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+is research compares factor models based on principal component analysis (PCA) and partial least squares (PLS) with
Autometrics, elastic smoothly clipped absolute deviation (E-SCAD), and minimax concave penalty (MCP) under different
simulated schemes like multicollinearity, heteroscedasticity, and autocorrelation. +e comparison is made with varying sample
size and covariates. We found that in the presence of low and moderate multicollinearity, MCP often produces superior forecasts
in contrast to small sample case, whereas E-SCAD remains better. In the case of highmulticollinearity, the PLS-based factor model
remained dominant, but asymptotically the prediction accuracy of E-SCAD significantly enhances compared to other methods.
Under heteroscedasticity, MCP performs very well and most of the time beats the rival methods. In some circumstances under
large samples, Autometrics provides a similar forecast as MCP. In the presence of low and moderate autocorrelation, MCP shows
outstanding forecasting performance except for the small sample case, whereas E-SCAD produces a remarkable forecast. In the
case of extreme autocorrelation, E-SCAD outperforms the rival techniques under both the small and medium samples, but further
augmentation in sample size enables MCP forecast more accurate comparatively. To compare the predictive ability of all methods,
we split the data into two halves (i.e., data over 1973–2007 as training data and data over 2008–2020 as testing data). Based on the
root mean square error and mean absolute error, the PLS-based factor model outperforms the competitor models in terms of
forecasting performance.

1. Introduction

+e prediction of macroeconomic variables is very important
under macroeconomic studies, monetary policy analysis, and
environmental economics. Accurate forecasts induce sound
insights into mechanisms of dynamic economies [1], more
effective monetary policies [2], and better portfolio man-
agement and hedging strategies [3]. In the data-rich envi-
ronment existing these days, many macroeconomic series are
tracked by economists and decision-makers.

Low-dimensional models often include some pre-
specified economic covariates for instance vector

autoregression and therefore have a complication in cap-
turing the dynamic and complex patterns, which contain
huge panels of time series [4]. It is a fact that missing im-
portant variable(s) leads to an underspecified model, in-
ducing biased results. +ere is an intense need to propose
updated statistical models and analysis frameworks with the
purpose of expanding the low-dimensional counterparts for
improved forecasts. +us, in the recent era, the analysis of
“Big Data” has become the core of economics research. +is
in turn has resulted in special attention being paid to the
huge class of techniques that are available in the domain of
machine learning, dimension reduction, and penalized
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regression [5, 6]. Recently, in the regression context,
Doornik and Hendry [7] categorized Big Data into three
classes: tall big data, huge big data, and fat big data. Each type
can be defined as follows:

(i) Tall big data: more observations and several cova-
riates (N>>P)

(ii) Huge big data: more observations and more cova-
riates (N>P)

(iii) Fat big data: fewer observations andmore covariates
(N<P)

where N and P represent the number of observations and
covariates, respectively. We graphically represent the Big
Data in Figure 1.

+ere are many related studies on macroeconomic
forecasting based on factor models and machine learning
techniques. In the last two decades, forecasting studies using
large-scale datasets and pseudo-out-of-sample forecast in-
corporate those by Artis et al. [8]; Boivin and Ng [9, 10];
Forni et al. [11]; Armah and Swanson [12, 13]; Stock and
Watson [14–18]; Varian [5]; Kim and Swanson [19, 20];
Castle et al. [21, 22]; Luciani [23]; Kristensen [24]; Swanson
and Xiong [6, 25]; Tu and Lee [26]; Swanson et al. [27];
Maehashi and Shintani [28]; Kim and Ko [29]; Kim et al.
[30]; Abdić et al. [31]; and and Kim and Shi [32].

Moreover, Stock and Watson [17] elaborately discussed
the past studies on the utility of factor models forecasting.
+ere is an intensive and growing body of literature in this
area. Few of them are relevant, as they address both theo-
retical and empirical problems, including Armah and
Swanson [12, 13]; Artis et al. [8]; Bai and Ng [1, 33, 34],
Banerjee and Marcellino [35]; Boivin and Ng [9, 10], Ding
and Hwang [36]; Dufour and Stevanovic [37]; Stock and
Watson [15–18]; and Smeekes and Wijler [38].

