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In order to deal with high-dimensional distributed data, this article develops a novel and communication-efficient ap-
proach for sparse and high-dimensional data with the penalized quantile regression. In each round, the proposed method
only requires the master machine to deal with a sparse penalized quantile regression which could be realized fastly by
proximal alternating direction method of multipliers (ADMM) algorithm and the other worker machines to compute the
subgradient on local data. (e advantage of the proximal ADMM algorithm is that it could make every parameter of
iteration to have closed formula even in high-dimensional case, which greatly improves the speed of calculation. As for the
communication efficiency, the proposed method does not sacrifice any statistical accuracy and provably improves the
estimation error obtained by centralized method, provided the penalty levels are chosen properly. Moreover, the as-
ymptotic properties of the proposed estimation and the convergence of the algorithm are convincible. Especially, it
presents extensive experiments on both the numerical simulations and the HIV drug resistance data analysis, which all
confirm the significant efficiency of our proposed method in quantile regression for distributed data by comparative and
empirical analysis.

1. Introduction

(e quick developments of modern science and technology
bring us to the distributed data which are characterized as
not only the multiple scales and high dimension, but also the
abundant diversity and variability. Distributed data promise
and often deliver big dividends and also make diverse
challenges to the statistic analysis. One special challenge is
that the storage and analysis of such data cannot be per-
formed on a single machine.

Since the data are stored inmultiple machines, it is natural
to consider methods that split the dataset across multiple
machines and conduct statistical inference in a distributed
manner [1–4]. One popular consideration is the divide-and-
conquer (DC) method [5–8], noting the main idea of DC is to
take the simple average and only use one round of com-
munication between different data segmentations.

However, these averaging-based one-shot communica-
tion methods tend to suffer from several drawbacks. Firstly,
when the number of machines for data segmentations is
large, the local sample size in each machine will be reduced,
which could result in the unsatisfactory estimation of each
local part, and the final estimation after average would not be
accurate. Secondly, when the underlying data model is
nonlinear, empirical studies show that the average estimator
can only be improved slightly on accuracy as for the local
estimators. In order to effectively overcome the above de-
ficiencies, Wang et al. [9] and Jordan et al. [10] proposed the
communication-efficient surrogate likelihood (CSL) proce-
dure to solve distributed statistical learning problems. Es-
pecially, Jordan et al. [10] pointed out that CSL can replace
the total likelihood function to do some statistical inferences.
(erefore, it only needs to exchange a number of local data
gradients which could effectively reduce the transmission
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cost of the distributed data. Moreover, the estimation of the
method can reach the same convergence rate as the global
likelihood-based estimation.

(e aforementioned studies of DC are mainly focused
on linear regression, which only consider the central trend
of the conditional distribution of the response variable. As
an alternative model, quantile regression proposed by
Koenker and Bassett [11] is to analyze the impact of re-
gressors on the conditional distribution of response.
Buchinsky [12] captured the heterogeneous impact of
regressors on different parts of the distribution, and
Koenker [13] exhibited great robustness to outliers by
measuring the effect of the regression variable in the upper
or lower tails of the distribution. Especially when the error
does not follow normal distribution, the quantile re-
gression estimator is more effective and interesting than
the least square estimator. Also, quantile regression for
high-dimensional data has recently been systematically
studied under the sparsity assumption, i.e., only a small
number of predictors correlating with the response
[14–20]. (e quantile regression model selection proce-
dure has been proved to have oracle property under some
appropriate penalties [15, 16, 21]. Yu and Lin [22] and Yu
et al. [23] used the popular ADMM algorithm to solve the
calculation problem of large-scale penalized quantile
regression. Recently Chen et al. [24] studied certain high-
dimensional distributed quantile regression. (e idea is to
transform the quantile estimate into a least squares es-
timate between the transformed response variable and the
covariate. However, the calculation needs to estimate the
density function of the error and the covariance matrix of
the covariate. (e main difference from our method is that
we approximate the total loss function of the sample with
a surrogate loss function, which greatly reduces the
amount of calculation.

Here, we propose a communication-efficient method
with penalized quantile regression on distributed data in this
article. (e observation data are supposed to be stored
randomly in multiple machines. Inspired by Jordan et al.
[10] at each round, we only solve the problem on the master
machine and calculate the subgradient on the other local
machines. After one round of communication, the esti-
mators are passed to each local machine to update the
subgradient, and then they are transferred to the master
machine for the next round of solution.

Importantly, noting that the loss function of quantile
regression does not have strong convexity and the sub-
derivative does not satisfy Lipschitz-continuity, the theo-
retical results by Jordan et al. [10] andWang et al. [9] cannot
be directly applied. Here, under more general conditions, we
prove the estimates obtained by our proposed method have
oracle properties as presented by Fan and Li [25] and Zou
[26]. In terms of algorithms, because the loss function of
quantile regression is not smooth, the usual calculation
methodmay not be very accurate. In addition, the traditional
ADMM algorithm on iteration of some parameters in high-
dimensional quantile regression has no closed-form solu-
tion, which could affect the calculation speed and efficiency.
Gu et al. [27] proposed the proximal ADMM algorithm to

effectively resolve the calculation problem of sparse penal-
ized quantile regression.

Hence, we combine it with CSL and propose the
proximal ADMM algorithm based on distributed computing
framework, which could effectively solve the computational
problems of quantile regression on distributed data. Since
our method has a display solution for each parameter in each
iteration and could be performed point by point, it is very
suitable for parallel computing. In each round of commu-
nication, only the subgradient calculated by the local data of
each machine needs to be transmitted to the host, which
greatly saves the cost of data transmission and improves the
calculation efficiency.

Moreover, the convergence property of the proposed
algorithm is still convincible. Considering the extensive
numerical simulations and the analysis on HIV Drug Re-
sistance Database, with our high-dimensional penalized
quantile regressionmodel, the estimation errors and variable
selection results obtained by our proposed approach are
compared with those obtained by the centralized method
which put all the data on one supercomputer. (e proposed
method can not only effectively solve the problem by dealing
with the heterogeneity of the distributed data but also reduce
the cost of storage and transmission. Most importantly, the
efficiency of the communication-efficient method with pe-
nalized quantile regression on distributed data could match
or transcend the centralized method.

(e rest of this article is organized as follows. We
propose the communication-efficient method with penal-
ized quantile regression in the next section and present the
proximal ADMM algorithm for solving the communication-
efficient penalized sparse quantile regression in Section 3. In
Section 4, we prove the oracle properties of the proposed
estimator. We conduct simulation studies to evaluate the
finite-sample performance of our proposed method in
Section 5. In Section 6, we demonstrate our method with
application to one real data example. Some remarks are
concluded in Section 7.(e proofs are outlined in Appendix.

2. Penalized Distributed Quantile Regression

Let yi, xi􏼈 􏼉
N

i�1 be N sample observations, where y is the
response variable and x � (x1, . . . , xp)T is the p-dimen-
sional covariate; here, p and N are both very large. Assume
the data are stored across k machines, and let
(yji, xji): i � 1, . . . , n􏽮 􏽯 denote the subsample stored in the

j-th machineMj for j � 1, . . . , k, where N � nk denoted the
global number of sample observations.

Given the covariate x � (x1, . . . , xp)T, considering the
linear model Y � xTβ + ε, the τth (0< τ < 1) quantile of
response variable Y is a linear function of the covariate
x � (x1, . . . , xp)T, that is,

Qτ(Y | x) � xTβ0(τ), (1)

with P(ε≤ 0|x) � τ. Here, the conditional distributed
function of Y is written as P(Y≤y|xi) � FY(y|xi) � Fi(y),
and so, Qτ(Y|xi) � F− 1

i (τ|xi) ≡ ξi(τ).
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Hence, the quantile regression model is to resolve the
following optimization problem:

􏽢β � argmin
β

􏽘

N

i�1
ρτ yi − xT

i β􏼐 􏼑, (2)

where ρτ(t) � t(τ − 1 t≤0{ }) is the asymmetric absolute de-
viation function. For ease of the exposition, we simplify the
argument τ in β0(τ) and ξi(τ) and denote them by β0, ξi,
respectively.

