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An efficient intelligent fault diagnosis model was proposed in this paper to timely and accurately offer a dependable basis for
identifying the rolling bearing condition in the actual production application..emodel is mainly based on an improved butterfly
optimizer algorithm- (BOA-) optimized kernel extreme learning machine (KELM) model. Firstly, the roller bearing’s vibration
signals in the four states that contain normal state, outer race failure, inner race failure, and rolling ball failure are decomposed
into several intrinsic mode functions (IMFs) using the complete ensemble empirical mode decomposition based on adaptive noise
(CEEMDAN). .en, the amplitude energy entropies of IMFs are designated as the features of the rolling bearing. In order to
eliminate redundant features, a random forest was used to receive the contributions of features to the accuracy of results, and
subsets of features were set up by removing one feature in the descending order, using the classification accuracy of the SBOA-
KELM model as the criterion to obtain the optimal feature subset. .e salp swarm algorithm (SSA) was introduced to BOA to
improve optimization ability, obtain optimal KELM parameters, and avoid the BOA deteriorating into local optimization. Finally,
an optimal SBOA-KELMmodel was constructed for the identification of rolling bearings. In the experiment, SBOA was validated
against ten other competitive optimization algorithms on 30 IEEE CEC2017 benchmark functions. .e experimental results
validated that the SBOAwas evident over existing algorithms for most function problems. SBOA-KELM employed for diagnosing
the fault diagnosis of rolling bearings obtained improved classification performance and higher stability. .erefore, the proposed
SBOA-KELM model can be effectively used to diagnose faults of rolling bearings.

1. Introduction

As a core component of mechanical, the rolling bearings are
widely used in rotating machinery types such as wind
turbines, aeroengines, ships, and automobiles. However, it is
a considerable probability of a mechanical failure due to a
bearing failure. Bearings cause failures in rotatingmachinery
that is over 30%. .ere are various faults of rolling bearing,
including outer race, inner race, and ball, in general due to a
long-term complex environment. When those faults get
serious, they may cause a sudden breakdown of the machine,
even the entire system, leading to substantial financial losses,

and even cause casualties among workers. Overmaintenance
of rolling bearings can lead to increased corporate main-
tenance costs. However, insufficient maintenance can easily
lead to unexpected production accidents. Intelligent fault
diagnosis technology formed by combining fault diagnosis
and computer technology provides a useful reference for
fault detection and equipment maintenance. .erefore, it is
vital to apply intelligent fault diagnosis method to rolling
bearings. Intelligent fault diagnosis method has been widely
used in bearing fault diagnosis. Xu et al. [1] proposed a new
expert system based on belief rules (BRB) built frommultiple
activated BRB subsystems in the meantime for diagnosing
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whether the marine diesel engines were faulty. Pang et al. [2]
proposed a novel fault pattern classification method based
on an ensemble kernel extreme learning machine (KELM)
that fuses features of time and frequency domains into
intrinsic features that are low dimensional using local and
global principal component analysis. Li et al. [3] proposed a
novel machine fault diagnosis method that can efficiently
learn discriminative representations with input data’s local
and global geometry. Kaplan et al. [4] proposed a new
approach based on texture analysis that converts vibration
signals to grayscale images to fuse non-whole binary patterns
and texture features for bearings fault diagnosis. Deng et al.
[5] proposed a modified classification and regression tree
(CART) algorithm to improve fault diagnosis speed by
decreasing the numbers of iteration in computation to
guarantee accuracy. Zhao et al. [6] proposed a new deep
residual network based on multiple wavelet coefficients
fusion for fault diagnosis. Ma et al. [7] proposed a new fault
detection and diagnosis (FDD) method that built an over-
complete dictionary pair based on a dictionary pair learning
strategy from features extracted from the wavelet transform
for motor fault diagnosis. Li et al. [8] suggested a novel
feature extraction method that can combine learnable
modules of multiply LS-SVMs in the structure of deep
stacking based on representation learning (S-RL) to extract
features for fault diagnosis. Zheng et al. [9] proposed an
improved MPE-based feature extraction method to extract
the fault features from the vibration signal of rolling bearing.
.ey applied the PSO-based SVM to fault diagnosis. Deng
et al. [10] proposed an optimized deep belief network model
based on an improved quantum-inspired differential evo-
lution algorithm for realizing the fault diagnosis of rolling
bearings. Zhao et al. [11] proposed a new high-order dif-
ferential mathematical morphology gradient spectrum en-
tropy method to extract rolling bearing’s vibration signal
features. Zhao et al. [12] proposed a novel method that
applied principal component analysis and broad learning
system to fault diagnosis. Deng et al. [13] proposed a novel
intelligent diagnosis method based on LS-SVM with en-
hanced PSO algorithm for fault of rolling bearing.