+e abovementioned papers consider principal com-
ponent analysis, independent component analysis, and
sparse principal component analysis for the construction of
the factor model. However, there is also a small and growing
body of literature investigating the classical approach
(Autometrics) in the context of macroeconomic forecasting
[7, 21, 22]. We failed to discover any paper to date that has
investigated the use of partial least squares (PLS) theoreti-
cally in our context. However, the method has been applied
empirically in various fields. Apart from this, some papers
have utilized shrinkage methods like ridge regression, lasso,
elastic net, adaptive lasso, and nonnegative garrote, but none
of the papers to date have used the updated forms of
shrinkage methods in our context.

Filling the gaps, this work implements some updated
techniques of big data to increment literature of macro-
economic forecasting theoretically as well as empirically.
From the dimension reduction aspect, we build factor
models intending to highlight the importance of such
models for macroeconomic prediction. Particularly, while
building factor models, we employ principal component
analysis (PCA) and partial least squares (PLS). In addition,
we also assess the last version of the classical approach
(Autometrics) and the updated version of shrinkage

methods including elastic smoothly clipped absolute devi-
ation (E-SCAD) and minimax concave penalty (MCP). We
evaluate the performance of these techniques in a simulation
setting where the true data generating process (DGP) of the
factor model is used. To summarize the whole discussion,
our prime contribution comes in the form of comparison of
updated shrinkage methods and Autometrics with factor
models through forecasting under the simulated scenarios
having multicollinearity, heteroscedasticity, and autocor-
relation along with application to macroeconomic data to
provide a conclusive solution to predictability. +e study
aims to produce an improved method to help policymakers;
the improved tool is not restricted to workers’ remittances or
the stock market (in our case) but is valid for any time series.

+e remaining part of the paper is organized as follows.
In Section 2, we provide a detailed discussion regarding
factor models based on principal component analysis and
partial least squares. In Section 3, we discuss big data
techniques, such as the classical approach and shrinkage
methods. Monte Carlo evidence on the comparative per-
formance of several forecasting techniques is discussed in
Section 4. Empirical findings are given in Section 5. Section 6
provides concluding remarks.

2. Methods

+e techniques we intend to apply in subsequent sections are
reported in Figure 2.

+is study aims to compare the predictive ability of
factor models based on principal component analysis and
partial least squares with Autometrics, elastic smoothly
clipped absolute deviation (E-SCAD), and minimax concave
penalty under different scenarios like multicollinearity,
heteroscedasticity, and autocorrelation. Macroeconomic
and financial datasets are used for the analysis of the real
phenomenon.

2.1. Factor Models. +e notion of factor models also called
diffusion index entails the utility of properly extracted
hidden common factors that have been distilled from a huge
set of features as inputs in the identification of the parsi-
monious models. To be more specific, let X be an N× P
dimensional matrix of data points and define N× k di-
mensional matrix of latent factors.

Stock and Watson [17] have delineated in depth the
literature regarding forecasting through factor models. In
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Figure 1: Schematic representation of big data.
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the below detailed discussion of factor model methodology,
we follow Stock and Watson [15]:

X � Fφ′ + ε, (1)

where ε represent the random error matrix, φ′ is the P× k
coefficients matrix, and F is a factor matrix of N× k
dimension.

We construct the following forecasting model based on
the work of Bai and Ng [39], Kim and Swanson [19], and
Stock and Watson [15]:

Yt+h � FtcF + et+h, (2)

where Yt+h is an outcome variable to be forecasted, h shows
the forecast horizon, and Ft is the vector of factors with a
dimension, distilled from F in equation (1). +e associated
coefficient cF is a vector of unknown parameters, and et+h is the
random error. +e whole process of factor model forecasting
consists of two steps: in the first step, we estimate k latent
(unobserved) factors, represented by F, from P observable
predictors. To gain convenient dimension reduction, k is
supposed to be much smaller than P (i.e., k≪P). In the second
step, we estimate cF, by utilizing data at hand with Yt and Ft.
Subsequently, an out-of-sample forecast is constructed.

Kim and Swanson [19] utilized the PCA approach to
achieve estimates of the unobserved factors, known as
principal components (PCs). +e latent PCs are uncorre-
lated which are obtained by using the data projection in the
direction of maximal variance, and naturally, the PCs are
ordered based on their variance contributions. +e first PC
reflects the direction of the maximal variance in the data, the
second PC reflects the direction that explains the maximal
variance in the rest of the orthogonal subspace, and so on.