Define the local and global quantile regression loss
function as

Lj(β) �
1
n

􏽘

n

i�1
ρτ yji − x

T
jiβ􏼐 􏼑, j � 1, . . . , k,

LN(β) �
1
k

􏽘

k

j�1
Lj(β) �

1
N

􏽘

k

j�1
􏽘

n

i�1
ρτ yji − x

T
jiβ􏼐 􏼑,

(3)

whereLj(β) is calculated at β, using the local data stored in
j-th machine Mj.

We now apply communication-efficient distributed
approach to quantile regression, by proposing the surrogate
loss function as

􏽥L(β) ≔L1(β) − 〈β,∇L1 β0􏼐 􏼑 − ∇LN β0􏼐 􏼑〉, (4)

where β0 is any initial estimator of β, 〈·, ·〉 denotes the inner
product, and∇Lj(β) denotes the subgradient ofLj(β) with
respect to β.

For high-dimensional quantile regression, we consider
the following weighted L1-penalized surrogate estimate of
quantile regression:

min
β

􏽥L(β) + 􏽘 p
j�1pλ βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (5)

as a surrogate estimate for 􏽢β(τ) in (2), where λ> 0 is the
regularization parameter.

In the following, we use a convex ALasso (adaptive lasso)
penalty and nonconvex SCAD (smoothly clipped absolute
deviation) penalty to show the significance of our model. For
ALasso penalty, pλ(|βj|) � wj|βj|, where w � (w1, . . . , wp)T

is the vector of nonnegative weight, wj ≥ 0, j � 1, . . . , p. (e
typical choice of wj is wj � (|􏽢β

lasso
j | + 1/n)− ], j � 1, . . . , p for

some appropriately chosen ]> 0, where
􏽢β
lasso

� (􏽢β
lasso
j , j � 1, . . . , p)T denotes the quantile lasso

estimator.
Note that (5) is a convex optimization problem, and the

calculation is relatively easy. However, if the penalty is
nonconvex, such as SCAD [28] case, we have

pλ(|β|) � λ|β|I(0≤ |β|< λ) +
aλ|β| − β2 + λ2􏼐 􏼑/2

a − 1

·I(λ≤ |β|< aλ) +
(a + 1)λ2

2
I(|β|> aλ),

(6)

for some a> 2. A typical choice is a � 3.7 as suggested by Fan
and Li [25]. Although the nonconvex penalty has a

promising theoretical property, the singularity and non-
convexity of the penalty function have led us to encounter
several challenges in computing. Zou and Li [29] proposed
to replace the nonconvex penalized function by the local
linear approximation (LLA).

(en, the penalized procedure with both convex penalty
and nonconvex penalty can be transformed as the following
weighted optimization problem:

min
β

􏽥L(β) + λ‖w ∘ β‖1, (7)

where ‖w ∘ β‖1 � 􏽐
p
j�1 |wjβj| � 􏽐

p
j�1 wj|βj|. In the LLA case,

we usually take wj � λ− 1pλ′(|􏽢β
s− 1
j |), j � 1, . . . , p, where

􏽢β
s− 1

� (􏽢β
s− 1
j , j � 1, . . . , p)T is the estimation of the (s − 1)th

step iteration.

3. Algorithm Analysis

Now, we set up to develop a proximal communication-ef-
ficient surrogate likelihood ADMM (PCA) algorithm for
solving (7). We firstly solve the quantile on the master
machine and calculate the subgradient of the local data on
other machines. Secondly, we transfer these values back to
the master machine and combine them by formula (7), then
use Algorithm 1 to calculate the result, which constitutes one
communication. Using Algorithm 2 and after only a few
rounds of communications T, we can obtain excellent results
comparable to the centralized method. (e advantage of our
algorithm is that each step of Algorithms 1 and 2 has a
simple closed-form updata formula, which makes the cal-
culation speed being very fast, especially for the high-di-
mensional case. Furthermore, Algorithm 2 combined with
the CSL idea can achieve very accurate results.

Define z � y − Xβ and Qτ(z) � (1/n) 􏽐
n
i�1 ρτ(zi), where

X � (x11, . . . , x1n)T, y � (y11, . . . , y1n)T, and zi(i � 1, . . . , n)

is the i-th element of z. Hence, we consider the following
optimization problem:

min
β,z

Qτ(z) + gTβ + λ‖w ∘ β‖1

s.t.Xβ + z � y,

(8)

where g is a given subgradient vector with
g � ∇LN(β0) − ∇L1(β

0), and β0 is any initial estimate of β,
and the subgradient of loss function at zero can take any
value between two slopes.

By direct calculations, we have

∇L1(β) � −
1
n

􏽘

n

i�1
x1iψτ y1i − xT

i1β􏼐 􏼑,

∇LN(β) � −
1
N

􏽘

k

j�1
􏽘

n

i�1
xjiψτ yji − xT

jiβ􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where ψτ(u) � ∇ρτ(u) � τI(u> 0) + (τ − 1) I(u< 0) + ξI(u�0),

ξ ∈ [τ − 1, τ].
According to the idea of [10], we calculate the sub-

gradient vectors on each local machine by (9), then calculate
(7) for the master machine. Since 􏽥L(β) here is a nonsmooth
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function and the direct calculation efficiency is very low, we
use ADMM [30] to approximate 􏽥L(β) as follows. For fixed
σ > 0, the augmented Lagrangian function of (8) is defined as

Lσ(β, z, θ) � Qτ(z) + gTβ + λ‖w ∘ β‖1 − 〈θ,Xβ + z − y〉

+
σ
2

‖Xβ + z − y‖
2
2,

(10)
where θ ∈ Rn is the Lagrangianmultiplier and 〈·, ·〉 and ‖ · ‖2
denote the inner product and L2-norm in the Euclidean
space, respectively. Denoting (βm, zm, θm) as the mth iter-
ation of the algorithm for m≥ 0, the standard ADMM al-
gorithm is given by

β step: βm+1
� argmin

β
Lσ β, z

m
, θm

( 􏼁

� argmin
β

gTβ + λ‖w ∘ β‖1 − 〈θm
,Xβ〉

+
σ
2
Xβ + z

m
− y

����
����
2
2,

z step: z
m+1

� argmin
z

Lσ βm+1
, z, θm

􏼐 􏼑

� argmin
z

Qτ(z) − 〈θm
, z〉 +

σ
2
Xβm+1

+ z − y
����

����
2
2,

θ step: θm+1
� θm

− cσ Xβm+1
+ z

m+1
− y􏼐 􏼑,

(11)

where c is a constant controlling the step length for the θ
step.

Note that β step does not have closed-form formula with a
general design matrix X, usually just a numerical solution. Gu

et al. [27] proposed a proximal ADMM algorithm for com-
puting the sparse penalized quantile regression.We use this idea
to improve our algorithm so that the iteration of each parameter
has a closed-form expression, which speeds up the calculation
obviously, and the details are as follows. We consider to adding
a proximal term to the objective function in the β step and
modify the β step in (11) with the following augmented β step.

Augmented β step:

βm+1 ≔ argmin
β

gTβ + λ‖w ∘ β‖1 − 〈θm
,Xβ〉

+
σ
2
Xβ + z

m
− y

����
����
2
2 +

1
2
β − βm

����
����
2
S,

(12)

where S is a positive semidefinite matrix.
Let S � σ(ηIp − XTX) with η≥Λmax(XTX), where
Λmax(·) denotes the largest eigenvalue of a real symmetric
matrix. Here, ‖v‖2S ≔ 〈v, Sv〉 is the seminorm induced by the
semiinner product via S. In the augmented β step, the update
of β can also be carried out component-wisely,

βm+1 ≔ argmin
β

gTβ + λ‖w ∘ β‖1 − 〈θm
,Xβ〉

+
ση
2

β −
σηβm − g + XT θm + σy − σXβm − σzm( 􏼁

ση

��������

��������

2

2

� Shrink βm
j −

gj

ση
+

1
ση
Δj,

λwj

ση
􏼢 􏼣􏼠 􏼡

1≤ j≤p

,

(13)

where Δj � XT
j (θm + σy − σXβm − σzm),Shink[u, α] � sgn

(u)max(|u| − α, 0) denotes the soft shrinkage operator with

Input: data yi, xi􏼈 􏼉
N
i�1. Constants σ > 0 and τ > 0. Set the maximum number of iterations M.