Like other mainstream machine learning methods [14],
such as SVM [15–25], fuzzy k-nearest neighbor method
(FKNN) [26–30], and neural networks [31–33], KELM has
been employed in many fields [34–40]. Du et al. [41] pro-
posed a discriminative manifold ELM autoencoder to extract
discriminative features from vibration measurements. .e
result achieved a 2% improvement in testing accuracy
compared with the KELM. Wang et al. [42] developed a new
ensemble ELM for compound-fault diagnosis of rotating
machinery. Compared to the existing multilabel classifiers,
the experimental results demonstrated that the proposed
method achieved the best performance. Tian et al. [43]
proposed an ensemble hierarchical ELM with deep learning
architecture for unsupervised feature learning and super-
vised classification. .e results showed that the proposed
method performed better than traditional ELM and its
variants. Zhong et al. [44] proposed a new fault diagnosis
method based on a sparse Bayesian ELM. .e proposed
method could identify the single and simultaneous fault

more quickly and precisely when compared against tradi-
tional techniques.

.e KELM is one of the ELMs which is constructed
based on kernel tricks. .e capability of KELM is mainly
affected by two critical parameters: one is the penalty co-
efficient, and the other is the kernel width. At present, re-
searchers have proposed many effective methods to
determine two critical parameters in KELM. Lu et al. [45]
proposed to use PSO to optimize the parameters of KELM
for obtaining the optimal model. Luo et al. [46] developed a
multistrategy improved GOA-based KELM for bankruptcy
prediction. Wang et al. [47] planned to use a chaotic FOA
optimized KELM to diagnose sepsis. Tian et al. [48] utilized
the quantum-based PSO optimized KELM for activity
recognition. Baliarsingh et al. [49] offered a weighted-cha-
otic SSA for simultaneously optimizing KELM parameters
and features in the genomic data. Hu et al. [50] developed
cross-validated PSO for training an optimal KELM for fault
diagnosis of wind turbine gearbox. Pani and Nayak [51]
suggested employing KELM based on the chaotic GSA to
prognose the solar irradiance. Luo et al. [52] recommended
using GWO-MFO to achieve the optimal KELM model for
diagnosing somatization disorder. Li et al. [53] offered a
novel method that uses the improved binary GWO wrapped
with KELM for disease diagnosis. Bisoi et al. [54] proposed
using DE to train an optimal KELM to predict stock price
and movement. Wang et al. [55] proposed a chaotic MFO
used to optimize the critical parameters of KELM to obtain
an optimal KELM model for medical diagnosis. Wang et al.
[56] proposed obtaining an optimal KELM model by using
GWO to predict the bankruptcy of the enterprise. Heidari
et al. [57] proposed an improved GWO based on a multi-
strategy enhanced using effective exploratory and exploit-
ative mechanisms. Chen et al. [58] proposed using chaotic
and mutative BFO to seek the optimal parameters of KELM
for classification tasks.

