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Mechanisms for retrieving basic knowledge in the human mind are still unknown. Exploration is usually represented by cognitive
units, i.e., concepts, linked together by associative relationships forming semantic networks. However, understanding how
humans navigate such networks remains elusive, because the underlying topology of concepts cannot be observed directly, and
only functional representations are accessible. Here, we overcome those limitations and show that the hypothesis of an underlying,
latent geometry characterizing the human mind is plausible. We characterize this geometry by means of adequate descriptors for
exploring and navigating dynamics, demonstrating that they can capture the differences between healthy subjects and patients at
different stages of dementia. Our results provide the first fundamental step to develop a new unifying conceptual and com-
putational framework that can be used to support the assessment of neurodegenerative diseases from language and semantic
memory retrieval tasks, as well as helping develop targeted nonpharmacological therapies to maintain residual cognitive capacity.

1. Introduction

(e retrieval of basic knowledge from memory, known as
semantic memory [1], has long been the focus of a lively
debate across multiple research fields. Such a debate mainly
divides between two schools of thought, i.e., the one of
semantic space and the one of semantic networks. According
to the branch of semantic space, the search is a key cognitive
feature that operates similarly across different scales and
contexts [2]. In many domains, the search at different scale
(from the search for an object in a bag to the search for a
disease cure) always requires to manage the trade-off be-
tween exploiting what is known and exploring what is
unknown [2]. In this sense, the internal search of memory
retrieval exhibits similar characteristics to the external

search in physical space [3]. According to the theory of
optimal foraging [3], the process of retrieving concepts from
memory is dynamically similar to the one performed by
animals when searching for food between patches of their
environment [4]. (is mental dynamical process mediates
between local exploitation of clusters of information and
global exploration of such cluster, pursuing a sort of se-
mantic foraging [3]. In accordance with the marginal value
theorem [5], the semantic memory search is considered
optimal if the subject, as the animal does in the optimal
foraging, leaves a given cluster of information when the
benefit of local exploitation falls into the level of the expected
benefit of changing cluster and searching elsewhere [3]. In
the clinical field, the intuition that patients cognitively or-
ganized the semantic access around semantic clusters
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following a clustering and switching pattern in search has
been widely used to investigate the semantic retrieval [6] and
the semantic impairment [7]. However, in this method,
clusters are based on hand-made classification according to
taxonomies: limitations can be partially overcome by taking
advantage of distributional semantics to define the clustering
and chaining of concepts during a semantic memory re-
trieval task [8]. In summary, according to the semantic space
school of thought, the modelling of searching in semantic
memory needs two main ingredients: (a) a structural rep-
resentation of the search space (hand-coded or statistically
derived) and (b) a model of the search process (e.g., local to
global transitions) [4]. However, there is still no clear def-
inition of what a patch is and how to define it in memory [4].
Concurrently, another school of thought, the one of se-
mantic network, demonstrated that the same results ob-
tained with the optimal foraging in semantic space could
emerge from a random walk exploring a semantic network
[9, 10]. Instead of the clustering and switching processes, this
network approach was postulating a simpler and single
process of exploration on a network of concepts. According
to this approach, the navigation of concepts is represented by
associative semantic networks [11], fostering the idea that
concepts are cognitive units, each represented as a node
linked to associated elements [12–15]. A typical issue often
leveled against the use of semantic networks is that they
might end up explaining, or predicting, memory retrieval by
leveraging on models built from similar behaviors, for ex-
ample, when modelling semantic networks from free as-
sociations data to explain semantic fluency tasks [16].
Progress in building such networks from fluency data has
been made [17]; however, there is still no consensus about
the most appropriate way to construct semantic networks
[18]. Nevertheless, the semantic network approach has been
widely used in the clinical field for the assessment of psy-
chosis [19], Alzheimer’s disease [20–22], and in cognitive
science, for example, to investigate the levels of creativity
[23] and the openness to experience in the human beings
[24]. Over the past two decades, vector-space models of
words meaning as high-dimensional numerical vectors have
become serious contenders of semantic representation [25],
for example, when studying human psycholinguistic tasks
[26] or when exploring the semantic verbal fluency in mild
cognitive disorder [8]. Powerful tools involving this kind of
spatial representation of words are the so-called word
embeddings, bridging distributional semantics and natural
language processing, which map words into vectors in a
multidimensional space [27]. (e underling idea of this
approach can be summarized with the words of the English
linguist J. R. Firth, “a word is characterized by the company
it keeps” that, from a mathematical perspective, means that
the closer the words in the multidimensional space, the
closer their meaning in the vocabulary.