(1) For m � 0, 1, 2, . . . , M − 1 do
(2) Update βm+1 via (13).
(3) Update zm+1 via (14).
(4) Update θm+1 via (11).
(5) End for
Output (βM, zM, θM).

ALGORITHM 1: pADMM-proximal ADMM algorithm for solving the weighted L1-penalized quantile regression.

Input: data yi, xi􏼈 􏼉
N

i�1 on machine Mj, j � 1, 2, . . . , k. Constants σ > 0 and τ > 0. Initialize the algorithm with (β0, z0, θ0) � (0, 0, 0)

and g � 0.
(1) Set M1 as the master machine and obtain the initial value (β0, z0, θ0) � (βM, zM, θM) on M1 using Algorithm 1.
(2) For t � 0, 1, 2, . . . , T − 1 do
(3) Master machine M1 broadcasts βt to each worker (i.e., M2, . . . ,Mk).
(4) Each machine Mm calculates subgradient ∇Lm(βt), m � 1, . . . , k and reduces them to master machine M1 to form

gt � ∇LN(βt) − ∇L1(β
t). Update (8) by replacing g with gt.

(5) Master machine M1 updates (βt, zt, θt) via Algorithm 1.
(6) End for
Output: βT.

ALGORITHM 2: (PCA)-proximal communication-efficient surrogate likelihood ADMM algorithm for solving the weighted L1-penalized
quantile regression.
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sgn(·) being the sign function and Xj denotes the jth col-
umn of X, j � 1, . . . , p, βm

j , andgj(j � 1, . . . , p) are the jth
components of βm and g, respectively.

(e update of zk has a closed-form solution and can be
implemented component-wisely too. Namely, for
i � 1, . . . , n, we have

z
m+1
i ≔ argmin

zi

1
n
ρτ zi( 􏼁 − θm

i zi +
σ
2
xT
1iβ

m+1
+ zi − y1i􏼐 􏼑

2

� argmin
zi

ρτ zi( 􏼁 +
nσ
2

zi − y1i − xT
1iβ

m+1
+
1
σ
θm

i􏼒 􏼓􏼔 􏼕
2

� Proxρτ y1i − xT
1iβ

m+1
+
1
σ
θm

i , nσ􏼒 􏼓,

(14)

where the proximal mapping operator Proxρτ(·, ·) is given by
Gu et al. [27] as follows:

Proxρτ(ξ, α) ≔ argmin
u∈R

ρτ(u) +
α
2

(u − ξ)
2

� max ξ −
τ
a

, 0􏼒 􏼓 − max − ξ −
1 − τ

a
, 0􏼒 􏼓.

(15)

In the following, we present the algorithms. Algorithm 1
is to solve the problem on the master machine and the final
communication-efficient distributed estimation can be ob-
tained by Algorithm 2.

4. Asymptotic Properties

In this section, for establishing the theoretical properties of
the penalized communication-efficient quantile regression,
we assume the data (xi, yi), i � 1, . . . , N􏼈 􏼉 consist of N

observations with the quantile regression model

yi � xT
i β0 + εi � xT

i1β10 + xT
i2β20 + εi, i � 1, . . . , N, (16)

with P(εi ≤ 0 | x) � τ. Here, xi � (xT
i1, x

T
i2)

T, β0 � (βT
10, β

T
20)

T,

xi1 ∈ Rs, xi2 ∈ Rp− s. (e model is sparse, and the true re-
gression coefficient is β10 with each component being
nonzero, and β20 � 0 (as a result β0 � (βT

10, 0
T)T). (is

means the first s regressors are important while the
remaining p − s regressors are noise variables.

In the following, we impose the conditions as follows:

C1. (e distributed functions Fi􏼈 􏼉 are absolutely
continuous, with continuous densities fi(ξi) uniformly
bounded away from 0 and ∞ at the points
ξi, i � 1, 2, . . ..
C2. For j � 1, . . . , k, there exists positive definite ma-
trices Σ0 and Σ1(τ) such that

(i) limn⟶∞n− 1 􏽐
n
i�1 xjixT

ji � Σ0,

(ii) n− 1 􏽐
n
i�1 fi(ξi)xjixT

ji � Σ1(τ),

(iii) maxi�1,...,n‖xji‖2/
�
n

√
⟶ 0.

C3. λn⟶ 0 and
�
n

√
λn⟶∞ as n⟶∞ (SCAD

penalty condition).
C4.

�
n

√
λn⟶ 0 and n(]+1)/2λn⟶∞ for some ap-

propriately chosen ]> 0 (ALasso penalty condition).

For ease of the exposition, we simplify the argument τ in
Σ1(τ) and denote it by Σ1.

Remark 1. (e condition C1 here is a common condition in
general quantile regression.(e condition C2 is the technical
condition being used in [31]. (e conditions C3 and C4 here
are the classic conditions for tuning parameters in the SCAD
and ALasso penalties, respectively.

Now, we present the asymptotic properties of the
communication-efficient distributed quantile regression for
the convex penalty (ALasso) and the nonconvex penalty
(SCAD).

Theorem 1 (consistency). Consider a sample (xi, yi), i �􏼈

1, . . . , N} from model (16). For the SCAD penalty with
conditions C1, C2, and C3, or for the ALasso penalty with
conditions C1, C2, and C4, there exists a local minimizer 􏽥β
such that ‖􏽥β − β0‖ � Op(n− 1/2).

(e following theorem gives the asymptotic oracle
properties of the estimate.

Theorem 2 (oracle). Consider a sample (xi, yi), i �􏼈

1, . . . , N} from model (16). For the SCAD penalty if condi-
tions C1, C2, and C3 are satisfied, or for the ALasso penalty if
conditions C1, C2 and C4 are satisfied, then we have

(a) Sparsity: 􏽥β2 � 0;

(b) Asymptotic normality:

��
N

√
􏽥β1 − β10􏼐 􏼑⟶

d
N 0, DΣ− 11 Σ01Σ

− 1
1􏼐 􏼑, (17)

where ⟶d means convergence in terms of distribution and
Σ01 is defined as the top-left s-by-s submatrix of Σ0,
D � kτ(1 − τ) + (k − 1) Var(ψτ(ε)) − 2Cov(ψτ(ε),ψτ(ε))􏼈 􏼉,
ε � y − xTβ0, ε � y − xTβ0.

Note the initial value β0 satisfies ‖β0 − β0‖2 � Op(n− 1/2)

and the regression error εi􏼈 􏼉 is independently and identically
distributed, with the τth quantile zero and a continuous
density f(·) in a neighborhood of zero.

We could obtain by (eorem 2 that D � τ(1 − τ), and��
N

√
(􏽥β1 − β10)⟶d N(0, τ(1 − τ)Σ− 101 /f2(0)). In this way,

the covariance of the proposed method is exactly same as
that of the centralized method [16]. Commonly, since the
initial value β0 can be chosen from the first machine sat-
isfying ‖β0 − β0‖2 � Op(n− 1/2), this means that our proposed
estimate is unbiased and applicable.

In the following, we establish the convergence of Al-
gorithm 1 and Algorithm 2. Note that g is a constant; by
(eorem 1 of Gu et al. [27], the convergence of Algorithm 1
is direct. Also, by choosing the appropriate step length c,

Complexity 5



PCA Algorithm 2 can own a sequence (βt, zt), t � 1, 2, . . .􏼈 􏼉

that converges to the global minimizer of problem (7).