In this study, an improved butterfly optimization al-
gorithm- (BOA-) optimized KELM model (SBOA-KELM)
was proposed and applied to bearing fault diagnosis. First,
the energy entropy features are extracted from the raw vi-
bration signals by CEEMDAN..e original vibration signals
were decomposed into multiple IMF components by
CEEMDAN. .e energy entropy of the IMFs was calculated
to construct an energy feature vector. Second, to avoid data
redundancy caused by smaller energy features and increase
calculation, a random forest was used to evaluate feature’s
importance and select informative features as new feature
vectors. .ird, the proposed SBOA-KELMmethod was used
for fault feature classification. Finally, the proposed SBOA-
KELM was verified and compared with several represen-
tative approaches. .e experimental results presented that
the proposed technique effectively diagnosed the bearing
faults. .e average classification accuracy was much im-
proved. Table 1 lists the nomenclatures in the paper.

.e whole structure of the study is structured as follows.
Section 2 explains the data collection and gives a brief de-
scription of the data collection, CEEMDAN, random forest,
SBOA, and proposed SBOA-KELM model. .e experi-
mental setup is termed in Section 3. Section 4 explains the
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results of SBOA on benchmark functions and SBOA-KELM
on the bearing dataset. .e conclusions and future works are
delivered in Section 5.

2. Materials and Methods

2.1. Data Collection. .e rolling bearing data on the website
of the Bearing Data Center of Case Western Reserve Uni-
versity were employed in this study to check the feasibility
and utility of the proposed method. .e URL of the website
of the Bearing Data Center is https://csegroups.case.edu/
bearingdatacenter/home.

.e rolling bearing model is 6205-SKF. .e structural
parameters of rolling bearings are shown in Table 2. First,
damage points are artificially set on the inner race, outer
race, and ball of rolling bearings. Under the condition of
input shaft speed n� 1797 r/min and the acquisition fre-
quency of 12 kHz, the bearing’s vibration signals in four
states, normal state, inner race fault, outer race fault, and ball
fault, are gathered. .ere are 40 sets of sample data gathered
from the vibration signals of each state. .e length of each
sample data is 1200.

2.2. SBOA-KELM Method. .e flowchart of the proposed
SBOA-KLEM is shown in Figure 1. .e whole flow includes
feature extraction based on CEEMDAN energy entropy,
feature selection based on random forest, and classification
based on BOA-KELM. .e first step is to extract features,
using the CEEMDAN method to decompose the raw vi-
bration signals of bearing into multiple IMFs, computing

each IMF’s energy entropy and normalizing..e second step
is to select the feature from the CEEMDAN energy entropy
to reduce data redundancy. .e third step is to optimize the
two critical parameters of the KLEM using SBOA. .en, the
optimal parameters and feature combination are used to
train an optimal KELM. Finally, the optimal KELM classifier
is diagnosed with the rolling bearing to determine the
bearing’s working condition. .e standard 10-fold cross
model is used to divide the data to obtain a more exact and
unbiased experimental result, which many researchers often
adopt.

2.2.1. Feature Extraction. Fault feature extraction is a critical
step in the fault diagnosis of rolling bearings [59]. When
rolling bearings are in abnormal faults, vibration signals are
mostly nonstationary and nonlinear characteristics, and they
are interfered with intense noise [60].

After that, comparing with the effect of EEMD on feature
extraction, the CEEMDAN has a more excellent perfor-
mance to preserve the original signal and eliminate noise
and extract bearing fault features more accurately and
timely. .e CEEMDAN is an adaptive time-frequency signal
analysis method developed based on EEMD, which can
effectively extract fault frequency characteristics. Based on
previous research, CEEMDAN has a better effect on signal
decomposition than EEMD [61].

It needs to be quantified [62] to make the fault char-
acteristic information after CEEMDAN decomposition
more apparent. When different faults occur in rolling
bearings, the amplitude energy within the vibration signal’s

Table 1: Nomenclatures in the paper.