Language and semantic memory retrieval tasks are
crucial in the identification of neurodegenerative diseases
[28–30] and are usually employed in different neuro-
psychological tests. Among these tests, the categorical se-
mantic verbal fluencies (SVF) play an important role in the
assessment of dementia and Alzheimer’s disease in

particular [6, 31]. Here, patients are asked to pronounce as
many words as possible, belonging to a certain category,
within a given time interval. Patients’ performance is suc-
cessively evaluated, in particular by counting the amount of
words pronounced [32] or their response times [33]. To
investigate semantic retrieval, further approaches, based on
the intuition that patients cognitively organized the semantic
access around semantic clusters, have been widely used [6].
Recently, evidence of semantic maps tiling human cerebral
cortex has been provided from fMRI data, probing the
existence of semantic selectivity in brain areas [34] and
further strengthening the insight that the language can be
organized on a topological space, i.e., on a manifold. Nev-
ertheless, a clear understanding of the mechanisms behind
the navigation of semantic memory still eludes us [35, 36].

(e aim of this work is to provide a data-driven insight
on why the hypothesis of a spatial representation, i.e., of an
underlying, latent geometry characterizing the humanmind,
is plausible. Relying on clinical data of semantic verbal
fluency test from 215 subjects and leveraging on word-
embeddings tool, we aim at defining suitable metrics to
indirectly explore this possible, latent geometry. Our work
arises within the debate between semantic space and se-
mantic network representations, and it examines the ex-
ploration process, integrating both perspectives, space and
networks, according to an approach that builds upon the
geometry at the concept scale and culminates with diag-
nosis-based semantic networks, passing through the me-
soscale organization of concepts (clustering). Remarkably,
our framework allows us to gain new insights into the or-
ganization of concepts in the human mind and shed some
light on why some existing approaches were successful. In
fact, the mechanisms behind the retrieval of basic knowl-
edge, known as semantic memory [1], still remain funda-
mentally unknown [37]. Here, we fill this gap by (i)
hypothesizing the existence of an underlying geometry,
which governs the exploration of concepts in the human
mind, and (ii) demonstrating that such a geometry can
discriminate between healthy subjects and patients at dif-
ferent stages of dementia. Our hypotheses are based on the
assumption that if a common latent geometry underlying the
mental navigation of concepts existed, then subjects with
semantic retrieval deficits should show some distortion in
such a navigation on top of this geometry. Here, we observe
how different population of subjects, in terms of semantic
impairment, differently navigates the same geometry by
means of suitable metrics characterizing their explorations.
If our hypothesis is reasonable, we predict to see significant
differences in metrics computed from different diagnoses.

