􏼁 � (0, 0), uniformly forx ∈ Ω.

(52)

Consequently, u1-equation is asymptotic to (19). From
the standard arguments for asymptotically autonomous
semiflows (we refer to [32] [Corollary 4.3]),
limt⟶∞u1(t, x, ϕ) � E(x). )is proves )eorem 2. □

Theorem 3. For each u0 � ϕ ∈ C+, denote by u(t, x, ϕ) the
solution of (14). If R0 > 1 and ϕi(0, ·) ≡ 0 for i � 2, 3, then
there is sufficiently small η> 0 that

lim inf
t⟶∞
Γ(t, x)≥ η, uniformly forx ∈ Ω, (53)

where Γ � u1, u2, u3, respectively. Further, (14) possesses at
least one PSS u∗(x) � (u∗1(x), u∗2(x), u∗3(x)).

Proof. From Lemma 3, we get λ(U, τ)> 0. Define

W0 � ϕ ∈ C
+
: ϕ2(0, ·) ≡ 0 andϕ3(0, ·) ≡ 0􏼈 􏼉, (54)

and

zW0 �
C

+

W0
� ϕ ∈ C

+
: ϕ2(0, ·) ≡ 0 orϕ3(0, ·) ≡ 0􏼈 􏼉. (55)

In these settings, Lemma 2 tells us that u2(t, x, ϕ)> 0 and
u3(t, x,ϕ)> 0,∀x ∈ Ω, t> 0; that is, Φ(t)W0 ⊂ W0. Define

Mz ≔ ϕ ∈ zW0: Φ(t)ϕ ∈ zW0, t≥ 0􏼈 􏼉. (56)

In what follows, we prove two claims. □

Claim 1. ω(ψ) � DFSS{ },∀ψ ∈Mz, where ω(ϕ) is the
omega limit set of the orbit Φ(t)ϕ: ∀t≥ 0.

In fact, for each ψ ∈Mz,Φ(t)ψ ∈zW0, ∀t≥ 0. Obviously,
for each t≥ 0, either u2(t, ·,ψ) ≡ 0 or u3(t, ·,ψ) ≡ 0. We next
confirm the claim in two cases. If u2(t, ·,ψ) ≡ 0 for all t≥ 0,
from Lemma 1, we directly have limt⟶∞u1(t, x,ψ) � E(x).
As to u3-equation, it gives that limt⟶∞u3(t, x,ψ) � 0. If
u2(t0, ·,ψ) ≡ 0 for some t0 ≥ 0, then u2(t, x,ψ)> 0,∀t
> t0, x ∈ Ω (from Lemma 2). Hence, u3(t, ·,ψ) ≡ 0,∀t≥ t0.
)en from u2-equation of (14), we get
limt⟶∞u2(t, x,ψ) � 0. Consequently, with the help of the
standard arguments of asymptotically autonomous semi-
flows, u1 satisfies limt⟶∞u1(t, x,ψ) � E(x).

Claim 2. limsupt⟶∞‖Φ(t)(ϕ) − DFSS‖≥ δ0, for all ϕ ∈W0.
We will prove this claim by way of contradiction. If

limsupt⟶∞‖Φ(t)(ϕ0) − DFSS‖< δ0 for some ϕ0 ∈ W0, we
can choose large enough t∗ > 0 as u1(t, ·, ϕ0)>E(x) − δ0 and
u2(t, ·, ϕ0)< δ0,∀t> t∗, x ∈ Ω. Hence, we have

zu2

zt
≥d2(t, x)Δu2 +

β(x) E(x) − δ0( 􏼁

1 + a(x) E(x) − δ0( 􏼁 + b(x)δ0
− μI(x) − k(x)􏼠 􏼡u2 + r(x)u3,

zu3

zt
≥d3Δu3 − μR(x) + r(x)( 􏼁u3 + 􏽚

Ω
G2(τ, x, y)

k(y)u2(t − τ, y)

1 + m(y)δ0
dy,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(57)

for ∀t> t∗, x ∈ Ω. Denote by φ0 the positive eigenvector to
λ(E − δ0, τ). )en system

zv1
zt

� d2Δv1 +
β(x) E(x) − δ0( 􏼁

1 + a(x) E(x) − δ0( 􏼁 + b(x)δ0
− μI(x) − k(x)􏼠 􏼡v1 + r(x)v2,

zv2
zt

� d3Δv2 − μR(x) + r(x)( 􏼁v2 + 􏽚
Ω

G2(τ, x, y)
k(y)v1(t − τ, y)