Nomenclature
BOA Butterfly optimizer algorithm
KELM Kernel extreme learning machine
IMFs Intrinsic mode functions
SSA Salp swarm algorithm
FDD Fault detection and diagnosis
PSO Particle swarm optimization
GWO Grey wolf optimizer
MFO Moth-flame optimization
BFO Bacterial foraging optimizer
CPSO Cross-validated particle swarm optimizer
ITD Intrinsic timescale decomposition
CBA Cloud bat algorithm
CV Cross-validation
CEEMDAN Complete ensemble empirical mode decomposition based on adaptive noise
BA Bat-inspired algorithm
SCA Sine cosine algorithm
WOA Whale optimization algorithm
SCADE Sine cosine algorithm with differential evolution
CGSCA Cauchy and Gaussian SCA
ACWOA A-C parametric WOA
CWOA Chaotic WOA
DM-ELM-AE Discriminative manifold ELM autoencode
EELM Ensemble extreme learning machine
PC-SBELM Pairwise-coupled sparse Bayesian extreme learning machine
PC-PNN Pairwise-coupled probabilistic neural networks
PC-RVM Pairwise-coupled relevance vector machine
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frequency range will change to varying degrees. .erefore,
the feature matrixes of bearing faults consist of the energy
entropy of the IMFs. .e method of feature extraction based
on CEEMDAN energy is as follows:

Step 1: CEEMDAN will decompose the vibration fault
signal of the rolling bearing to obtain multiple IMFs:

x(t) � 􏽘

n

j�1
cj(t) + r(t). (1)

Step 2: calculate the amplitude energy E1, E2, . . . , En of
each IMF component:

Ej � 􏽘
N

k�1
cj(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (2)

In equation (2), N is the number of sampling points of
the j-th IMF component.

Step 3: assuming that r (t) can be ignored, the total
energy of the signal obtained is

Esum � 􏽘
n

j�1
Ej � 􏽐

n

j�1
􏽘

N

k�1
cj(k)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (3)

Step 4: in order to avoid that the IMF components in
the partial amplitude energy concentration control the
relatively weak IMFs, the amplitude energy of each
order IMF is normalized:

pj �
Ej

Esum
. (4)

.erefore, the corresponding CEEMDAN energy en-
tropy (EN) can be denoted as

HEN � − 􏽘
n

j�1
pjlogpj. (5)

Training setTest set

Normalization of the input data
into the normal interval [0, 1]

10-fold cross-validations

Load the data set

Train KELM based on the
training sets

Feature selection using
random forest

Get the optimal KELM model

Calculate the accuracy of
KELM model prediction

on the test set

Optimization parameters
(c, γ) using SSABOA

Train KELM based on 4–
folds training set

Evaluate the accuracy of
the KELM model on the
remaining one test data

Does K has a
value equal to 5?

Does K has a
value equal to 10?

Optimal values of (c, γ)

Average the prediction results
on ten independent tests

No

Yes

End

Start

Optimal parameter selection

No

Yes

Figure 1: Flowchart of SBOA-KELM.

Table 2: .e structural parameters of rolling bearings.

Outer ring diameter
(mm)

Inner ring diameter
(mm)

Bearing pitch diameter
(mm)

Ball diameter
(mm)

Number of
balls

Contact angle
(°)

51.99 25.00 31.04 7.94 9 0
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In equation (5), pj is the proportion of the j-th IMF
amplitude component in the total energy.

2.2.2. Feature Selection Based on Random Forest.
Random forest is a multiclassifier integrated algorithm that
can obtain higher classification accuracy in a short time with
fewer training samples [63]. For multitime domain feature
sets, random forest classifiers can reduce dimensionality for
features and reduce overfitting. .e algorithm flow is as
follows:

Step 1: the sample data’s energy entropy features are
input into the random forest to calculate feature im-
portance and sort features in the descending order of
feature importance
Step 2: according to a certain deletion ratio, delete from
the feature set to construct a new feature set
Step 3: input the new feature set into a new random
forest and calculate the importance of each feature, and
then sort in the descending order and repeat Steps 2
and 3 until a specified number of features are left
Step 4: each feature set corresponds to a random forest;
calculate the corresponding out-of-bag error rate, and
take the feature set with the lowest out-of-bag error rate
as the last selected feature set