Our study is based on the analysis of semantic verbal
fluencies (SVF) data, belonging to animal category, from 92
patients suffering of dementia (DEM, M� 40%, F� 60%,
age� 75 ± 7, yrs of education� 9 ± 4), 93 patients suffering
of Mild Cognitive Impairment, a precursor of Alzheimer’s
disease (MCI, M� 48%, F� 52%, age� 77 ± 6, yrs of
education� 9 ± 4), and 30 healthy controls (CTR,M� 60%,
F� 40%, age� 32 ± 7, yrs of education� 17 ± 0.40). Dur-
ing the semantic verbal fluency test, each individual is asked
to report all words he/she can remember belonging to
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category of animals, within a time interval of 60 seconds.
Each spoken word is annotated by the neuropsychologist
who is testing the patient. No clues nor incentives are given
to the subjects during the tests, and any repetitions are not
marked. (e SVF test is a significant test for the assessment
of dementia diagnosis [31]. Generally, the semantic im-
pairment is more severe in patients with dementia than MCI
patients. (e rationale for looking at the semantic fluencies
of these two populations aims at testing our guess that if a
latent geometry existed, a different severity in semantic
memory retrieval impairment should be reflected in a dif-
ferent way of navigating concepts on such a plausible, latent
geometry. MCI subjects have an increased risk of conversion
to Alzheimer’s disease (and dementia in general). Possibly,
testing the differences between the exploration of concepts of
these two populations and a group of control by means of
spatial metrics might be relevant to get insight into how the
navigation of different category of subjects is performed
from a data-driven perspective. Instead of focusing only on
statistical descriptors of language, e.g., word frequency or
vocabulary size, in disease, we considered also in which
sequence the words have been provided; this information is
crucial, because it allows to map the navigation of concepts
in the underlying semantic space.

To characterize the navigability of this space in terms of
concepts visited in such unknown, possibly multidimen-
sional space, we first had to build a plausible geometric proxy
(illustrative representation in Figure 1).

To this aim, we used three distinct word embeddings
obtained from the Italian language, namely, Italian Word
Embeddings, trained on the Italian Wikipedia [38], itWac,
constructed from theWeb limiting the crawl to the .it domain
and using medium-frequency words from the Repubblica
corpus and basic Italian vocabulary lists as seeds [39], and
Twitter, trained on 46.935.207 tweets [39]; all the word
embeddings were generated with the popular word repre-
sentation models, word2vec [27]. By choosing three different
word embeddings, we are able to evaluate the robustness of
our metrics in geometries coming from different sources, i.e.,
a website (Wikipedia), a social network (Twitter), and a
newspaper (La Repubblica). In the following, we will refer to
word embeddings, semantic spaces, or geometries inter-
changeably. Here, the term geometry is justified by the fact
that we leveraged on word-embeddings, powerful tools that
encode the semantic relation between the words as a geo-
metric relationship between vectors in multidimensional
space. Word embeddings are built from data corresponding
to humans-written documents (in our case, Wikipedia,
Twitter, and La Repubblica, an Italian newspaper), which are
then embedded in a multidimensional space according to the
hypothesis of the distributional semantics. (is hypothesis
defines the semantics similarity in terms of vector similarity;
i.e., the closer the meaning in the vocabulary, the closer the
points representing the words in the word embeddings
(encoded by a vector of coordinates in a multidimensional
space). In this sense, by embedding the words pronounced by
a sample of subjects into a word embedding, which is a
coordinate space by design, we can study the mental navi-
gation of such subjects on a geometry of concepts. For each

group of subjects, we, therefore, have three independent
semantic spaces; each one is used to characterize the local
exploration and the overall navigation of the semantic ge-
ometry. More specifically, we introduce five different de-
scriptors for this purpose, in order to identify the effects of the
underlying geometry, if any. At the smallest scale, i.e., the one
of single concepts, geometry is probed in terms of:

(1) Maximum jump MaxJ, i.e., the maximum distance,
in the word embeddings, between two consequent
words pronounced during the test, it defines the
maximum instantaneous capacity to change context;

(2) Diameter of exploration DOE, i.e., the maximum
distance, in the word embeddings, between the
words pronounced during the test, whatever the
order, it defines the maximum capacity to change
context in the whole test duration. To be consistent,
we call this metric DOE, when it is computed with
the Euclidean distance, and amplitude of exploration
(AOE), when it is computed with the cosine distance;

(3) Density of exploration ρw, it corresponds to the total
amount of animal words potentially available in the
hypersphere built from the exploration radius R, half
the DOE, and which has as its center the centroid C

of spoken words in the word embeddings. It returns
ameasure of density in the volume of words explored
by the subject. Specifically, it defines the density of
pertaining words (i.e., belonging to the category of
animal) in the area explored by the subject in the
geometry;

(4) Distance d, it is the total distance covered during the
test; it quantifies the magnitude of the overall
exploration;

(5) And farness far, i.e., the average distance of the words
pronounced, it defines the ability to go far with a
certain number of jumps.