Theorem 3. Given λ> 0, σ > 0, 0< τ < 1, 0< c< (
�
5

√
+ 1)/2

and a nonnegative weight vectorw, let (βt, zt, θt) be generated
by PCA Algorithm 2.Fen, the sequence (βt, zt), t � 0, 1, . . .􏼈 􏼉

converges to an optimal solution (β∗, z∗) to (8), and
θt, t � 0, 1, . . .􏼈 􏼉 converges to an optimal solution θ∗ to the
dual problem of (8). Equivalently, βt, t � 0, 1, . . .􏼈 􏼉 converges
to a global minimizer of problem (7). Moreover, when c � 1,
the sequence of norms ‖βt − β∗‖2S + σ‖zt − z∗‖

2
2 + σ− 1‖θt−􏽮

θ∗‖22, t≥ 0} is nonincreasing and satisfies ‖βt − β∗‖2S + σ‖zt−􏽮

z∗‖22 + σ − 1‖θt − θ∗‖22 � Op(1/t)} as t⟶∞.

5. Numerical Analysis

In this section, we demonstrate simulation studies to evaluate
the finite-sample performance of the communication-efficient
distributed quantile regression approach. Since least squares
regression has no advantage in dealingwith heterogeneous data
compared with quantile regression, we only focus on dis-
tributed quantile regression model in simulation comparison.

Now, we consider the heteroscedastic location-scale
model as in Wang et al. [18] for comparing the proposed
method with the centralized method which is supposed to
store all the data together in one supercomputer. Denote the
proposed method and the centralized method with ALasso
and SCAD penalties by E-ALasso, E-SCAD, C-ALasso, and
C-SCAD, respectively.

Let the random vectors (Z1, Z2, . . . , Zp)T generate by
the multivariate normal distribution Np(0,Σ), with
Σ � (σij)p×p and σij � 0.5|i− j|, and X1 � Φ(Z1) and Xj � Zj

for j � 2, 3, . . . , p. (e scalar response is generated
according to the following heteroscedastic model:

Y � X6 + X12 + X15 + X20 + 0.7X1ε, (18)

where ε is distributed as the standard normal distribution
N(0, 1), the student’s distribution t(2), and the Laplace
distribution L(0, 1) with the density being (1/2)e− |x|, re-
spectively. In that, these three distributions represent the
light or heavy tail characteristic.

Here, we set n � 100, p � 300, the machine number k �

10 or 50, and the total sample size N � nk. We randomly
divide all the data S into k subsets and denote the data stored
in the j-th machine as S(j), j � 1, . . . , k. We use the data S(j)

in one machine as the test set and the data S − S(j) of the
remaining (k − 1) machines as the training set to estimate
the parameter 􏽥β

(j)
(λ). By selecting the tuning parameter λ,

the k-fold cross-validation is used to minimize the estimate
prediction error in our communication-efficient distributed
model. As for each λ, the k-fold cross-validation standard is

CV(λ) � 􏽘
k

j�1
􏽐

xj,yj( 􏼁∈S(j)

ρτ yj − xT
j

􏽥β
(j)

(λ)􏼒 􏼓, (19)

then it is to resolve 􏽢λ � argminλCV(λ). In the centralized
case, we select the regularization parameters according to the
usual 5-fold cross-validation.

In each case, we present 100 repeated simulations and
compare the results obtained by the twomethods mentioned
above in accordance with the following four criteria:

Size: the average number containing nonzero regres-
sion coefficients: 􏽢βj ≠ 0, j � 1, 2, . . . , p.
Pa: the proportion including all true important re-
gression variables, namely, 􏽢βj ≠ 0, for any j≥ 1, satis-
fying βj ≠ 0. (is means the percentage of time
including X6, X12, X15, X20, and X1 at τ � 0.3 and
τ � 0.7, while X1 does not have to be included at
τ � 0.5, if the error distribution is symmetric about the
zero.
P1: the proportion of simulation running if X1 is
selected.
AE: the average of absolute estimation error defined by
􏽐

p
j�1 |􏽢βj − βj|.

Time: the average running time of the CPU in 100 runs.

For the two cases of k � 10 and k � 50, Tables 1 and 2 ,
respectively, depict the simulation results of the above-
mentioned five criteria. From Tables 1 and 2, we can see that
for three different types of error distributions and two
different numbers of storage machines, our proposed
method has a very good performance, and the results could
match or transcend the centralized situation. Specifically, the
results of the two methods are basically the same on the first
three criteria. As for the five criteria, the proposed method is
even smaller in the majority of the average absolute error
than the centralized method, but the standard deviation does
not change much. (is can be explained as our method is to
reuse the data information of each machine in communi-
cation, and similar results were also obtained by Wang et al.
[9]. For the error distribution of three different tails and the
two different machine numbers, the calculation results of the
simulated AE are also very close, which explain the ad-
vantages of our method in dealing with variable selection
and estimation of distributed data.

Tables 1 and 2 show the comparison of CPU running
time for 10 rounds of communication. It is clear that when
the number of machines is 10, the running times of the two
methods are similar. However, when the number of ma-
chines is increased to 50, the running time of our method is
significantly shorter than that of the oracle method, which
fully demonstrates the effective communication superiority
of our method for dealing with big data.

Figure 1 plots how the estimation error ‖βt − β∗‖2 varies
for the proposed method with the ALasso penalty when
k � 50, but the estimation error of the centralized method
looks as a horizontal line. In addition, the results of k � 10
and SCAD penalty are similar to Figure 1, which we will omit
here. Moreover, by Figure 1, the estimation error obtained
by our method decreases to be truly competitive with the
centralized method within very few rounds of communi-
cations. Usually, it just requires less than 5 communications
and could achieve smaller prediction error than the cen-
tralized method. (is phenomenon also appeared in [9],
which can be explained as our method is to use data in-
formation repeatedly.
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Table 1: Simulation results for k � 10, n � 100, p � 300, andN � nk.

ε τ Method Size Pa% P1% AE Time

N(0, 1)

0.3

E-ALasso 5 (0) 100 100 0.38 (0.03) 0.18
C-ALasso 5 (0) 100 100 0.40 (0.03) 0.21
E-SCAD 5 (0) 100 100 0.22 (0.05) 0.18
C-SCAD 5 (0) 100 100 0.33 (0.03) 0.21

0.5

E-ALasso 4 (0) 100 0 0.03 (0.01) 0.18
C-ALasso 4 (0) 100 0 0.04 (0.02) 0.21
E-SCAD 4 (0) 100 0 0.03 (0.01) 0.18
C-SCAD 4 (0) 100 0 0.07 (0.02) 0.21

0.7

E-ALasso 5 (0) 100 100 0.35 (0.03) 0.18
C-ALasso 5 (0) 100 100 0.40 (0.04) 0.21
E-SCAD 5.01 (0.10) 100 100 0.22 (0.04) 0.18
C-SCAD 5 (0) 100 100 0.31 (0.03) 0.21

t(2)

0.3

E-ALasso 5 (0) 100 100 0.45 (0.04) 0.19
C-ALasso 5 (0) 100 100 0.47 (0.04) 0.21
E-SCAD 5.02 (0.14) 100 100 0.31 (0.06) 0.19
C-SCAD 5 (0) 100 100 0.34 (0.04) 0.21

0.5

E-ALasso 4 (0) 100 0 0.03 (0.01) 0.18
C-ALasso 4 (0) 100 0 0.04 (0.01) 0.21
E-SCAD 4 (0) 100 0 0.05 (0.02) 0.19
C-SCAD 4 (0) 100 0 0.04 (0.01) 0.21

0.7

E-ALasso 5 (0) 100 100 0.44 (0.04) 0.19
C-ALasso 5 (0) 100 100 0.46 (0.04) 0.23
E-SCAD 5 (0) 100 100 0.31 (0.06) 0.19
C-SCAD 5 (0) 100 100 0.35 (0.04) 0.21

L(0, 1)

0.3

E-ALasso 5 (0) 100 100 0.37 (0.04) 0.19
C-ALasso 5 (0) 100 100 0.39 (0.04) 0.21
E-SCAD 5.07 (0.26) 100 100 0.27 (0.06) 0.18
C-SCAD 5 (0) 100 100 0.32 (0.04) 0.21

0.5

E-ALasso 4 (0) 100 0 0.03 (0.01) 0.17
C-ALasso 4 (0) 100 0 0.04 (0.01) 0.19
E-SCAD 4 (0) 100 0 0.04 (0.02) 0.18
C-SCAD 4 (0) 100 0 0.05 (0.02) 0.21

0.7

E-ALasso 5 (0) 100 100 0.37 (0.04) 0.18
C-ALasso 5 (0) 100 100 0.40 (0.04) 0.21
E-SCAD 5 (0) 100 100 0.19 (0.04) 0.18
C-SCAD 5 (0) 100 100 0.30 (0.04) 0.21

Size, the average number containing nonzero regression coefficients; Pa, the proportion including all true important regression variables; P1, the proportion
of simulation run X1 is selected; AE, the average of absolute estimation error, the numbers in parentheses are the corresponding standard deviations; Time,
CPU average running time. L(0, 1), Laplace(0, 1) distribution.