2.2.3. Classification Based on BOA-KELM. Optimization
can be formulated in many ways, including multiobjective,
fuzzy variables, larger-scale, or robust optimization. One
way to deal with a problem is to have a single objective and
hybrid methods for solving it [64–72]. In this study, an
SBOA-KELM was constructed by improving BOA by in-
troducing the SSA. .e resultant SBOA was taken to handle
the problem of parameter optimization of KELM for the
fault classification task. BOA [73] was a novel nature-in-
spired optimization algorithm based on the food foraging of
butterflies. Butterflies are the main object of BOA’s search
and work efficiently to complete the optimized search of the
best working solution in space [74].

In this study, KELM was to identify the fault types of
rolling bearings. In KELM, the output results are determined
by calculating the kernel function without the hidden-layer
output matrix. Compared with SVM, KELM performs faster
learning speed and has better generalization performance
[75]. .erefore, KELM was chosen to diagnose the faults of
rolling bearings in this study.

For the past few years, many scientific researchers were
continually exploring the application of KELM in fault
diagnosis of rotating machinery. Hu et al. [50] proposed a
fault diagnosis method that extracted time-domain features
from vibration signal by using a wavelet packet transform
(WPT) filter and diagnosed gearbox-related faults using a
cross-validated particle swarm optimized- (CPSO-) based
KELM. Lei et al. [76] proposed a new fault classification
method that combined KELM with the intrinsic timescale
decomposition (ITD) technique to identify the tool wear
conditions. Long et al. [77] proposed a novel fault patterns

methodology of wind turbine gearbox that combines a
cloud bat algorithm (CBA) with KELM. Wang et al. [78]
proposed a novel bearing intelligent fault diagnosis method
that optimized KELM parameters through the krill herd
algorithm (NKH). In this study, the two critical parameters
of KELM are optimized by SBOA to improve the classi-
fication accuracy of fault diagnosis. .e flowchart of SBOA
is shown in Figure 2.

2.2.4. Proposed SBOA-KELM. After normalizing the
CEEMDAN energy entropy features, the random forest was
established to obtain the optimal feature subset that reduces
data redundancy. To promote the classification accuracy of
fault identification and the model’s generalization ability, the
SBOA model is proposed to obtain the optimal key pa-
rameters value of KELM..e steps of feature selection based
on random forest and parameter optimization of the SBOA-
KELM model are as follows:

Step 1: normalize the energy entropy feature data, and
the range of normalized data is [0, 1].
Step 2: the importance of the normalized features is
evaluated by random forest through out-of-band er-
rors, and after setting the threshold, the optimal feature
subset is selected.
Step 3: the optimal feature subset is separated into the
training set and test set by 10-fold cross-validation
(CV) scheme.
Step 4: SBOA and KELM optimize the two critical
parameters of KELM that is trained on the training set
by inputting with the optimal feature subset through
the inner 5-fold CV scheme.
Step 5: evaluate the accuracy of KELM on the test data.
If the value of K is less than 10, go to Step 4.
Step 6: average the prediction result on ten independent
tests as the output result.

3. Experimental Setup

.e vibration signal was decomposed by CEEMDAN using
the pyEMD toolkit in Python. .e development tool uses
PyCharm. After extracting the energy entropy feature from
the IMF component decomposed by the vibration signal, it is
saved as a CSV file to prepare for the next feature extraction
and state recognition..emethodsmentioned in this article,
including SBOA and KELM, were implemented using
MATLAB.