+is approach is most frequently used in the literature of
factor analysis because PCs are easily derived via the use of
singular value decompositions [15, 33, 34].

Boivin and Ng [10], however, argued that the perfor-
mance of the factor model is more likely to be worse in
prediction if the incorporated factors are dominated by
excluding factors. Similarly, Tu and Lee [26] stated that PCA
imposes only the factor structure forX and does not consider

the outcome variable. It indicates that PCA ignores the
dependent variable while performing it. By dint of neglecting
the outcome variable at the time of factors, extraction in-
duces an inefficient forecast of the outcome variable. +e
solution to this problem is given in the next section.

2.2.!ePartial Least Squares (PLS)Method. +is study looks
at another method that is known as partial least squares
(PLS) regression developed by Wold [40]. +is method is
appropriate in a data-rich environment and may be con-
sidered as an alternative to PCA-based factor models. Unlike
the PCA method, the PLS identifies new factors in a su-
pervised way; that is, it makes use of the response variable to
identify new factors that not only approximate the old
factors well but are also related to the response variable.
Roughly speaking, the PLS approach attempts to find the
directions of maximum variance that help in explaining both
the response variable and explanatory variables. +e PLS for
an outcome variable is motivated by a statistical model as
follows:

Yt � xtcP + et, (3)

where xt � [x1,t, x2,t, . . . , xn,t]′ is an n× 1 vector of covariates
at time t� 1, . . ., T, cP is an n× 1 vector of associated co-
efficients, and et is the disturbance term. Kim and Ko [29]
argued that PLSmodels are useful especially when there are a
large number of covariates. Instead of using a model given in
(3), one may adopt another data dimension reduction ap-
proach through the following linear regression with Z× 1
vector of components st � [s1,t, s2,t, . . . , sZ,t] as follows:

Yt � xtwτ + et,

Yt � stτ � et.
(4)

We define st:

st � w′xt, (5)

where w � [x1, x2, . . ., xZ] is the n×Z matrix of each col-
umn, wz � [w1,z, w2,z , . . . , wn,z], z� 1, 2, . . ., Z, denote the
vector of weights on covariates for z factors or components,
and τ is the Z× 1 vector of PLS coefficients. We may use the
following equation for predicting the k steps ahead model;
that is, yt+k, k� 1, 2, . . ., m.

yt+k � ck
′xt. (6)

3. Classical Approach and Shrinkage Methods

+e fundamental comparison of interest here is between
automatic selection over variables as against PC and PLS-
based factors in terms of prediction. Factors are often
regarded as essential to summarize a large amount of in-
formation, but the classical approach and shrinkagemethods
are alternatives.

3.1. Classical Approach. Autometrics is a well-known big
data algorithm, which consists of five steps. In the first step,
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Figure 2: Methods of big data.
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we begin the process with the construction of a linear model,
which refers to the General Unrestricted Model (GUM); in
the second step, we obtain the estimates for unknown pa-
rameters and test them statistically; the third step entails
presearch process; step four delivers the tree-path search;
and the last step leads to a selection of the final model.

Doornik [41] elaborately delineated the complete algo-
rithm. +e key notion is to commence modeling with a
linear model that incorporates all candidate features (GUM).
Estimate the GUM by the least squares method and then
carry out the statistical tests to validate the congruency of the
model. If the estimated GUM contains statistically insig-
nificant coefficients at prespecified criteria, then again es-
timate the simpler models by utilizing different paths search
and ratified by diagnostic tests. As some terminal models are
detected, Autometrics undertakes their union testing. +e
rejected models are discarded, and the union of those ter-
minal models who survived leads to a new GUM for another
tree-path search iteration. +e whole inspection process
proceeds, and the terminal models are statistically checked
against their union. If two or more terminal models clear the
encompassing tests, then the preselected information cri-
terion decides about the final choice.

+e econometric models are achieved by applying
Autometrics on the GUM:

yt � θ0 + 
m

u�1


k

v�0
θu,vxu,t−v + μt. (7)

Under Autometrics, two main strategies are commonly
used for model selection, a conservative and a supercon-
servative also called Liberal strategy. Our study implements
the Liberal strategy, which is typically based on a one percent
significance level rather than five percent. In other words,
the statistical significance of each estimated coefficient is
based on one percent level of significance.