For mathematical details about each descriptor, we refer
to section Methods, while their significance in discrimi-
nating the three groups of subjects is evaluated by means of
Kolmogorov–Smirnov statistical tests and t-tests.

Afterwards, in line with the idea that the semantic access
is cognitively organized around semantic clusters [3, 6], we
probed the mesoscale organization of concepts by per-
forming a semisupervised clustering algorithm in the three
geometries. Accordingly, we define the explorative potential
of the navigation for each category as the total number of
visited clusters and as the total number of words included in
the visited clusters. (is descriptor is a proxy for the cog-
nitive effort spendable during the navigation, and it defines
the total amount of clusters/words, potentially visitable/
retrievable during the test. Clusters are then given as input to
a hierarchical clustering algorithm, which provides the
spatial hierarchy of such clusters based on their relative
distance. By comparing the distances between the visited
clusters, we are able to evaluate the existence of a hierarchy
in the way subjects explore concepts (technical details about
clustering and explorative potential can be found in section
Methods).
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Taking inspiration from the process of clustering and
switching when retrieving concepts from memory, network
scientists provided a new kind of random walk over a graph
as a Markov process, i.e., the switcher random walk [40], to
generalize the exploration task on a network. In this vein,
and by following the assumption of the semantic network
navigated by a random walk [10], we finally tested the
navigation of concepts by means of their Markov repre-
sentation, to probe the possible alterations of mental
pathways emerging from the exploration of concepts in
patients with dementia. Mathematically, this corresponds to
defining the transition probability from one state (i.e.,
cluster) to another, regardless of the previously visited states.
Operationally, we build three Markov chains, one for each
group, i.e. the two diagnosis and the healthy control, con-
sidering all the clusters visited by each group as the states of
the Markov chain of that group, and setting the transition
probabilities equal to the relative transition frequencies from
one state to another in each group. Each Markov chain is
characterized by the steady state distribution and the mean
first passage time matrix. In the following, we provide the
intuitions on how to interpret these two descriptors for each
network of concepts. (e intuitions behind the steady state
distribution and the mean first passage time (MFPT) matrix
are given by the purpose to investigate and to characterize
the search process pursued by each diagnosis on its network
of concepts. Being the mathematical model of the network of
concepts assumed as a Markov chain, the steady state dis-
tribution and theMFPTare the key descriptors to investigate
such a navigation dynamic. We assume that if it is true that
different diagnoses explore the network of concepts in
different way, the steady state distributions and the MFPT
should highlight these differences. In fact, the steady state
distribution defines the unique distribution to which the
exploration converges as the number of transitions in-
creases, regardless of a Markov chain’s initial state. Here, the