Table 2: Simulation results for k � 50, n � 100, p � 300, andN � nk.

ε τ Method Size Pa% P1% AE Time

N(0, 1)

0.3

E-ALasso 5 (0) 100 100 0.36 (0.02) 0.37
C-ALasso 5 (0) 100 100 0.37 (0.02) 1.24
E-SCAD 5.05 (0.26) 100 100 0.27 (0.05) 0.37
C-SCAD 5 (0) 100 100 0.32 (0.02) 1.24

0.5

E-ALasso 4 (0) 100 0 0.03 (0.01) 0.36
C-ALasso 4 (0) 100 0 0.03 (0.01) 1.24
E-SCAD 4 (0) 100 0 0.03 (0.01) 0.37
C-SCAD 4 (0) 100 0 0.01 (0.00) 1.24

0.7

E-ALasso 5 (0) 100 100 0.35 (0.02) 0.36
C-ALasso 5 (0) 100 100 0.38 (0.02) 1.24
E-SCAD 5 (0) 100 100 0.27 (0.04) 0.36
C-SCAD 5 (0) 100 100 0.32 (0.02) 1.23
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Table 2: Continued.

ε τ Method Size Pa% P1% AE Time

t(2)

0.3

E-ALasso 5 (0) 100 100 0.43 (0.02) 0.36
C-ALasso 5 (0) 100 100 0.46 (0.02) 1.21
E-SCAD 5.03 (0.17) 100 100 0.39 (0.05) 0.36
C-SCAD 5 (0) 100 100 0.39 (0.02) 1.21

0.5

E-ALasso 4 (0) 100 0 0.02 (0.01) 0.36
C-ALasso 4 (0) 100 0 0.04 (0.01) 1.21
E-SCAD 4 (0) 100 0 0.03 (0.01) 0.36
C-SCAD 4 (0) 100 0 0.02 (0.01) 1.21

0.7

E-ALasso 5 (0) 100 100 0.43 (0.02) 0.36
C-ALasso 5 (0) 100 100 0.45 (0.03) 1.19
E-SCAD 5 (0) 100 100 0.29 (0.04) 0.35
C-SCAD 5 (0) 100 100 0.38 (0.03) 1.19

L(0, 1)

0.3

E-ALasso 5 (0) 100 100 0.34 (0.02) 0.34
C-ALasso 5 (0) 100 100 0.37 (0.02) 1.13
E-SCAD 5.02 (0.14) 100 100 0.25 (0.05) 0.36
C-SCAD 5 (0) 100 100 0.30 (0.02) 1.25

0.5

E-ALasso 4 (0) 100 0 0.03 (0.02) 0.33
C-ALasso 4 (0) 100 0 0.03 (0.01) 1.10
E-SCAD 4 (0) 100 0 0.03 (0.02) 0.33
C-SCAD 4 (0) 100 0 0.01 (0.00) 1.11

0.7

E-ALasso 5 (0) 100 100 0.36 (0.02) 0.34
C-ALasso 5 (0) 100 100 0.36 (0.02) 1.11
E-SCAD 5.01 (0.10) 100 100 0.25 (0.04) 0.37
C-SCAD 5 (0) 100 100 0.29 (0.02) 1.25

Size, the average number containing nonzero regression coefficients; Pa, the proportion including all true important regression variables; P1, the proportion
of simulation run X1 is selected; AE, the average of absolute estimation error, the numbers in parentheses are the corresponding standard deviations; Time,
CPU average running time. L(0, 1), Laplace(0, 1) distribution.
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Figure 1: Continued.
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6. Study on HIV Drug Resistance

As an illustration, we apply the communication-efficient
penalized quantile regression model on a human immu-
nodeficiency virus (HIV) drug susceptibility dataset from
the HIV Drug Resistance Database (http://hivdb.stanford.
edu), a public resource for the study of sequence variation
and mutations in the molecular targets of HIV drugs [32].
(e HIV data are also available fromWang et al. [33]. When
a patient begins antiretroviral therapy, infected HIV may
form new mutations. Some mutations may not respond to
existing drugs, a feature known as drug resistance or reduced
drug sensitivity which means that the drug’s role in pre-
venting viral reproduction is diminished, and researchers
have estimated that in an untreated HIV-infected person,
every possible single-point mutation occurs 104 to 105 times
a day [34]. Drug resistance has become a major obstacle to
the treatment of HIV. (erefore, understanding the impact
of mutations on drug resistance is an important research
topic.

We analyze the susceptibility data for the drug efavirenz
(EFV). After excluding some rare mutations, the dataset

includes 1472 HIV isolates and 197 locations of mutations.
Although the sample size is not too big, the data background
traits conform to the distributed effect extremely. (e
susceptibility of an HIV sample is defined as the fold de-
crease in susceptibility of a single virus isolate compared
with the susceptibility of a wild type control isolate, that is,
the virus that has never been challenged by drugs. We focus
on predicting the log10-susceptibility, denoted by Y, related
to the EFV based on Xk, k � 1, . . . , p � 197, where Xk in-
dicates the presence of a mutation of interest in the k-th viral
sequence position. It is noted that the susceptibility data are
often stored in different locations and highly nonnormal,
even after logarithmic transformation. (erefore, commu-
nication-efficient quantile regression could provide a valu-
able method for analyzing these data. In practice, the
location of virus mutation is usually very scarce, so we would
get a sparse solution by adding penalties. Note the analysis of
the upper quantile of sensitivity is particularly important,
which is related to stronger drug resistance. (erefore, we
consider two quantile levels: τ � 0.5 and 0.75.

In our analysis, we use the ALasso and SCAD penalized
quantile regression model with the proposed approach and
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Figure 1: Comparison of two methods for the estimation error based on k � 50; the sparse ALasso penalized quantile regression. L(0, 1)

denote the Laplace(0, 1) distribution. (a) N(0, 1), τ � 0.3. (b) N(0, 1), τ � 0.5. (c) N(0, 1), τ � 0.7. (d) t(2), τ � 0.3. (e) t(2), τ � 0.5. (f )
t(2), τ � 0.7. (g) L(0, 1), τ � 0.3. (h) L(0, 1), τ � 0.5. (i) L(0, 1), τ � 0.7.
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the centralized approach to select those mutations that are
interested. We conduct 20 random partitions. For each
partition, we randomly select 1200 HIV isolates as the
training data and the other 272 as the testing data. We set
1200 training data on 12 machines and store 100 data on
each machine (n � 100, k � 12). A twelve-fold cross-val-
idation is applied to the training data to select the tuning
parameters. But, we use the usual 5-fold cross-validation
to select it, while using the centralized method. Table 3
records the average number of nonzero regression coef-
ficients (ave # nonzero) and evaluates the average pre-
diction error using the quantile loss function with τ � 0.5
and τ � 0.75, where the prediction error is defined as
(1/272)􏽐

272
i�1 ρτ(yi − 􏽢yi) and the numbers in the paren-

theses are the corresponding standard errors across 20
random partitions. Table 4 lists the frequency of the
important variables selected by the various methods for 20
random partitions. Figure 2 plots how the prediction error
varies for the proposed method with the rounds of
communication, but a horizontal line for centralized
method. Moreover, from Figure 2, we can see that as long
as a certain number of communications, the prediction
error of our method can be very close to even smaller
results than the centralized method, which shows our
method can match the performance of the centralized
method.(is phenomenon is consistent with the results of
simulated data.