3.2. ShrinkageMethods. An alternative prominent approach
to deal with many features is the family of panelized re-
gression methods, which comprises of many techniques, but
our study adopts the following updated forms: elastic
smoothly clipped absolute deviation and minimax concave
penalty.

3.2.1. Elastic Smoothly Clipped Absolute Deviation. Fan and
Li [42] added a new penalization technique to literature
known as SCAD. +e technique is nonconvex and enjoys an
oracle property: sparsity, continuity, and unbiasedness. +is
technique selects useful covariates with their magnitudes
asymptotically in an efficient way if the underlying true
model is known (i.e., the oracle properties). +e SCAD
function covers all the limitations faced by the existing
methods like ridge and lasso. +e penalty function of SCAD
is defined as follows:

pk(|τ|) � k I(τ ≤ k) +
(ck − τ)

(c − 1)k
+ I(τ > k) . (8)

+e unknown tuning parameter k was determined by the
generalized cross-validation approach, and they assumed the
value of c is 3.7. As given above, the penalty function is
continuous, and the resulting solution is given by

pk(|τ|) �

k|τ| |τ|< k

− τ2 − 2ck|τ| + k
2

 /2(c − 1) k<|τ|≤ ck

(c + 1)k
2/2 |τ|> ck

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(9)

+e tuning parameters can be induced from the data-
driven technique. +e limitation of SCAD is that it selects
only one variable from a correlated set of predictors. Zeng
and Xie [43] extended the SCAD by augmenting L2 penalty
and called it elastic SCAD (E-SCAD). Mathematically, it can
be written as

penk(|τ|) � 
D

d�1
pk(|τ|) + λ2p 

m

d�1
α2d. (10)

Due to L2 penalty, the E-SCAD achieves an additional
property along with oracle properties; that is, the penalty
function should spur highly correlated features to be in or
out of the model simultaneously. Hence, the proposed form
selects the whole group of correlated predictors rather than
one variable.

3.2.2. Minimax Concave Penalty. Zhang [44] proposed a
minimax concave penalty (MCP), which yields the convexity
of the penalized loss in sparse regions considerably given
specific thresholds for features selection as well as unbi-
asedness. +e MCP is described as follows:

SMCP(t; k) �

kt −
t
2

2c
if |t|≤ ck

1
2

ck
2 if |t|> ck

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (11)

+e tuning parameter (c> 0) diminishes the maximum
concavity under the following restrictions like unbiasedness
and selection of features:

ρ(t; k) � 0 ∀ t≥ ck ρ(0+; k) � k,


m

d�1
pd αd


; k; c .

(12)

+e dual-tuning parameters in concave penalty regres-
sion play a key role in terms of controlling the amount of
regularization. Likewise, the concavity of the MCP penalty
considerably evades the sparse convexity by dint of di-
minishing the maximal concavity. In 2010, the author
showed that a rise in regularization parameter value leads to
bearing more convexity and achieves an almost unbiased
penalty. +e penalty function of MCP typically belongs to
the quadratic spline function.
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4. Monte Carlo Evidence on
Forecasting Performance

Our simulation part consists of three main scenarios,
namely, simulations on a data generating process (DGP)
with (i) multicollinearity, (ii) heteroscedasticity, and (iii)
autocorrelation. In each simulated scenario, varying the
DGP attributes in terms of correlation strength among
features, the magnitude of the variance of the error term, and
the magnitude of correlation of error term with previous
values (lag).

4.1. Data Generating Process. We generate data from the
following equation:

Y � Xiβ + μ. (13)

+e set of predictors X1, X2, . . ., XP are generated from
multivariate normal distribution as Xi∼N (0, Σ). +e same
data generating process (DGP) was used by [38] as men-
tioned in (13) for artificial data generation. Our study
considers three types of sample sizes for the simulation
experiments. We suppose a dual set of features with altering
the number of active (p) and inactive features (q), respec-
tively, as portrayed in Figure 3.

In our simulation experiments, we assume three sce-
narios as follows: in the first scenario: we generate the
pairwise correlation between the predictors (i.e., xm and xn

as cov(xm, xn) � 
 |m− n|). +e population covariance ma-

trix is produced in the following way:


P

�

1 . . . 
 |n− m|

. . . . .