Data were scaled between 0 and 1 before extracting
features. To make sure of fair results, classification accuracy
is evaluated by the stratified 10-fold CV. It means that the
data were segmented into ten parts, of which five were used
as training datasets of the SBOA-KLEM model and the
remaining one as the test dataset..e entire flow was rotated
ten times, with the average of the 10 test data being the final
result. .e number of the maximum iterations and swarm
size were set at 50 and 20, respectively. .e seeking range for
the two critical parameters in KELM is set as follows: C ∈
[2−5, 25], c ∈ [2−5, 25].
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To evaluate the validity of the SBOA-KELM model,
classification accuracy was analyzed and verified by the 10-
fold CV procedure.

4. Experimental Result

4.1. Benchmark Function Validation. Some representative
algorithms have been selected in this paper, including the
classic original algorithms BA [79], SCA [80], WOA [81, 82],
and BOA, and some improved algorithms including
SCA_PSO [83], SCADE [84], CGSCA [85], CBA [86],
ACWOA [87], and CWOA [88]. Table 3 shows the specific
parameter values of the involved algorithms. According to
fair-minded comparisons in neural networks literature, the
above algorithms are all executed and tested in MATLAB
software under the same computing environments [89–91].
.is can ensure there is no preference en route for a method
because of a pro in its testing plan [92–96]. We have used the
IEEE CEC2017 benchmark functions as a test function. In
the experiment, the number of particles was set to 30, the size
was set to 30, and the maximum number of evaluations was
set to 300,000. Each algorithm was performed independently
30 times to take the average.

To verify and test the capability of BOA, 30 different
benchmark test functions were simulated. .ese bench-
marking features identify various features of the algorithm,
such as rapid convergence, speed of convergence, ability to
step outside of the partial optimization, and ability to avoid
premature convergence [97, 98]. Table 4 details the test
results of the SBOA algorithm and the comparison algo-
rithm on the benchmark function, presenting the average
adaptation value and standard deviation of the algorithm
run independently 30 times on the benchmark function,

respectively. .e overall effect of the proposed SBOA is
better than its other counterparts. .e Friedman test [99]
was used to test the algorithm performance..is test is based
on the algorithm’s strengths and weaknesses. .e table has
shown that SBOA has an ARV value of 1.6, superior to all the
other competitive algorithms. .e statistical results of each
optimization task indicate that SBOA has a faster conver-
gence rate.

Figure 3 shows the convergence trend of the algorithm
over nine benchmark functions. It is possible to know from
the figure that the convergence trend of this paper’s algo-
rithm on these nine benchmark functions is superior to
other comparative algorithms. In the convergence trend
diagram, this paper’s improved convergence trend is sig-
nificantly better in the middle of convergence. .e experi-
mental results demonstrate the effectiveness of SSA in BOA.
In each test case, the final output of the SBOA best meets the

Move towards best solution

Start Objective 
function f (x) 

Initialize
power_exponent, sens
ory_modality, p, dim

Initialize the
positions of

search agents Sol 

Calculate the
initial Fitness

Initialize the
current

best_pos
Check if rand < p Move randomly

Calculate newfitness Check if
newfitness < Fitness (i)

Update
Sol, Fitness (i) =

newfitness

Update Sol with SSAA greedy selection of current and
candidate positions

Check if
Fitness (i) < fmin Update best_pos stopping

criteria met? End

Yes

Yes

No

No

Yes

No

Yes

No

Yes

No

Check if
newfitness < fmin

fmin = newfitness, update
best_pos

Figure 2: Flowchart of SBOA.

Table 3: Parameters of the involved methods.