steady state is a vector, computed for each category, rep-
resenting the probabilities to be in each of the cluster of
words visited by that category, after a sufficient amount of
time. It is to be noticed that each subject has one minute to
complete the SVF test, but practically no patient uses it all
because he finishes the words before the one minute ends. In
this sense, one minute is enough to reach a regime situation,
which is mathematically represented through the steady
state distribution. However, it would be experimentally
impossible to test a subject for an infinite amount of time.
Our intention is to compare metrics that uniquely identify
the pattern of exploration, as given by steady state and
MFPT, for each category of subject; in this way, we can
detect any possible differences between such patterns. For
what concerns the intuition behind the MFPT matrix, it
encodes the mean amount of time required to go from one
state i to another state j of a Markov chain. In our case, the
MFPTmatrices encode the mean number of transitions to go
from one cluster of words to another. Specifically, we define
a MFPT matrix for each diagnosis. (e entries of such a
MFPTmatrix answer the question: starting form one cluster
of words i, how long does it take, on average, for this specific
category to reach a specific cluster of words j for the first
time? In this sense, the MFPT matrix characterizes the ex-
ploration dynamic of each diagnosis since it returns an
average measure of the time spent to navigate the underlying
network of concepts. In summary, MFPTmatrix defines the
average number of steps needed to reach a certain state from
another for the first time.(is idea, redefined on the network
of concepts, corresponds to the average time required for
each diagnosis to pass from one cluster to another for the
first time and then enable us to measure the time needed to
travel for the first time a certain mental link connecting two
groups of concepts. Taken in isolation, the steady state
distribution (ss) and the MFPTcan give us an insight of how
the exploration of each diagnosis evolves on the network and

Figure 1: Conceptual representation of semantic space. On the left, navigation of concepts on the semantic space, arrows, defines the
sequence of words. On the right, a zoom outlining the navigation, wn, is the concepts, wx their centroid, and R is the radius of exploration.
(is figure has been generated using the 3D Design Software SketchUp 2020.
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over time. For example, they provide us how heteroge-
neously the clusters will be explored after a sufficient number
of transitions (ss) and how much time it takes before a
cluster is visited for the first time (MFPT). To investigate
possible differences in the dynamic of exploration between
the diagnoses and the healthy control group, these de-
scriptors are then compared bymeans of similarity measures
between the three groups, i.e., Pearson correlation, Spear-
man’s correlation, Euclidean norm, Frobenius norm, and
covariance (for mathematical details about Markov chains,
we refer the reader to section Methods).

2. Results

2.1. Geometry. Overall, the metrics defined to characterize
the local exploration prove to be suitable for discriminating
between healthy and nonhealthy subjects in all the three
spaces. (e results for the three semantic space are shown in
Figure 2. Specifically, according to the results of t-tests all the
metrics in all geometries, except for far in twitter geometry,
are able to discriminate between healthy and nonhealthy
subjects, all having p values ≤0.0104 (see Table 2 of Sup-
plementary Materials for detailed results of t-tests). Also,
according to the results of Kolmogorov–Smirnov statistical
test, all the metrics, except for Maxj in itWaC geometry and
far in twitter geometry, reveal to be able to discern between
healthy and nonhealthy subjects all having p values ≤0.0304
(see Table 1 of Supplementary Materials for detailed results
of Kolmogorov–Smirnov statistical test).

Remarkably, the distance d is always significant not only
in discerning between healthy and nonhealthy subjects, but
also between different stages of dementia according to both
Kolmogorov–Smirnov and t-test (p values of KS test in all
the geometry are ≤0.0209, p values of t-test in all the ge-
ometry are ≤0.0076). Interestingly, in the Wikipedia ge-
ometry, KS test highlights that all the metrics turn out to be
significant (all having p values ≤0.0233), except for far and
Maxj, in distinguishing between all the three categories, i.e.,
healthy controls and the two stages of dementia MCI and
DEM. Also for the t-tests, the metrics turn out to be sig-
nificant (all having p values ≤0.017867), except for far, in
separating the three categories. Results on local exploration
can be summarized as follows:

(i) All the metrics can be used in all the geometries to
separate between healthy and nonhealthy, except for
Maxj in itWaC geometry and farin twitter
geometry;

(ii) All the metrics should be used only in theWikipedia
geometry, excluding the far and Maxj, to discrim-
inate between the three categories (DEM, MCI, and
healthy);

(iii) (e distance d metric is robust in separating all the
three categories across the three word embeddings
and should be used when considering the itWaC
and the Twitter geometry to discriminate between
different stages of dementia.