1 + m(y)δ0
dy,

zv1(t, x)

zn
�

zv2(t, x)

zn
� 0, x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(58)
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possesses the solution v(t, ·) � eλ(U− δ0 ,τ)tφ0(·). Since
u2(t, x, ϕ0)≫ 0 and u3(t, x, ϕ0)≫ 0, we can choose small
enough ξ > 0 that

u2 t, ·, ϕ0( 􏼁, u3 t, ·, ϕ0( 􏼁( 􏼁
T ≥ ξv(t, x), ∀t ∈ t1 − τ, t1􏼂 􏼃, x ∈ Ω.

(59)

By (57), together with the comparison principle, we
directly obtain

u2 t, ·, ϕ0( 􏼁, u3 t, ·, ϕ0( 􏼁( 􏼁
T ≥ ξe

λ E− δ0,τ( )tφ0(·), ∀t> t1, x ∈ Ω.

(60)

By choosing a small enough δ0 that λ(U − δ0, τ)> 0, it
implies that u2(t, ·, ϕ0) and u3(t, ·, ϕ0) are unbounded, a
contradiction. )is proves Claim 2.

Let D(·): C+⟶ R+ be a generalized distance function
defined by

D(ϕ) � min min
x∈Ω

ϕ2(0, x),min
x∈Ω

ϕ3(0, x)􏼨 􏼩, ∀ϕ ∈ C
+
.

(61)

Clearly, D− 1(0,∞) ⊂ W0. By Lemma 2, D(·) enjoy the
property that if D(ϕ) � 0 and ϕ ∈ W0 or D(ϕ)> 0, then
D(Φ(t)ϕ)> 0 for all t> 0 (see [33]). Notice that any forward
semiflow of Φ(t) in Mz converges to DFSS, and DFSS is
isolated in C+ with Ws(DFSS)∩W0 � 0. Here Ws(DFSS)

represents the stable set of DFSS. Moreover, no cycle is
formed in Mz from DFSS to DFSS. In summary, by [19]
[)eorem 2.3], we arrive at the conclusion that, for any
ϕ ∈W0, choosing η> 0 small enough can give
min D(ψ): ψ ∈ ω(ϕ)􏼈 􏼉> η. Hence,

lim inf
t⟶∞

u2(t, ·)≥ η, lim inf
t⟶∞

u3(t, ·)≥ η, ∀x ∈ Ω. (62)

On the other hand, from Lemma 2 and letting η small
enough, we obtain that liminf t⟶∞u1(t, x)≥ η,∀x ∈ Ω. )is
proves the first part of )eorem 3.

By [34] [)eorem 3.7 and Remark 3.10],Φ(t): W0⟶W0
has a global compact attractor. Further from [34] [)eorem 4.7],
the semiflowΦ(t) admits a PSS u∗(x) ∈ W0. Lemma 2 ensures
that u∗(x) is a strictly PSS of (14).

5. Simulations

In this section, we mainly focus on the effects of the spatial
heterogeneity and the diffusion rates of individuals on the
disease dynamics. For simplicity, we assume that Ω � (0, 1).
Let dS � 0.3, dI � 0.1, dR � 0.2, τ � 0.4, λ(x) � 5,
μS(x) � 0.01, μI(x) � 0.05, μR(x) � 0.15, r(x) � 0.2,
a(x) � 1, b(x) � 1, m(x) � 0.1, β(x) � 0.15 × (1+

0.5 cos(2πx)), k(x) � 0.1 × (1 + 0.2 sin(2πx)). )en R0 �

1.2644 and the disease is persistent (see Figure 1(a) with
initial values S(t, x) � 20 × (1 + 0.2 sin(2πx)), I(t, x) �

5 × (1 + 0.5 sin(2πx)), Rr(t, x) � 10 × (1 + 0.2 cos(2πx))

for (t, x) ∈ [− τ, 0] × (0, 1)). Assume that β(x) � 0.09 × (1
+0.5 cos(2πx)), I(t, x) � 100 × (1 + 0.5 sin (2πx)) for
(t, x) ∈ [− τ, 0] × (0, 1)), and other parameters and initial
values are the same as those in Figure 1(a); thenR0 � 0.9496
and the disease is extinct (see Figure 1(b)).