From Table 3, we can see the average number of variables
selected is very close to 25 when τ � 0.5; however, when
τ � 0.75, it is close to 30. (is shows that the dataset has a
certain heteroscedasticity. From the perspective of the
prediction error, the proposed method yields a smaller
prediction error, which further demonstrates the good
performance of our method in the HIV data.

As we can see from Table 4, the variables selected using
our method are very consistent with those selected using the
centralized method. Similar phenomena also appear for the
case τ � 0.75 in Table 4. But, the ALasso penalized com-
munication-efficient distributed method performs poor in
variables X.172K, X.65R, and X.67G; for other variables, the
abovementioned twomethods are very perfect. However, the
variables selected by the SCAD penalized communication-
efficient distributed method are highly consistent with the
variables selected by the centralized method. (ese results
show that our method performs well in variable selection in
the HIV drug susceptibility dataset.

7. Discussion

We propose a new communication-efficient distributed
method to solve sparse penalized quantile regression on
massive data, with the parameter estimation obtained by the
proposed method having oracle properties. In terms of
computation, with a proximal ADMM algorithm under the
distributed framework, which makes every parameter of
iteration have closed formulas, we also establish the con-
vergence of the algorithm which owns nice efficiency and
accuracy. (e computational efficiency and accuracy of the
proposed method are verified by extensive numerical

simulation. (e simulation results show that our method
usually takes only a few communications to achieve priority
performance compared with the centralized approach even
having the heteroscedasticity, and the real data example
demonstrates that our proposed method has fine perfor-
mance in parameter estimation and variable selection in
high-dimensional quantile regression, especially for multiple
and distributed data with heterogeneity and outliers.

It is noted that our method and the PCA algorithm can
be modified to the quantile regression with the elastic net

Table 3: Analysis of HIV drug susceptibility dataset.(e numbers in
parentheses are the corresponding standard deviations.

Method
τ � 0.5 τ � 0.75

Anon PE Anon PE
E-ALasso 24.60 (2.19) 0.16 (0.01) 28.65 (2.43) 0.15 (0.01)
C-ALasso 24.25 (1.83) 0.20 (0.01) 27.25 (2.47) 0.17 (0.01)
E-SCAD 27.05 (2.54) 0.17 (0.01) 30.25 (2.27) 0.17 (0.01)
C-SCAD 25.15 (3.20) 0.20 (0.01) 29.65 (3.23) 0.17 (0.01)
Anon and PE represent the number of average nonzero variables and
prediction error, respectively.

Table 4: Frequency table for the HIV data.

Variable
τ � 0.5

Variable
τ � 0.75

CAL EAL CS ES CAL EAL ES CS
X.230L 20 20 20 20 X.230L 20 20 20 20
X.227L 20 20 20 18 X.227L 20 20 20 20
X.225H 20 20 20 20 X.225H 20 20 20 20
X.190A 20 20 20 20 X.190A 20 20 20 20
X.190S 20 20 20 20 X.190S 20 20 20 20
X.188L 20 20 20 20 X.188L 20 20 20 20
X.179D 20 20 20 20 X.179D 20 20 20 20
X.108I 20 20 20 20 X.108I 20 20 20 20
X.103N 20 20 20 20 X.103N 20 20 20 20
X.101H 20 20 20 19 X.102Q 20 20 20 20
X.101Q 20 20 20 20 X.101Q 20 20 20 20
X.101P 20 20 20 20 X.101P 20 20 20 20
X.101E 20 20 20 20 X.101E 20 20 20 20
X.100I 20 20 20 20 X.100I 20 20 20 20
X.90I 20 20 20 20 X.90I 20 19 20 20
X.219N 19 17 18 17 X.181C 19 19 18 20
X.98G.1 19 20 19 20 X.221Y 18 18 14 18
X.98G 19 20 19 20 X.101H 18 20 19 18
X.221Y 17 19 17 20 X.219N 16 13 18 17
X.215Y 16 15 14 12 X.219E 16 17 15 12
X.138A 13 14 13 11 X.103R 15 20 18 17
X.181C 11 20 13 20 X.98G.1 15 16 17 18
X.219E 10 5 10 14 X.98G 15 16 17 18
X.135L 10 4 13 9 X.74V 14 5 17 19
X.172K 7 11 10 12 X.65R 14 0 12 10

X.172K 11 2 13 6
X.67G 10 2 11 12
X.189I 9 13 16 17
X.102R 8 17 12 12
X.106I 7 6 9 2

Here, CAL, EAL, CS, and ES represent C-ALasso, E-ALasso, C-SCAD, and
E-SCAD, respectively.
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penalty, and the actual implementation of our proposed
PCA algorithm can be further improved to make it more
efficient in communication. For example, in each iteration of
(13), (14), and (11), we have to update all the data on each
machine to complete the iteration before it is done. In
addition, due to the synchronization in (13), (14), and (11),
the total computation speed must be limited by the slowest
computing machine. Zhang and Kwok [35] proposed an
asynchronous ADMM algorithm to resolve the problem.
Moreover, if the distributed data are ultrahigh-dimensional,
one necessary choice is to divide the data along the p di-
rection, which may be of further research interest.

Appendix

(e penalized communication-efficient distributed quantile
regression solves the optimal problem minβ∈Rp Q(β), where
Q(β) � n 􏽥L(β) + n 􏽐

p

j�1 pλ(|βj|).

Lemma A.1. For model (16) with true parameter β0,
denoting

Gn(u) � 􏽘
n

i�1
n 􏽥L

β0 + u
�
n

√􏼠 􏼡 − 􏽥L β0( 􏼁􏼢 􏼣, (A.1)
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Figure 2: Comparison of twomethods for the prediction error with the HIV data. (a) ALasso, τ � 0.5. (b) ALasso, τ � 0.75. (c) Scad, τ � 0.5.
(d) Scad, τ � 0.75.

Complexity 11



with conditions C1 and C2, we have, for any fixed u,

Gn(u) �
1
2n

􏽘

n

i�1
fi ξi( 􏼁uTx1ix

T
1iu −

1
�
n

√ 􏽘

n

j�1
xT
1iuψτ ε1i( 􏼁

+
1
�
n

√ 􏽘

n

i�1
xT
1iuψτ ε1i( 􏼁 −

1
�
k

√
1
��
N

√ 􏽘

k

j�1
􏽘

n

i�1
xT

jiuψτ εji􏼐 􏼑

+ op(1),

(A.2)

where ε1i � y1i − xT
1iβ0, εji � yji − xT

jiβ
0(1≤ i≤ n, 1≤ j≤ k).

Proof of Lemma A.1. Denote

Wn � −
1
�
n

√ 􏽘

n

i�1
x1iψτ ε1i( 􏼁,

Wn � −
1
�
n

√ 􏽘

n

i�1
x1iψτ ε1i( 􏼁,

WN � −
1
��
N

√ 􏽘

k

j�1
􏽘

n

i�1
xjiψτ εji􏼐 􏼑,

(A.3)

respectively.
We can obtain

Gn(u) � 􏽘
n

i�1
n 􏽥L

β0 + u
�
n

√􏼠 􏼡t − n 􏽥Lq β0( 􏼁􏼢 􏼣

� 􏽘

n

i�1
ρτ

ε1i − xT
1iu�

n
√􏼠 􏼡 − ρτ ε1i( 􏼁􏼢 􏼣

− 〈
�
n

√
u,∇L1 β0􏼐 􏼑 − ∇LN β0􏼐 􏼑〉.

(A.4)

Using Taylor’s theorem and Knight’s identity, ρτ(u−

v) − ρτ(u) � − vψτ(u) + 􏽒
v

0(I(u≤ s) − I(u≤ 0))ds, we get
􏽐

n
i�1[ρτ(ε1i − xT

1iu/
�
n

√
) − ρτ(ε1i)] � G1n(u) + G2n(u) + op(1),

where

G1n(u) �
1
2n

􏽘

n

i�1
fi ξi( 􏼁uTx1ix

T
1iu,

G2n(u) � −
1
�
n

√ 􏽘

n

i�1
xT
1iuψτ ε1i( 􏼁.