. . . . .

. . . . .



 |m− n|

. . . 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

While altering the parameter Σ, we obtain different
correlation structures. In our work, we assume values for
Σ∈ {0.25, 0.5, 0.9} as followed by Xiao and Xu [45]. In the
second scenario, we generate the correlation between cur-
rent and residuals lag (autocorrelation) and symbolized by ρ.
+e autocorrelation is generated as follows:

μt � ρϵt−1 + εt. (15)

Our experiments assume the low, moderate, and high
cases of autocorrelation, such as ρ ∈ {0.25, 0.5, 0.9}. +e third
scenario is for examining heteroscedasticity (i.e., means that
the variance of the error term is not constant and alters
across data points by σk).

E μ2t  � σk. (16)

So, we split the variance σk into two components (i.e., σ1
and σ2). Let us have “n” observations; we set the variance of
(n/2) observations as σ1 and the variance of remaining
observations as σ2. Our simulation experiments assume

three cases of heteroscedasticity and set the values of
πi � (σ1/σ2), where i� 1, 2, 3 as πi ∈ {0.1/0.3, 0.2/0.6, 0.3/0.9}.
Tenfold cross-validation is executed to determine the op-
timal value of the tuning parameter(s).

To evaluate the forecasting performance of all methods,
we divide each realization such that 80 percent of the data
are used to train the models and the remaining data are
utilized for models’ evaluation followed by [46]. +e entire
process will be replicated M� 1000 times. +e average of
root mean square (RMSE) and mean absolute error (MAE)
are computed over “M” to assess the forecast performance.
+e smaller the values of RMSE and MAE, the closer the
predicted values to the actual values and the better the
forecast relatively. For analysis, we have relied on several
packages like gets, glmnet, ncvreg, pls, caret, forecast, and
Metrics under R programming language.

4.2. Simulation Results. +e forecast comparison results
derived from Monte Carlo experiments are presented in
Tables 1–3. All methods are improving their performance by
augmenting the number of observations. Increasing the
number of irrelevant and candidate variables adversely af-
fects the predictive ability.

Scenario 1. In the presence of low and moderate
multicollinearity, the performance of MCP is superior
to other rival methods except for the case of a small
sample, where E-SCAD and PLS-based factor models
are dominant. To be more specific, in the presence of
low and moderate multicollinearity, E-SCAD often
produced better forecasts. As we consider the case of
high multicollinearity, the PLS-based factor model is
superior in particular, while asymptotically E-SCAD
outperformed the other methods.
Scenario 2. In the presence of all schemes of hetero-
scedasticity, the performance of MCP is often better
than all competitor models. When the number of
predictors is equal to 50, Autometrics provides a similar
forecast as MCP in large samples.
Scenario 3. In the presence of low and moderate au-
tocorrelation, the MCP showed an outstanding per-
formance in terms of forecasting particularly when we
increase the sample size. In contrast, when n� 100, the
E-SCAD produced a remarkable forecast. In the case of

Candidate 
variables

P = 50

p = 15 q = 35

P = 70

q = 20p = 50

Figure 3: Distribution of candidate variables into relevant and
irrelevant variables.
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extreme autocorrelation, E-SCAD outperformed the
rival techniques under both small and moderate
samples, but as we further augment the sample equal to
400, the MCP induced a more accurate forecast
comparatively.

5. Real Data Analysis

After Monte Carlo experiments, this study performs real data
analysis using big data. For real data analysis, we focus on two
datasets: macroeconomic data and financial markets. In the
context of both datasets, the study considers worker’s re-
mittances inflow and stockmarket data, respectively. It is a fact

that many factors influence the worker’s remittances inflow
and the stock market. Among them, some covariates are
recommended by economic and financial theories to be in-
cluded in themodel. Apart from this, a long list of variables has
been recommended by past studies. +is study considers all
the possible determinants based on theories and literature as
well to make a general model. In econometrics literature, such
a model is known as the general unrestricted model (GUM).

5.1. Data Source. +is study collects the annual data for
Pakistan from 1973 to 2020. +e data is sourced from the
World Development Indicators (WDI), International

Table 1: Forecast comparison under multicollinearity from Monte Carlo simulation (Scenario 1).