Now, we show the influence of diffusion rate on R0 and
the number of infected individuals. Let
β(x) � 0.45 × (1 + 0.5 cos(2πx)), k(x) � 0.3 × (1 + 0.2
sin(2πx)), and let other parameters be the same as those in
Figure 1 except for dI; it is shown that R0 decreases as dI

increases (see Figure 2(a)). Furthermore, let β(x) � 0.27 ×

(1 + 0.5 cos(2πx)) and other parameters be the same as
those in Figure 1 except for dI; we find that the number of
infected individuals I(t, x) at steady state also decreases as dI

increases (see Figure 2(b) with the same initial values as
those in Figure 1).

Next, we show the influence of spatial heterogeneity
on R0. Let β(x) � 0.45 × (1 + 0.5 sin(2πx)), and let other
parameters be the same as those in Figure 1 except for
k(x); then R0 is nonincreasing as the heterogeneity
parameter c of k(x) increases (see Figure 3(a) with
k(x) � 0.3 × (1 + 0.8c sin(2πx))). However, if we take
β(x) � 0.45 × (1 + 0.5 cos(2πx)) and let other parameters
be the same as those in Figure 3(a), then R0 is nonde-
creasing as the heterogeneity parameter c of k(x) in-
creases (see Figure 3(b) with k(x) � 0.3 × (1
+0.8c sin(2πx))). )erefore, the effects of the spatial
heterogeneity may be dependent on the actual
environment.
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Figure 1: )e time evolution of the densities of I(t, x) for different R0. (a)R0 > 1; (b)R0 < 1.
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6. Conclusion and Discussion

)is paper performs a complete analysis on the threshold-
type dynamics of a diffusive herpes model, like in [10] where
the spatial movement of mosquitoes in EIP will result in
nonlocal infection. Here we introduce a relapse age to be a
continuous variable and nonlinear recovery rate. We con-
ducted a complete analysis of model (14) by adopting a fixed
relapse period, which can be regarded as a continuous work
of [10]. In )eorem 1, we confirmed that (14) admits a
unique solution u(t, ϕ) on [0,∞). Consequently, the so-
lution semiflow generated by the solution of (14) possesses a
global attractor in C+. By using the next generation operator
approach, we characterizeR0 as its spectral radius. To build
up the relation between R0 and the principle eigenvalue of
associated eigenvalue problem, we establish the relation
between the principle eigenvalue of (30) and the principle
eigenvalue of (33). To proceed further, we consider the

special case where parameters are all independent of x and
calculate R0 explicitly. By utilizing the principal eigenvalue
of the associated eigenvalue problem or equivalently by R0,
we establish the threshold-type dynamics of the model in the
sense that the DFSS is globally attractive provided that
R0 < 1, while if R0 > 1, system (14) is uniformly persistent
and (14) possesses at least one PSS
u∗(x) � (u∗1(x), u∗2(x), u∗3(x)). )is threshold-type result
implies that, under the changing of the sign of R0 − 1, the
herpes will be extinct or close to the epidemic value. From
the explicit expression of [R0] in (46), we know that it is
closely related to the parameters. Compared to R0 defined
by the spectral radius of next generation operator, it is a
challenging to analyze the impact of parameters onR0, if it is
not impossible. On the other hand, R0 is related to the
principal eigenvalue of an elliptic system with two infected
components, which makes the analysis more difficult. We
perform the numerical simulations to verify the theoretical
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Figure 2: )e influence of diffusion rate on infected individuals. (a)dI � 0.1c. (b) )e evolution of I(t, x).
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Figure 3: )e influence of spatial heterogeneity on R0 with k(x) � 0.3 × (1 + 0.8c sin(2πx)). (a) β(x) � 0.45 × (1 + 0.5 sin(2πx));
(b) β(x) � 0.45 × (1 + 0.5 cos(2πx)).
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results and study the effect of the spatial heterogeneity in
one-dimensional space Ω � (0, 1). )reshold-type results
are illustrated in Figure 1. In Figure 2, we can see the in-
fluence of diffusion rate on R0 and the number of infected
individuals. Specifically, R0 decreases as dI increases (see
Figure 2(a)) and the number of infected individuals I(t, x) at
steady state also decreases as dI increases (see Figure 2(b)).
Figure 3 demonstrates the influence of spatial heterogeneity
on R0. We found that, with different β(x), R0 is nonin-
creasing or nondecreasing in terms of k(x). )erefore, the
effects of the spatial heterogeneity may be dependent on the
actual environment.
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