(A.5)

Merge with the second item to get Gn(u) �

G1n(u) + (Wn − Wn + (1/
�
k

√
)WN)Tu + op(1), which com-

pletes the proof.

Proof of Feorem 1. we adopt the method by Fan and Li [25]
or Wu and Liu [16]. To prove (eorem 1, it only needs to be
proved that for any given δ > 0, there exists a large constant C

such that

P inf
‖u‖�C

Q
β0 + u

�
n

√􏼠 􏼡>Q β0( 􏼁􏼨 􏼩≥ 1 − δ. (A.6)

(1) For the SCAD penalty, note that

Q
β0 + u

�
n

√􏼠 􏼡 − Q β0( 􏼁

� Gn(u) + n 􏽘

p

j�1
pλn

βj0 + uj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 − pλn

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼢 􏼣

≥Gn(u) + n 􏽘
s

j�1
pλn

βj0 + uj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 − pλn

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼢 􏼣,

(A.7)

where s is the number of components in β10, and βj0
denotes the j-th components of β10.
Note that, for large n,

n 􏽘
s

j�1
pλn

βj0 + uj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 − pλn

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼢 􏼣 � 0, (A.8)

uniformly in any compact set ofRp due to βj0 > 0, for
j � 1, 2, . . . , s, while the SCAD penalty is flat for
coefficient of magnitude larger than aλn when
λn⟶ 0. Since

Gn(u) �
1
2n

􏽘

n

i�1
fi ξi( 􏼁uTx1ix

T
1iu

+ Wn − Wn +
1
�
k

√ WN􏼠 􏼡

T

u + op(1),

(A.9)

and let hn(u) � (Wn − Wn + (1/
�
k

√
)WN)Tu with

Ehn(u) � 0. By condition C2 and Lemma 2 of Wu
and Liu [16], we can obtain (1/2n) 􏽐

n
i�1 fi(ξi)uTx1i

xT
1iu uniformly convergent to (1/2)uT􏽐1u on any
compact subsect of Rp which implies (A.6) holding,
then the conclusion of the theorem is established for
the SCAD penalty case.

(2) For the ALasso penalty case, note that

Q
β0 + u

�
n

√􏼠 􏼡 − Q β0( 􏼁

� 􏽘
n

i�1
ρτ y1i − xT

1i

β0 + u
�
n

√􏼠 􏼡􏼠 􏼡 − ρτ y1i − xT
1iβ0􏼐 􏼑􏼢 􏼣 − 〈

�
n

√
)u,

Wn − WN〉 + nλn 􏽘

p

j�1
􏽥wj􏽨

βj0 + uj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 􏽥wj βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(A.10)

and the first terms are exactly the same as in (A.7). A
proof similar to (eorem 3 [16] is that we have
nλn(􏽥wj|βj0 + uj/

�
n

√
| − 􏽥wj|βj0|) which converges to
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∞ in probability. So, similar to the proof of the first
part, (A.6) holds and completes the proof. □

Lemma A.2. (sparsity) Consider a sample (xi, yi) , i �􏼈

1, . . . , N} from model (16). For the SCAD penalty, if con-
ditions C1, C2, and C3 are satisfied, or for the ALasso penalty,
if conditions C1, C2, and C4 are satisfied, then with prob-
ability tending to one, for any given β1 satisfying ‖􏽥β − β0‖ �

Op(n− 1/2) and any constant C, we have

Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 � min
β2‖ ‖≤Cn− 1/2

Q βT
1 , βT

2􏼐 􏼑
T

􏼒 􏼓. (A.11)

Proof of Lemma A.2. noting β1 − β10 � Op(n− 1/2), and
0< ‖β2‖≤Cn− 1/2.

(1) For the SCAD penalty, note that

Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 − Q βT
1 , βT

2􏼐 􏼑
T

􏼒 􏼓

� Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 − Q βT
10, 0

T
􏼐 􏼑

T
􏼒 􏼓􏼔 􏼕 − Q βT

1 , βT
2􏼐 􏼑

T
􏼒 􏼓 − Q βT

10, 0
T

􏼐 􏼑
T

􏼒 􏼓􏼔 􏼕

� Gn

�
n

√
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑
T

􏼒 􏼓 − Gn

�
n

√
β1 − β10( 􏼁

T
, βT

2􏼐 􏼑
T

􏼒 􏼓

− n 􏽘

p

j�s+1
pλn

βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓,

�

�
n

√

2
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑n
− 1

􏽘

n

i�1
fi ξi( 􏼁x1ix

T
1i

�
n

√
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑
T

+
�
n

√
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑 Wn − Wn +
1
�
k

√ WN􏼠 􏼡

−

�
n

√

2
β1 − β10( 􏼁

T
, βT

2􏼐 􏼑n
− 1

􏽘

n

i�1
fi ξi( 􏼁x1ix

T
1i

�
n

√
β1 − β10( 􏼁

T
, βT

2􏼐 􏼑
T

−
�
n

√
β1 − β10( 􏼁

T
, βT

2􏼐 􏼑 Wn − Wn +
1
�
k

√ WN􏼠 􏼡 − n 􏽘

p

j�s+1
pλn

βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+ o(1) + op(1).

(A.12)

(e conditions β1 − β10 � Op(n− 1/2) and
0< ‖β2‖≤Cn− 1/2 imply that the first and third items
mentioned above are Op(1).
In addition,

�
n

√
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑 Wn − Wn +
1
�
k

√ WN􏼠 􏼡

−
�
n

√
β1 − β10( 􏼁

T
,􏼐 􏼑

βT
2 Wn − Wn +

1
�
k

√ WN􏼠 􏼡

� −
�
n

√
0T

, βT
2􏼐 􏼑 Wn − Wn +

1
�
k

√ WN􏼠 􏼡

� −
�
n

√
0T

, βT
2􏼐 􏼑 􏽥Wn,

(A.13)

where 􏽥Wn � Wn − Wn + (1/
�
k

√
)WN.

Under conditions C1 and C2, it follows from the
Lindeberg-Feller central limit theorem that

W
T
n , W

T

n , W
T

N􏼒 􏼓
T

⟶d N(0,Ω), (A.14)

where

Ω �

Ω11 Ω12 Ω13
Ω21 Ω22 Ω23
Ω31 Ω32 Ω33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Ωij � Ωji,Ω11 � τ(1 − τ)Σ0,

Ω22 � Ω33 � Var ψτ(ε)( 􏼁Σ0,

Cov Wn, Wn( 􏼁⟶ Cov ψτ(ε),ψτ(ε)( 􏼁Σ0 � Ω21,

Cov WN, Wn( 􏼁⟶
1
�
k

√ Cov ψτ(ε),ψτ(ε)( 􏼁Σ0

Cov WN, Wn( 􏼁⟶
1
�
k

√ Var ψτ(ε)( 􏼁Σ0 � Ω32.

(A.15)
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Hence, we have

Wn − Wn +
1
�
k

√ WN � Ip×p, − Ip×p,
1
�
k

√ Ip×p􏼠 􏼡 W
T
n , W

T

n , W
T

N􏼒 􏼓
T

⟶d N 0, αkΩα
T
k􏼐 􏼑, (A.16)

where αk � (Ip×p, − Ip×p, (1/
�
k

√
)Ip×p), and

􏽥Wn⟶
d

N 0,
DΣ0

k
􏼒 􏼓,

�
n

√
0T

, βT
2􏼐 􏼑 􏽥Wn �

���
n D

k

􏽲 �������

βT
2Σ02β2

􏽱

1 + op(1)􏼐 􏼑. (A.17)

Note that

n 􏽘

p

j�s+1
pλn

βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≥ nλn liminf
λ⟶0

liminf
θ⟶0+

pλ′(θ)

λ
􏼠 􏼡 􏽘

p

j�s+1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠(1 + o(1))

� nλn 􏽘

p

j�s+1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠(1 + o(1)),

(A.18)

where the last step follows based on the fact that
liminfλ⟶0liminfθ⟶0+(pλ′(θ)/λ) � 1.
(en,

�
n

√
λn⟶∞ implies that nλn �

�
n

√
(

�
n

√
λn) is

of higher order than
�
n

√
. So, we can obtain

Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 − Q βT
1 , βT

2􏼐 􏼑
T

􏼒 􏼓< 0, (A.19)

for large n. (is completes the proof of the SCAD
penalty case.

