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In this research work, generalized thermal and mass transports for the unsteady flow model of an incompressible differential type
fluid are considered. *e Caputo–Fabrizio fractional derivative is used for the respective generalization of Fourier’s and Fick’s
laws. A MHD fluid flow is considered near a flat vertical surface subject to unsteady mechanical, thermal, and mass conditions at
boundary. *e governing equations of flow model are solved by integral transform, and closed form results for generalized
momentum, thermal, and concentration fields are obtained. Generalized thermal and mass fluxes at boundary are quantified in
terms of Nusselt and Sherwood numbers, respectively, and presented in tabular form. *e significance of the physical parameters
over the momentum, thermal, and concentration profiles is characterized by sketching the graphs.

1. Introduction

Fractional calculus has been expanding rapidly in the
present time for the sake of its applications in the modeling
and physical explanation of natural phenomenon. *e
noninteger derivatives of fractional order have been applied
successfully to the generalization of fundamental laws of
nature specially in the transport phenomenon.

Several approaches [1–4] of fractional derivatives have
been proposed and utilized for the different proposes by
many theorists from different fields of sciences and tech-
nology [5]. Imran et al. [6] considered two different ap-
proaches of fractional differential operators for the flow of
MHD Newtonian fluid under the arbitrary boundary con-
ditions, namely, Atangana and Caputo–Fabrizio. Kumar
et al. [7] explained the Cauchy reaction diffusion equations
by fractional calculus. Qureshi et al. [8] applied the fractional
derivative to model a blood flow and discussed the con-
centration level of ethanol in blood circulation system.

Hristov [9] considered a steady-state heat conduction and
obtained analytical solutions by applying the Capu-
to–Fabrizio approach of fractional derivative. Imran et al.
[10, 11] considered the Caputo time fractional derivative to
discuss the slippage flow over an exponentially accelerated
plate and for the flow of differential fluid past stationary
heated vertical plate. Ahmad et al. [12] compared two flow
models, one with the power law kernel and the other with the
nonsingular kernel. Khalid et al. [13] obtained the results for
flow of micropolar fluid and applied the fractional derivative
for heat and mass transport. Shukla et al. [14] presented a
report regarding applications of fractional calculus. Kumar
et al. [15] explored the results for free convectional motion
with a uniform temperature through a porous media by
utilizing the power, exponential, and Mittag–Leffler kernels
of fractional operator. Singh et al. [16] constructed the
dynamic fractional model to explain the smoking dynamics.
Sun et al. [17] presented a collection of real world appli-
cations of fractional differential operators. Nazar et al. [18]
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discussed the double convectional flow via two approaches
of noninteger operators and compared the obtained results
of thermal, mass, and momentum profiles. Gomez et al. [19]
solved fractional diffusion-advection equation and obtained
the analytical solution for supper diffusion. Tran et al. [20]
discussed the stabilities of fractional differential equation.
Recently, Tuan et al. [21] endorsed the fractional calculus to
demonstrate the transition model of COVID-19. Hristov
et al. [22] applied the mixed time-space derivative to obtain
the result for transient flow of non-Newtonian fluid. Saqib
et al. [23], Haq et al. [24], and Imran et al. [25] utilized the
fractional differential operator with the nonsingular kernel
to obtain the fractional result for the flow of Jeffery, and
second grade fluids. Some more investigations regarding
Caputo–Fabrizio fractional derivatives are found in [26–28].

Hristov et al. [29] suggested the generalized transient
thermal transport with damping contribution, by consid-
ering the Caputo–Fabrizio idea of nonsingular kernel.
Aleem et al. [30], Sheikh et al. [31] and Ahmad et al. [32]
followed the track suggested in [29] and applied it to de-
scribe the generalized heat and mass transfer flow. In light of
the above motivational investigations, we are interested in
discussing the generalized thermal and mass transports with

heat generation and chemical reaction for the flow of second
grade fluid through a porous media, with the existence of a
magnetic field.