Models ρ� 0.25, P � 50 ρ� 0.25, P � 70
n� 100/200/400 RMSE MAE RMSE MAE
MCP 1.123/1.055/1.027 0.908/0.848/0.821 1.205/1.069/1.031 0.971/0.858/0.825
E-SCAD 1.135/1.066/1.034 0.917/0.856/0.827 1.195/1.086/1.040 0.961/0.872/0.831
Autometrics 1.316/1.091/1.027 1.065/0.874/0.822 1.316/1.091/1.042 1.065/0.874/0.834
FM_PCA 3.517/3.210/2.829 2.839/2.576/2.260 4.493/4.305/3.966 3.623/3.458/3.173
FM_PLS 1.528/1.200/1.090 1.235/0.963/0.871 1.921/1.321/1.126 1.551/1.059/0.901
n� 100/200/400 ρ� 0.5, P � 50 ρ� 0.5, P � 70
MCP 1.145/1.056/1.027 0.925/0.848/0.821 1.318/1.069/1.032 1.062/0.858/0.825
E-SCAD 1.112/1.058/1.030 0.898/0.849/0.824 1.168/1.074/1.035 0.940/0.862/0.827
Autometrics 1.156/1.062/1.027 0.931/0.853/0.821 1.473/1.091/1.041 1.191/0.874/0.833
FM_PCA 2.583/2.053/1.705 2.088/1.644/1.365 3.933/3.334/2.700 3.174/2.677/2.164
FM_PLS 1.368/1.161/1.080 1.105/0.932/0.864 1.595/1.248/1.108 1.287/1.001/0.886
n� 100/200/400 ρ� 0.9, P � 50 ρ� 0.9, P � 70
MCP 1.484/1.157/1.042 1.198/0.930/0.832 1.764/1.261/1.058 1.424/1.013/0.846
E-SCAD 1.201/1.060/1.019 0.968/0.851/0.814 1.291/1.080/1.021 1.040/0.867/0.817
Autometrics 4.363/1.795/1.031 3.528/1.443/0.825 6.589/2.501/1.053 5.333/2.006/0.843
FM_PCA 1.169/1.099/1.075 0.943/0.883/0.859 1.318/1.212/1.165 1.065/0.974/0.932
FM_PLS 1.138/1.078/1.043 0.919/0.865/0.834 1.184/1.095/1.053 0.959/0.880/0.842
Note. Bold values indicate a better forecast.

Table 2: Forecast comparison under heteroscedasticity from Monte Carlo simulation (Scenario 2).

Models σ � 0.1/0.3, P � 50 σ � 0.1/0.3, P � 70
n� 100/200/400 RMSE MAE RMSE MAE
MCP 0.313/0.306/0.303 0.253/0.246/0.242 0.321/0.307/0.303 0.260/0.246/0.242
E-SCAD 0.319/0.309/0.304 0.258/0.248/0.243 0.331/0.311/0.305 0.267/0.249/0.243
Autometrics 0.318/0.308/0.303 0.256/0.248/0.242 0.339/0.313/0.305 0.274/0.250/0.244
FM_PCA 3.373/3.055/2.648 2.723/2.452/2.115 4.382/4.197/3.847 3.534/3.374/3.078
FM_PLS 0.399/0.327/0.311 0.322/0.262/0.249 0.625/0.347/0.317 0.504/0.278/0.253
n� 100/200/400 σ � 0.2/0.6, P � 50 σ � 0.2/0.6, P � 70
MCP 0.627/0.613/0.606 0.507/0.492/0.484 0.643/0.614/0.607 0.520/0.492/0.485
E-SCAD 0.637/0.617/0.609 0.515/0.496/0.486 0.659/0.621/0.609 0.532/0.498/0.487
Autometrics 0.636/0.617/0.606 0.512/0.496/0.484 0.667/0.625/0.610 0.548/0.501/0.488
FM_PCA 3.410/3.101/2.704 2.753/2.489/2.160 4.412/4.233/3.883 3.556/3.402/3.106
FM_PLS 0.798/0.654/0.623 0.646/0.525/0.498 1.107/0.693/0.634 0.892/0.556/0.507
n� 100/200/400 σ � 0.3/0.9, P � 50 σ � 0.3/0.9, P � 70
MCP 0.941/0.920/0.909 0.761/0.739/0.727 0.965/0.921/0.910 0.780/0.739/0.728
E-SCAD 0.954/0.926/0.913 0.771/0.743/0.730 0.985/0.930/0.914 0.795/0.746/0.730
Autometrics 0.954/0.926/0.909 0.768/0.744/0.727 1.017/0.938/0.916 0.823/0.752/0.733
FM_PCA 3.478/3.176/2.791 2.809/2.549/2.230 4.467/4.281/3.941 3.601/3.440/3.153
FM_PLS 1.181/0.983/0.935 0.956/0.789/0.748 1.507/1.040/0.951 1.215/0.834/0.760
Note. Bold values indicate a better forecast.
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Financial Statistics (IFS), International Country Risk Guide,
and State Bank of Pakistan. +e few missing observations in
the data set are replaced by averaging the neighbor obser-
vations. Most variables are transformed into logarithm form
to ensure normality.