(2) For the ALasso penalty, note that

Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 − Q βT
1 , βT

2􏼐 􏼑
T

􏼒 􏼓 � Q βT
1 , 0T

􏼐 􏼑
T

􏼒 􏼓 − Q βT
10, 0

T
􏼐 􏼑

T
􏼒 􏼓􏼔 􏼕 − Q βT

1 , βT
2􏼐 􏼑

T
􏼒 􏼓 − Q βT

10, 0
T

􏼐 􏼑
T

􏼒 􏼓􏼔 􏼕

� Gn

�
n

√
β1 − β10( 􏼁

T
, 0T

􏼐 􏼑
T

􏼒 􏼓 − Gn

�
n

√
β1 − β10( 􏼁

T
, βT

2􏼐 􏼑
T

􏼒 􏼓

− nλn 􏽘

p

j�s+1
􏽥wj βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(A.20)

Also, note that the fore terms are exactly the same as in
(A.12) and here it can be bounded similarly. by(eorem 3 in
Wu and Liu [16], the proof is completed.

Proof of Feorem 2. part (a) can be established by Lemma
A.2. We only need to prove part (b).

(1) For the SCAD penalty, we prove that there exists a
root-n consistent minimizer 􏽥β1 of Q((βT

1 , 0T)T).
We can deduce from the proof of (eorem 1 that

�
n

√
􏽥β1 − β10􏼐 􏼑, (A.21)

minimizes Gn((θT, 0T)T) + n 􏽐
s
j�1 pλn

(|βj0 + θj/�
n

√
|), where θ � (θ1, θ2, . . . , θs)

T ∈ Rs.

From the proof of Lemma A.2, (eorem 1, and
Lemma 2 [16], we have

Gn θT
, 0T

􏼐 􏼑
T

􏼒 􏼓 �
1
2n
θT

􏽘

n

i�1
fi ξi( 􏼁xi1x

T
i1θ

+ Wn,11 − Wn,11 +
1
�
k

√ WN,11􏼠 􏼡

T

θ

+ op(1),

(A.22)

uniformly in any compact subset ofRs. Here, Wn,11 �

− (1/
�
n

√
) 􏽐

n
i�1 xi1ψτ(εi), Wn,11 � − (1/

�
n

√
) 􏽐

n
i�1 xi1ψτ

(εi) and WN,11 � − (1/
��
N

√
) 􏽐

N
i�1 xi1ψτ(εi).
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As a result of (A.8), we have

Gn θT
, 0T

􏼐 􏼑
T

􏼒 􏼓 + n 􏽘
s

j�1
pλn

βj0 + θj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

�
1
2
θT

n
− 1

􏽘

n

i�1
fi ξi( 􏼁xi1x

T
i1θ + Wn,11 − Wn,11 +

1
�
k

√ WN,11􏼠 􏼡

T

θ

+ n 􏽘

s

j�1
pλn

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + op(1)

�
1
2
θT

n
− 1

􏽘

n

i�1
f ξi( 􏼁xi1x

T
i1θ + 􏽥W

T

n,11θi + n 􏽘

s

j�1
pλn

βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + op(1).

(A.23)

Notice that the term n 􏽐
s
j�1 pλn

(|βj0|) does not de-
pend on θ; by derivation of the upper function, we
have

􏽢θ � n
− 1

􏽘

n

i�1
fi ξi( 􏼁xi1x

T
i1

⎛⎝ ⎞⎠

− 1

Wn,11 − Wn,11 +
1
�
k

√ WN,11􏼠 􏼡.

(A.24)

Similar to Lemma A.2, we can get

Wn,11 − Wn,11 +
1
�
k

√ WN,11⟶
d

N 0,
DΣ01

k
􏼒 􏼓. (A.25)

Applying Slutsky’s theorem [36–38], we have
��
N

√
􏽥β1 − β10􏼐 􏼑⟶

d
N 0, DΣ− 111Σ01Σ

− 1
11􏼐 􏼑. (A.26)

(2) For the ALasso penalty, note that

Q
β0 + u

�
n

√􏼠 􏼡 − Q β0( 􏼁

� 􏽘
n

i�1
ρτ y1i − x

T
1i

β0 + u
�
n

√􏼠 􏼡􏼠 􏼡 − ρτ y1i − xT
1iβ0􏼐 􏼑􏼢 􏼣

− 〈
�
n

√
u, Wn − WN〉

+ nλn 􏽘

p

j�1
􏽥wj

βj0 + uj
�
n

√

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 􏽥wj βj0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼠 􏼡.

(A.27)

Similarly, we have nλn( 􏽥wj|βj0 + uj/
�
n

√
| − 􏽥wj|βj0|) which

converges to∞ in probability when uj ≠ 0 or it converges to
0, otherwise, for large n.

As a result of Lemma A.1, we obtain

Q1
β0 + u

�
n

√􏼠 􏼡 − Q1 β0( 􏼁

⟶d V(u) �

1
2
uT
1Σ11u1 + 􏽥W

T

n,11u1, when uj � 0 for j≥ s + 1,

∞, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.28)

where u1 � (u1, u2, . . . , us)
T and 􏽥Wn,11 � Wn,11 − Wn,11+

(1/
�
k

√
)WN,11.

(e epi-convergence results of Geyer [39] imply that

argminQ
β0 + u

�
n

√􏼠 􏼡 �
�
n

√
􏽥β − tβ0􏼐 􏼑⟶

d
argminV(u).

(A.29)

Similarly, this proves the asymptotic normality part and
completes the proof.

Proof of Feorem 3. in Algorithm 2, denote
g0 � ∇LN(β0) − ∇L1(β

0), gt � ∇LN(βt) − ∇L1(β
t),

H(β) � λ‖w ∘ β‖1 + 〈g0, β〉, and G(z) � Qτ(z).
Replace f(β) and g(z) in (eorem 1 of Gu et al. [27]

with H(β) and G(z), respectively.
Similar to the derivation of (eorem 1 in Gu et al. [27],

formula (A.6) in the proof of (eorem 1 in Gu et al. [27]
becomes

0≤ (cσ)
− 1 dt

θ

����
����
2
2 − dt+1

θ

����
����
2
2􏼒 􏼓 + σ(c − 2) rt+1����

����
2
2

+ σ dt
z

����
����
2
2 − dt+1

z

����
����
2
2 − z

t+1
− z

t
����

����
2
2􏼒 􏼓

+ dt
β

�����

�����
2

S
− dt+1

β

�����

�����
2

S
− βt+1

− βt
����

����
2
S􏼒 􏼓

+ 2σ(1 − c)〈zt+1
− z

t
, rt〉 + 2〈g0 − gt

, dt+1
β 〉.

(A.30)

Note that according to the law of strong numbers, g0 and
gt converge almost everywhere to zero when n is sufficiently
large; therefore, if the last term of the above formula is
removed, the above inequality is still true.

Hence, the proof of (eorem 3 is finished.

Data Availability

(e NNRTI-EFV.csv data used to support the findings of
this study have been deposited in [33] (DOI: 10.1111/
rssb.12258) and also included within the article; since it is a
public open dataset, itcould be downloaded freely. Requests
for the data or the algorithmic routine, 6 months after
publication of this article, will be considered by the corre-
sponding author. (e NNRTI-EFV.csv data may be released
upon application to the HIV Drug Resistance Database, who
can be contacted via the website http://hivdb.stanford.edu or
http://blogs.gwu.edu/judywang/software/QMET/.
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