2. Mathematical Formulation

Suppose that the second grade fluid is lying in the vicinity of
a vertical plate with ambient temperature T∞ and con-
centration level C∞. *e orientation of the plate in the
coordinate system is placed with y-axis becoming normal to
the plane of plate as shown in Figure 1. Initially, the physical
system containing boundaries and fluid is in complete
equilibrium. Suddenly, plate starts moving with velocity
U0f(t); at this moment, the temperature of plate and the
concentration level near the plate rise or fall according to
T∞ + (Tw − T∞)g(t) and C∞ + (Tw − C∞)h(t), respec-
tively, where f(·), g(·), and h(·) are arbitrary functions and
satisfy f(0) � 0, g(0) � 0, and h(0) � 0, respectively. *e
contribution of Lorentz force is also applied for the flow of
fluid. Moreover, the induced magnetic field and heat dis-
sipation are small and can be negligible. Subject to Bous-
sinesq’s approximation, the governing equations of
respective flow take the following form [29, 30]:
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Initial and boundary conditions:

u � 0, T � T∞, C � C∞, at t � 0, and, y ∈ [0,∞), (4)

u � U0f(t),

T � T∞ + Tw − T∞( g(t),

C � C∞ + Tw − C∞( h(t), y � 0, t> 0,

(5)

u⟶ 0, T⟶ T∞, C⟶ C∞, asy⟶∞, t> 0. (6)

3. Generalized Model

*e thermal balance with heat generation is expressed as
follows:
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and the generalized thermal flux with damping effect [29, 30]
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where CFD
α
t is the fractional differential operator suggested

by Caputo–Fabrizio. *e constant h1 and h2 are the effective
heat conduction and elastic conduction parameters,
respectively.

From equation (8), it is clear that, for α � 1, the classical
thermal flux is recovered. Similarly, the molecular balance
with chemical reaction is expressed as
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and the generalized Fick’s Law with damping effect [29, 30]
is
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where D1 and D2 are the effective mass diffusion and the
elastic diffusion, respectively.

Introduce the relations

υ �
u
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,
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yU0

]
,
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2
0

]
,
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,

(11)

in equations (1), (4)–(6), and (7)–(10), to get the shape free
model.

*e momentum balance takes the following form:
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Dimensionless thermal balance is
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Figure 1: Flow geometry and coordinate system.
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Dimensionless diffusion equation is

zψ(η, τ)

zt
�

1
Sc1

z
2ψ(η, τ)

zη2
+

1
Sc2

CF
D

α
t (1 − α)

z
2ψ(η, τ)

zη2
+ K0ψ(η, τ). (14)

And the corresponding initial and boundary conditions are

υ(η, 0) � 0,φ(η, 0) � 0,ψ(η, 0) � 0, η> 0, (15)

υ(0, τ) � f(τ),φ(0, τ) � g(τ),ψ(0, τ) � h(τ), τ > 0,

(16)

υ(η, τ)⟶ 0,φ(η, τ)⟶ 0,ψ(η, τ)⟶ 0, as η⟶ 0,

(17)

where α2 � (α1U2
0/]) is the dimensionless second grade

parameter, Gm � ((gβC(Cw − C∞))/U3
0) is the mass Gra-

shof number, Gr � ((gβT(Tw − T∞))/U3
0) is the thermal

Grashof number, M � (]σ/(ρU2
0)) is the magnetic param-

eter, (1/K) � (]2ϕ/(K1U
2
0)) is the porosity parameter, Pr1 �

(μCp/h1) and Pr2 � (μCp/h2) are Prandtl numbers, Sc1 �

(]/D1) and Sc2 � (]/D2) are Schmidt numbers,
Q0 � (Q]/(ρCpU2

0)) is the heat generation parameter, and
K0 � (Kr]/U2

0) is the chemical reaction parameter.

4. Solution of the Problem

*e solution of generalized model is obtained by endorsing
the Laplace transform.

4.1. Generalized Temperature Field. Endorsing the Laplace
transform to equation (16), an ordinary differential equation
is obtained as
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with the following transformed boundary conditions:

φ(η, q) � G(q), and φ(η, q)⟶ 0, as η⟶∞. (19)

Equation (18) is solved with conditions (19), and its
solution is expressed as

φ(η, q) � G(q)exp −η
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⎛⎝ ⎞⎠, (20)

where a0 � (α/(1 − α)), a1 � ((Pr1 + Pr2)/Pr1Pr2), and
a2 � (a0Pr2/(Pr1 + Pr2)).

Equation (20) is complicated, and it is not possible to
invert the temperature field in t-domain by ordinary formula
of Laplace inverse. *erefore, the inversion algorithms,
namely, Stehfest and Tzou, are utilized to invert the
transformed temperature profile, and the obtained results
are presented in Figure 2(a) for g(t) � 1.

4.2. Generalized Concentration Field. Again endorsing the
Laplace transform to equation (14), an ordinary differential
equation is obtained as
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1
Sc1

z
2ψ(η, s)

zη2
+

1
Sc2

(1 − α)
q

q(1 − α) + α
 

z
2ψ(η, q)

zη2
+ K0ψ(η, q), (21)

ψ(η, q) � H(q), and ψ(η, q)⟶ 0, as η⟶∞. (22)

Equation (21) is solved with conditions (22), and its
solution is expressed as

ψ(η, q) � H(q)exp −η

��������������
q − a0(  q − K0( 

b1 q + b2( 



⎛⎝ ⎞⎠, (23)

where b1 � ((Sc1 + Sc2)/Sc1Sc2) and
b2 � (b0Sc2/(Sc1 + Sc2)).