Detailed results of Kolmogorov–Smirnov statistical tests
and t-test for each metric are reported in Tables 1 and 2 of
Supplementary Materials.

2.2. Hierarchy. (e explorative potential is able to dis-
criminate between healthy and nonhealthy subjects
according to both KS tests and t-tests (p values ≤ 0.002 6, see
Tables 3 and 4 of Supplementary Materials for detailed
results), strengthening what we found at the local scale.

Figure 3 shows the tanglegrams for the pair MCI-DEM
for the three semantic spaces; it shows as well the values of
Baker’s Gamma correlation [41] compared with the null
models for all the pairs. What is clear in this analysis is the
strong correlation between MCI and DEM in the hierarchy
through which the concepts are explored, as evidenced by
the values of Baker’s correlation, equal to 0.88 in itWac, 0.97
in Twitter, and 0.73 in Wikipedia, and as validated by the
null model, in contrast with the correlation for all other
pairs. (is is notably remarkable when compared with the
values of correlation between the stages of dementia and
healthy controls, which, instead, are always close to zero in
the three geometries (two-dash lines in Figure 3).

2.3. Networks. (e Markov chains modelling the explora-
tion of concepts are displayed in Figure 4 and can be
considered as a proxy of the semantic networks for each
group of subjects. (e numbers of nodes of such networks
vary within the same group according to the spaces because
of clustering mapping (itWaC: CTR 19, MCI 13, DEM 11;
Twitter: CTR 16, MCI 12, DEM 9; Wikipedia: CTR 32, MCI
25, DEM 28). Overall, nonhealthy patients explore a smaller
portion of the semantic nodes with respect to healthy
control. It is to be noticed that, for the geometries of itWaC
and Twitter, there is a progressive decrease in the number of
visited nodes going from CTR to MCI and from MCI to
DEM. Not all the considered correlation measures between
the steady states and the mean first passage time matrices
agree in ranking the similarity between the analyzed groups,
and only some specific combinations of geometry-correla-
tion measure highlight higher correlation for the couple
MCI-DEM. In particular, this is true for the values of
Spearman correlation in itWaC and Twitter geometries and
for the ones of Pearson correlation in Wikipedia (specific
results are reported in Tables 5–7 of the Supplementary
Materials). Finally, the higher correlation between MCI and
DEM is confirmed in mean first passage time matrices,
where the values of Pearson correlation are the highest for
the couple MCI-DEM, while the Euclidean norm of their
difference is the smallest, evidence of similarity between the
two groups in all the geometries (specific values reported in
Tables 8–10 of Supplementary Materials).

3. Discussion

In this work, we investigated the assumption related to the
semantic space by testing how plausible is the hypothesis of a
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Figure 3: Hierarchy in exploration of concepts. Tanglegrams of the pairs MCI-DEM with null models of Baker’s Gamma correlation for all
the pairs, for each semantic space. Colored density functions represent Baker’s Gamma correlation of the null models, while two-dash
vertical intercept is the real value of correlation. (is figure has been generated using the publicly available R software, version 3.6.3.
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Figure 2: Geometry. Descriptors of local exploration of concepts for CTR, MCI, and DEM.(e distributions of the five local descriptors are
represented by boxplots within violin plots for each geometry and for each group of subjects. All the metrics are computed using the cosine
distance. (is figure has been generated using the publicly available R software, version 3.6.3.
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latent geometry underlying exploration of concepts in hu-
man mind, and whether this geometry can be used to
discriminate between healthy and nonhealthy subjects. Our
hypothesis is tested against different types of navigation, i.e.,
the one coming from healthy subjects and the one coming
from subjects with deficit in semantic memory retrieval task
according to a prior clinical evaluation. By means of suitable
metrics characterizing the spatial navigation of concepts on
three distinct word embeddings, we have demonstrated why
is being plausible, that the mental navigation process takes
place on a latent geometry, understood as an organized
manifold of lexical information, by relying on data coming
from 215 semantic verbal fluency tests. In terms of this, the
geometry of the word embeddings acted as a proxy of a
potential geometry of the human mind, intended as the
setting where the information is somehow organized, when
navigating the concepts.