Details on the variables used for the analysis are given in
Appendix Table 4.

5.2. Correlation Matrix. For empirical analysis, we split the
data set into parts: observations from 1973 to 2007 are
utilized to train the models and the remaining data are used
to evaluate their forecasting performance. But before going
to compute the forecast error, we discover the correlation
structure among covariates through the visualization ap-
proach. In Figures 4 and 5, blue and red colors exhibit

Table 3: Forecast comparison under autocorrelation from Monte Carlo simulation (Scenario 3).

Models ρ� 0.25, P � 50 ρ� 0.25, P � 70
n� 100/200/400 RMSE MAE RMSE MAE
MCP 1.167/1.078/1.056 0.943/0.866/0.845 1.254/1.110/1.065 1.012/0.892/0.851
E-SCAD 1.175/1.091/1.062 0.952/0.877/0.850 1.241/1.124/1.074 1.002/0.904/0.859
Autometrics 1.192/1.100/1.064 0.963/0.884/0.851 1.392/1.126/1.071 1.121/0.908/0.858
FM_PCA 3.520/3.222/2.858 2.848/2.589/2.288 4.569/4.274/3.952 3.695/3.429/3.165
FM_PLS 1.568/1.231/1.119 1.268/0.990/0.896 1.972/1.367/1.166 1.591/1.101/0.932
n� 100/200/400 ρ� 0.50, P � 50 ρ� 0.50, P � 70
MCP 1.324/1.222/1.185 1.073/0.987/0.949 1.448/1.234/1.197 1.177/0.993/0.957
E-SCAD 1.318/1.238/1.191 1.068/0.996/0.954 1.382/1.248/1.206 1.122/1.005/0.965
Autometrics 1.330/1.222/1.187 1.080/0.985/0.951 1.630/1.255/1.202 1.318/1.011/0.964
FM_PCA 3.570/3.279/2.916 2.889/2.624/2.333 4.607/4.247/4.021 3.716/3.381/3.219
FM_PLS 1.720/1.392/1.258 1.389/1.121/1.005 2.108/1.503/1.303 1.702/1.206/1.042
n� 100/200/400 ρ� 0.90, P � 50 ρ� 0.90, P � 70
MCP 2.953/2.408/2.364 2.449/1.997/1.936 3.608/2.538/2.368 2.961/2.100/1.940
E-SCAD 2.714/2.380/2.366 2.267/1.976/1.937 3.039/2.498/2.370 2.525/2.069/1.941
Autometrics 3.250/2.480/2.358 2.693/2.049/1.930 4.273/2.594/2.394 3.494/2.146/1.957
FM_PCA 4.165/3.871/3.563 3.387/3.126/2.868 5.051/4.735/4.506 4.111/3.810/3.609
FM_PLS 2.941/2.579/2.476 2.439/2.122/2.020 3.341/2.796/2.544 2.749/2.293/2.072
Note. Bold values indicate a better forecast.
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Figure 4: Pairwise correlation using macroeconomic data.
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positive and negative correlations, respectively. +e colors’
severity and the area of the circle are directly associated with
correlation coefficients. On the right side of the correlogram,
the legend color shows the correlation coefficients and the
corresponding colors. We can observe that there are many

dark color circles in blue and red, which clearly illustrate the
high pairwise correlation. In other words, we can conclude
that there exists high multicollinearity among predictors
under both datasets. Figure 6 reveals that the distribution of
stock market data is almost symmetric. Apart from this,
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Figure 5: Pairwise correlation using financial data.
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Figure 7: Forecast comparison using macroeconomic data.
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diagnostic tests revealed that the residuals of an estimated
model are independently and identically distributed. As we
have noted in simulation experiments that in presence of
high multicollinearity, the PLS-based factor model out-
performed the other methods in terms of forecast error
particularly when the sample size is small. It reveals that
PLS-based factor is more robust in such circumstances.