Equation (23) is complicated, and it is not possible to
invert the temperature field in t-domain by ordinary formula
of Laplace inverse. *erefore, the inversion algorithms are
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utilized to obtain the temperature profile for h(t) � 1, and
the obtained results are presented in Figure 2(b).

4.3. Velocity Field with Generalized :ermal and Mass
Transport. Equation (13) is converted to an ordinary dif-
ferential equation via Laplace transform as

1 + α2q( 
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1
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with corresponding transformed boundary conditions

υ(0, q) � F(q), and υ(η, q)⟶ 0 as η⟶∞. (25)

Equation (24), subject to condition (25), is solved for
velocity field in q-domain as follows:
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(26)
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Figure 2: Profiles of inverted temperature and concentration with Stehfest’s and Tzou’s algorithms for (a) g(t) � 1 and (b) h(t) � 1.
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where α3 � (1/α2) and M0 � M + (1/K). Equation (26) is
also complex, and it is inverted in t-domain with the help of
inversion algorithms. *e inverse Laplace of velocity for
f(t) � 1, and f(t) � t is demonstrated in Figures 3(a) and
3(b).

5. Results and Parametric Discussion

*is article is designed for the analysis of generalized
thermal and mass transport flow of differential type fluid
under generalized boundary conditions. *e effects of
magnetic field, heat source, and chemical reaction are also
considered for flow model. *e respective governing
equations of flow model are solved analytically via integral
transform method, and closed form expressions for field
variables are attained.

*e effects of potent parameters are also discussed
graphically by plotting some graphs of for variation of
appeared parameters. Figures 4(a) and 4(b) are sketched to
explain the effect of fractional parameter α and Pr over the
temperature profile, and it is noted that the temperature of
fluid is raised with the developing values of α. Also, it is
detected that the temperature falls down with the increasing
values of Pr, because the fluid is thick, and momentum
diffusivity is dominant to the thermal diffusivity for the
greater Pr; therefore, fluid velocity slows down for increasing
Pr. Figure 4(c) is drawn for three specification of g(t), and it

is noted that temperature profiles satisfy the boundary
conditions.

In Figure 5, the subjectivity of concentration is explained
for variations of α, Sc, and three specification for the g(t).
*e same behavior of concentration is seen for respective
parameters as seen in temperature profiles.

Velocity profile is outlined in Figure 6(a) due variation of
fractional parameters α. *e figure pattern shows that the
fluid gains more and more momentum as α tends to in-
crease. *e influence of Pr and Sc is signified in Figures 6(b)
and 6(c). As Pr and Sc are quantified by the ratios of mo-
mentum diffusivity to thermal diffusivity and molecular
diffusion coefficients, respectively, and for enhancing values
of Pr and Sc referred to as the dominant momentum dif-
fusivity, the fluid slows down for developing values of Pr and
Sc.

Figure 7(a) is drawn to see the significance role of Gr for
supporting the flow, and it is noted that the speed of fluid is
elevated for developing values of Gr. As Gr is quantified by
relative buoyancy force induced by the variations in tem-
perature differences to the retarding force generates by the
virtue of viscosity of the fluid, hence, for larger values of Gr,
there is more convectional current, so fluid speeds up. *e
effects of thermal generation parameter Q0, and chemical
reaction parameters K0 are discussed in Figures 7(b) and
7(c), and it is concluded that velocity profiles rise for en-
hancing values of Q0 and K0.
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Figure 3: Profile of inverted velocity with Stehfest’s and Tzou’s algorithms for (a) f(t) � 1 and (b) f(t) � t.
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*e subjectivity of magnetic parameter M is high-
lighted in Figure 8(a) and from this figure, it is seen that
profile lowers down for increasing values of M, because
strong magnetic field creates more hindrance to the flow
of fluid. Figure 8(b) shows the effect of K and it is seen
that fluid speeds up with the increasing values of K. *e
increasing values of K refer to the decreasing effect of
porosity, and hence, fluid velocity increases with the
enhancing values of K. Figure 8(c) is plotted for three
specifications of f(t); from the profiles, it is clear that
velocity profiles satisfy the boundary conditions for

different f(t). *e present results for velocity and
temperature are also compared with the existing results
obtained by Sheh et al. [27] in Figures 9(a) and 9(b).
*e overlapping profiles confirm the validity of our
results.