We examined the exploration process, integrating two
main perspectives, space and networks, according to an
approach that builds upon the geometry at the concept scale
and culminates with diagnosis-based semantic networks,
passing through the mesoscale organization of concepts. On
the one hand, semantic networks do not give satisfactory
strength of evidence in discerning between the groups of
subjects considered (CTR, MCI, and DEM). In fact, results
vary according to word embeddings and correlation mea-
sures, consequently proving to be an indicative but not
definitive approach. On the other hand, the geometric

approach gives significant results in revealing differences
between healthy and nonhealthy subjects through local
descriptors, and in highlighting the similarities between
Mild Cognitive Impairment and patients with dementia
through hierarchy. It is to be noticed that the metrics dis-
tance d is always significant not only in discerning between
healthy and nonhealthy subjects, but also between different
stages of dementia in all the three geometry. Intriguingly, in
the Wikipedia geometry, all the metrics, except for farness
and maximum jump, are able to separate all the three
categories. In short, if we had to choose one metric that can
separate the three categories (DEM, MCI, and healthy
controls), whatever the geometry is, we would choose the
distance d. Otherwise, we had to choose a semantic space
that can capture the differences between the three categories
in all the considered metrics (excluding the farness and the
maximum jump), and we would declare the Wikipedia
geometry as the chosen one for this task. Finally, it is always
possible to distinguish between healthy and nonhealthy in all
the geometries whatever the metric is, except for Maxj in
itWaC geometry and far in twitter geometry (this is dem-
onstrated by the results of Kolmogorov–Smirnov tests and t-
tests, reported in table from 1 to 4 in the Supplementary
Materials). Our results suggest how the metrics, coupled
with word embedding, should be chosen according to the
purpose (i.e., discriminate between healthy and non-healthy
and/or discriminate between all the three considered cate-
gories, DEM, MCI, and healthy). It is worth noting that the
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Figure 4: Networks. Mapping mental pathways emerging from the navigation of concepts in healthy controls (CTR), mild cognitive
impairment subjects (MCI), and patients with dementia (DEM). Networks of concepts as reconstructed from semantic verbal fluency tests,
for the three semantic spaces. Colored nodes encode clusters of concepts reported by patients while performing the test where they are asked
to report words belonging to animal category. (e size of nodes is proportional to the nodes’ strength, while the thickness of the edges is
proportional to their weight. (is figure has been generated using the publicly available R software, version 3.6.3.
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Wikipedia word embedding is a multidimensional space of
300 dimensions, that is, more than double compared to the
other word embeddings used in this study (itWaC and
Twitter), which have 128 dimensions. (is means that, to
some extent, the Wikipedia geometry contains more in-
formation encoded in the relationship between words. (us,
it could be possible that all metrics computed in the
Wikipedia geometry can discriminate between all the three
categories precisely because of this higher information
stored in this word embedding.