5.3. Forecast Comparison Based on Two Real Datasets.
Root mean square error and mean absolute error are
computed to ascertain the predictive ability of MCP,
E-SCAD, Autometrics, and factor models based on PCA and
PLS in Figures 7 and 8, respectively. +e findings show that
PLS-based factor model outperformed the rival methods in
the out-of-sample forecast. It illustrates that PLS-based
factor model has good predictive power than other com-
petitor models, in terms of having the lowest forecast errors
in multistep ahead forecast for the period (2008 to 2020). It
supports the simulation results under both real datasets.

6. Concluding Remarks

+is study compares factor models based on principal
component analysis and partial least squares with classical
approach (Autometrics) as well as shrinkage procedures (i.e.,
minimax concave penalty (MCP) and elastic smoothly
clipped absolute deviation (E-SCAD)). +e comparison is
made under the presence of multicollinearity, hetero-
scedasticity, and autocorrelation with altering sample size
and number of covariates. We carried out Monte Carlo
experiments to compare all methods in terms of prediction.
All methods are improving their performance with a
growing sample size in all scenarios. Expanding the number

of irrelevant and candidate variables negatively affects
forecasting accuracy. In the presence of low and moderate
multicollinearity, MCP often produced better forecasts
comparatively except for the small number of observations,
where E-SCAD is dominant. In the case of extreme mul-
ticollinearity, the PLS-based factor model is superior, but
with increased sample sizes, the prediction accuracy of
E-SCAD significantly boosts up as compared to other
methods. In the presence of all schemes of hetero-
scedasticity, the performance of MCP is better than all
competitor models. When the number of predictors is equal
to 50, Autometrics provides a similar forecast as MCP in
large samples. In the presence of low and moderate auto-
correlation, the MCP showed an outstanding performance
in terms of forecasting except for the small sample case
where E-SCAD produced a remarkable forecast. In the case
of extreme autocorrelation, E-SCAD outperformed the rival
techniques under both the smallest and medium samples,
but as we further augment the sample equal to 400, the MCP
induced a more accurate forecast comparatively.

For empirical application, macroeconomic and financial
datasets are used. To compare the forecasting performance
of all methods, we divide the data into two parts (i.e., data
over 1973–2007 as training data and data over 2008–2020 as
testing data), using both datasets. All methods are trained on
training data and subsequently, their performance was
evaluated through testing data. Based on RMSE and MAE,
the PLS-based factor model is more robust in terms of
forecasting than competitor models. +is study has several
recommendations, reported in Table 4.

6.1. Limitations and Future Direction. +e few limitations of
this study are that it only focuses on linear models and has
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Figure 8: Forecast comparison using financial data.

Table 4: Methods’ performance across various scenarios.

Scenarios
+ree cases

Low Medium High

Multicollinearity
E-SCAD is best under a small

sample. MCP is the best option in
case of a large sample.

E-SCAD is best under a small
sample. MCP is the best option in

case of a large sample.

PLS-based factor model provides a better
forecast under small sample. In case of a large

sample, E-SCAD is superior.
Heteroscedasticity MCP is best. MCP is best. MCP is best.

Autocorrelation
E-SCAD is best under a small
sample. MCP is the best option

using more data.

E-SCAD is best under a small
sample. MCP is the best option

using more data.

E-SCAD is best under a small sample. MCP
is the best option using a large data set.
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considered yearly data. +e simulation part of this study is
restricted to Gaussian distributed errors, but in practice, this
is not essential that the errors of a model are always normal.
Hence, the research can be conducted to discover the
forecasting performance of advanced statistical and machine
learning techniques under nonnormal residuals as well as
missing observations in the data set. +is study can be
expanded to examine the performance of nonlinear and
nonparametric algorithms like artificial neural networks,
random forests, support vector machines, etc.

Data Availability

+e data used to support the findings of this study are
available from the corresponding author upon request.
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