Further, heat and mass transfer at plate is discussed
numerically in terms of Nusselt and Sherwood numbers, and
results are presented in Tables 1 and 2. From these tables, it is
clear that both Nusselt and Sherwood numbers are grown
with elevating fractional parameter α for small time, while
there is an opposite behavior for large time.
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Figure 5: Sketch concentration profile for changing α, Sc, and h(t).
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Figure 7: Sketch velocity profile for changing Gr, Q0, and K0.
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6. Conclusion

*is investigation is designed to discuss the generalized thermal
and mass transports and flow modeling for MHD second grade
fluid subject to arbitrary conditions with the effect of heat

generation and chemical reaction through a porous medium.
*emathematicalmodel is solved by integral transformmethod,
and closed form relations for temperature, concentrations, and
velocity fields are obtained.*e effects of parameters for thermal
andmass flow are discussed graphically. Also, thermal andmass

Table 1: Subjectivity of Nusselt number due to α variation.

α Pr� 2.0, t� 0.05 Pr� 2.0, t� 0.5 Pr� 2.0, t� 0.3 Q0 � 0.3, t� 0.05 Q0 � 0.3, t� 0.5 Q0 � 0.3, t� 3

0.1 1.28534684 1.63362404 1.58760351 1.366943741 0.367330281 0.10095136
0.2 2.01663381 1.76776695 1.08576315 1.895117488 0.458735913 0.10663781
0.3 2.93972368 1.91324675 0.83412160 2.748208635 0.543071730 0.09371372
0.4 4.47358865 2.34431009 0.48029944 3.249259012 0.680603872 0.08409179
0.5 5.49971941 2.70030862 0.27597129 3.593811291 0.898429253 0.07035624
0.6 6.28539361 3.23449479 0.10950250 3.849001709 1.022261776 0.04743416
0.7 6.92269321 3.67387267 0.07443112 4.046919659 1.143305599 0.03609199
0.8 7.45715981 4.05046294 0.04832345 4.205461089 1.246011475 0.10366066
0.9 7.91544825 4.38137291 0.03367067 4.335584398 1.335201230 0.11544229
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(b)

Figure 9: Sketch of velocity profile [f(t) � H(t)exp(iwt), g(t) � 1, Gm � 0] a comparison with Shah et al. [27].

Table 2: Subjectivity of Sherwood number due to α variation.

α Sc� 1.5, t� 0.05 Sc� 1.5, t� 0 .5 Sc� 1.5, t� 3 K0 � 0.5, t� 0.05 K0 � 0.5, t� 0.5 K0 � 0.5, t� 3

0.1 1.36694374 1.07412976 0.21908902 1.16694374 1.35433928 0.21095136
0.2 1.89511748 1.17645846 0.30983867 1.22263165 1.42893593 0.20663781
0.3 2.74820863 1.81147383 0.43817805 2.45807253 1.54357105 0.20371372
0.4 3.59381129 2.18028761 0.48989795 2.90622561 1.90603035 0.15091079
0.5 3.59381129 2.43499766 0.57965507 3.21440254 2.50425241 0.11935624
0.6 3.84900179 2.62480001 0.61967734 3.44265186 2.64561232 0.10743416
0.7 4.04691969 2.77288204 0.72663608 3.61967501 2.74330559 0.08609199
0.8 4.20546109 2.89214374 0.81975606 3.76147875 2.94601147 0.01366066
0.9 4.33558438 2.99049848 0.90332718 3.87786456 3.00220123 0.00544229
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fluxes at boundary of flow domain are explained numerically for
the due variation of α, and obtained results are given in the
tabular form.

Some concluded bullets of this study are as follows:

(i) Temperature of the fluid is raised with incremental
variation of α and Q0, while it falls for the incre-
mental variation of both Pr1 and Pr2

(ii) *e thermal boundary conditions are also satisfied
by temperature for different specifications of g(t)

(iii) *e concentration level of the fluid is raised with
incremental variation of α and K0, whereas the level
falls for the incremental variation of both Sc1 and
Sc2

(iv) *e concentration boundary conditions are also
satisfied by the concentration for different speci-
fication of h(t)

(v) Velocity profile shows a growing trend for incre-
mental increase in the values of α, Gr, Gm, Q0, K0,
and K where as it retards for developing Pr1 Pr2,
Sc1, Sc2, and M

(vi) *e Nusselt number is boosted with the increasing
values of α by taking large values of time, while it
falls down with the increasing α for small time

(vii) *e Sherwood number grows with the increasing
values of α, for the large values of time, while it falls
down with the increasing α for small time
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