Method Parameter values

SBOA p � 0.8; power_exponent� 0.1;
sensory_modality� 0.01

SCA_PSO Vmax � 4; wmax� 0.9; wmin � 0.4
SCADE beta_min� 0.2; beta_max� 0.8; pCR� 0.8
CGSCA delta� 0.1
CBA Qmin � 0; Qmax � 2; A and r are chaotic variables
ACWOA a1 � [2, 0]; a2 � [−2, −1]; b � 1; w � [0.5, 1]

CWOA a � [2, 0]; r2 ∈ (0, 1); r3 ∈ (0, 1)

BA A � 0.5; r � 0.5; Qmin � 0; Qmax � 2
SCA a � 2; r4 � [0, 1]; r2 � [0, 2]

WOA a1 � [2, 0]; a2 � [−2, −1]; b � 1

BOA p � 0.8; power_exponent� 0.1;
sensory_modality� 0.01
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Figure 3: Continued.
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functional desires. For most test functions, SBOA obtains
the best minimum value before arriving at the maximum
number of iterations. Finally, the full results confirm the
superiority of SBOA in terms of statistical results, reliability
of global optimality, and algorithm success rate.

4.2.PredictionResults ofFaultDiagnosis. In this paper, a series
of IMFs are obtained by decomposing the vibration signals
using CEEMDAN in the four rolling bearings states. For rea-
sons of space, only the IMFs of the ball failure signal are listed, as
shown in Figure 4..e time-domain features of the IMF1–IMF6
components are more prominent and contain most of the
feature information. To further illustrate the advantages of
CEEMDAN in vibration signal analysis, the signal complete-
ness, orthogonality, and time consumption after CEEMDAN
decomposition are calculated for the four states. .e results are
shown in Table 5. It shows that CEEMDAN is better than
EEMD in orthogonality and completeness, although slightly
larger in time, but negligible for modern computers.

To illustrate that the CEEMDAN energy entropy can
reflect the four states of the roller bearing, the CEEEMDAN
energy entropy values are calculated for the different states
of the roller bearing. As shown in Table 6, the results show
that the CEEEMDAN energy entropy values of bearings in
different states are different. .e timescale of the IMF
components is relatively average when the bearings are in
the normal state. Hence, the CEEEMDAN energy entropy
value of bearings in the normal state is the largest. .e other
three states of the failure’s energy entropy are not the same
because the amplitude energy changes to a different degree at
different parts of the failure.

A random forest is constructed to perform feature se-
lection on energy entropy feature vectors to remove re-
dundant features. .e random forest is constructed to
evaluate the contribution of the seven energy entropy fea-
tures for discriminating the fault status. .e result is shown
in Figure 5.

.e features were arranged in ascending order of con-
tribution with feature numbers E7, E6, E3, E5, E2, E1, and E4.
At a time, one feature was removed from the feature set to
form a feature subset; thus, a subset of seven features is
constructed. A subset of these features is input to the SBOA-
KELM model for fault identification and calculates the
classification accuracy.

In this experiment, the SBOA-KELM model’s validity is
evaluated, and detailed results are shown in Table 7. .e
average accuracy of classification obtained by SBOA-KELM
is 100% in the table. Moreover, we observed that the SBOA
had achieved the optimal parameters of KELM on the op-
timal feature space obtained from the random forest, which
indicates that the SBOA has a good optimization capability
for searching the optimal values. To guarantee this paper’s
proposed technique’s validity, we compared SBOA-KELM
with KELM and BOA-KELM models. .e results are shown
in Figure 6. As shown, the classification accuracy of SBOA-
KELM is better than both KELM and BOA-KELM, where
the average classification accuracy of KELM is 98.12%, and
BOA-KELM is 99.38%..e classification accuracy of SBOA-
KELM has reached 100%, which is 1.88% better than the
average accuracy of KELM and 0.62% better than the average
accuracy of BOA-KELM, overcoming the underlearning
problem on a small sample and has shown more robust
generalization performance.
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Figure 4: Time-domain diagram of the IMF components of a vibration signal based on a rolling ball fault.

Table 5: Performance comparison of CEEMDAN and EEMD.

Experiment type Status of the rolling bearing Orthogonality Completeness Time t (s)

EEMD

Normal 0.1840 2.5469e− 07 12.11
Inner race failure 0.0366 2.5469e− 07 13.29

Ball failure 0.0155 2.5469e− 07 13.12
Outer race failure 0.0128 2.5469e− 07 13.43

CEEMDAN

Normal 0.1389 2.5469e− 34 17.68
Inner race failure 0.0246 4.3318e− 33 17.82

Ball failure 0.0081 2.3366e− 32 19.32
Outer race failure 0.0063 8.8566e− 34 19.52

Table 6: Entropy value of four states of the rolling bearing.

Status of the rolling bearing Normal Inner race failure Ball failure Outer race failure
Entropy 0.7545 0.4331 0.5554 0.6371
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5. Conclusions and Future Works

In this study, an intelligent fault diagnosis model based on
SBOA-KELM is established to identify the rolling bearings’
running state. .is approach’s innovation introduces SSA
into the BOA to get the right balance between the explo-
ration and exploitation of BOA for the first time. Compared
with ten other optimization algorithms, it was found that the
presented method achieves better solution quality and
smaller standard deviation on 30 IEEE CEC2017 benchmark
problems. SBOA also showed the better capability to obtain a
better combination of KELM parameters than the original
BOA. .e experimental results showed that the proposed

SBOA-KELM model had performed more accurately and
stably than its counterparts in recognizing rolling bearings.

For future work, several aspects need to be further ex-
plored. .e proposed SBOA-KELM method is intended to
be used in the future for other aspects of rolling bearings,
such as fault warning, real-time fault diagnosis, and live
monitoring. .e SBOA-KELM can also be combined with
other feature extraction methods, such as high-order
spectral analysis, inverse spectral analysis, wavelet trans-
formation, and variable modal decomposition, further to
enrich the fault diagnosis methods for rolling bearings.
Moreover, the proposed method can be further applied to
other scenarios including differentiation of malignant and

Table 7: Feature selection based on the random forest via the 10-fold CV procedure.

Fold {E4} {E1, E4} {E2, E1, E4} {E5, E2, E1, E4} {E3, E5, E2, E1, E4} {E6, E3, E5, E2, E1, E4} {E7, E6, E3, E5, E2, E1, E4}
No. 1 0.6880 0.9380 1.0000 1.0000 0.938 1.0000 1.0000
No. 2 0.8750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
No. 3 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9380
No. 4 0.9380 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
No. 5 0.8130 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
No. 6 0.8750 0.9380 1.0000 1.0000 1.0000 1.0000 1.0000
No. 7 0.7500 0.9380 1.0000 1.0000 1.0000 1.0000 1.0000
No. 8 0.9380 0.9380 1.0000 1.0000 1.0000 1.0000 1.0000
No. 9 0.8130 0.9380 1.0000 1.0000 1.0000 1.0000 1.0000
No. 10 0.8130 1.0000 1.0000 1.0000 0.9380 0.6880 1.0000
Avg 0.8250 0.9690 1.0000 1.0000 0.9880 0.9690 0.9940
Std 0.0820 0.0330 0.0000 0.0000 0.0260 0.0990 0.0200
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Figure 6: Performance comparison of SBOA-KELM, BOA-KELM, and ELM via the 10-fold CV procedure.
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benign thyroid nodules [100], diagnosis of Parkinson’s disease
[26–28, 36, 101], diagnosis or prognosis of paraquat-poisoned
patients [22, 23, 102, 103], identification of poisoning status
[104, 105], RNA secondary structure prediction [106], pre-
diction optimization of cervical hyperextension injury [107],
diagnosis of erythematosquamous diseases [108], othermedical
diagnosis problems [15, 25, 53, 55, 109–111], decision-making
methods [112–114], parameter optimization [115], deep
learning [116–118], image segmentation [119, 120], image
marbleization [121], image colorization [122, 123], image
editing [124], bankruptcy prediction [40, 46, 56, 125], face
recognition [126], neural network configuration [127], infor-
mation fusion [128], social evolution modelling [129], text
clustering [130], recognition of facial microexpressions [131],
unsupervised band selection [132], and other problems
[18, 30, 34, 35, 52, 133, 134].
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