We conclude that the geometric framework is an ef-
fective and robust approach to investigate the semantic
memory retrieval and to assess its abnormal navigation in
patients at different stages of dementia. For this reason, our
metrics could be used in support of the clinical assessment
as a data-driven tool for confirming, and not yet predicting,
the diagnosis. (is would help planning the longitudinal
referral, for example, by establishing a six-month visit
interval for DEM patients and a one-year interval for MCI
patients, avoiding stressing the latter ones in close visits.
Our investigation represents the very first step to provide a
new data-driven framework to eventually predict the di-
agnoses from fluency data when much of such clinical data
will be available. In this regard, a Bayesian mixed effects
model would be a powerful tool to get a grounded and
much informative inference on the relationship between
different key variables, such as the diagnosis label, the
population class demographic (age, sex, and education), the
semantic space (itWaC, twitter, and Wikipedia) and the
value of the metrics in each semantic space. In addition,
further development of this work should include a cohort
of elderly healthy controls. Moreover, knowing if a patient
is more performing in the density of explored concepts,
many words of similar meaning, or in changing con-
text,MaxJ, DOE, could help develop future targeted cog-
nitive stimulation based on the value of such metrics.
Cognitive stimulation [42, 43] is useful in preventing pa-
tients from abusing pharmacological therapy in favor of
personalized and more targeted exercises for the mainte-
nance of residual capacities. In other words, improving our
understanding of memory retrieval task and impaired
cognitive search could considerably improve the life quality
of people with dementia, often prone to develop secondary
diseases, such as depression [44], related to the inability to
express or recall concepts. Finally, given the robustness of
our results in separating healthy and nonhealthy subjects,
the geometric approach could be wisely used to develop
digital pretriage tools. In this way, by means of the metrics
proposed in our work, patients could be divided in the two
macro categories healthy and nonhealthy before the clinical
examination.(is would be of tremendous help in avoiding
unnecessary visits to healthcare facilities. Our goal might
seem ambitious and definitely challenging but maybe not
so unrealistic considering the historical moment we are
living in due to COVID-19. In fact, preventing most
susceptible subjects to the risk of pandemic, such as those
elderly people suspected of dementia, from unnecessarily
going to healthcare facilities could considerably safeguard
their lives.

4. Methods

4.1. Dataset. (e dataset we relied on consists of semantic
verbal fluencies (SVF) test records of 185 patients and 30 of
healthy controls (CTR). Among them 92 patients suffer of
dementia (DEM), which includes vascular dementia, fron-
totemporal dementia, degenerative dementia, and Alz-
heimer’s disease, while 93 suffer of Mild Cognitive
Impairment (MCI), a precursor of Alzheimer’s disease. (e
SVF records report the sequence of Italian words, belonging
to the category of animals, spoken by each patient and
control subject during the test. Our work is a retrospective
study of data previously collected by the Department of
Mental Health, Division of Psychology, Azienda Provinciale
per i Servizi Sanitari, in Trento, Italy. All the data was
collected in accordance with relevant guidelines and regu-
lations with participants’ written informed consent. DEM
and MCI diagnoses were made as well at Azienda Provin-
ciale per i Servizi Sanitari of Trento, Italy, by consensus of
medical specialists as geriatricians, neurologists, or psy-
chiatrists on the basis of physiological, instrumental, and test
medical data (blood tests, resonances, CT scans, liquor
samples, PET, and 18 neuropsychological tests: Mini
MentalState Examination, ENPA subtests, Naming, Verbal
fluency on phonemic cue, Verbal fluency on semantic cue,
Digit span forward/backward, Corsi span, Babcock story
recall test, Rey–Osterrieth complex figure, Modified Taylor
Complex Figure, Attentional matrices, Frontal assessment
Battery, Clock Drawing Test, Copy of Rey–Osterrieth
complex figure, Copy of Modified Taylor Complex Figure,
Cornell scale for depression in dementia, Activities of daily
living, and Instrumental activities of daily living). (e fact of
grouping together different type of dementia conditions is
motivated by the small number of samples related to each
dementia category we can rely on. By grouping together all
dementias, we obtain a sample that is comparable with that
of MCI. Anyway, for our assessment, we rely on official and
specialist sources, which report: “the boundaries between
different forms of dementia are indistinct and mixed forms
often co-exist” (WHO, https://www.who.int/news-room/
fact-sheets/detail/dementia).

(e Semantic Verbal Fluency (SVF) tests were con-
ducted at the Department of Mental Health, Division of
Psychology, Azienda Provinciale per i Servizi Sanitari, in
Trento, Italy, following a specific clinical protocol. In par-
ticular, the neuropsychologist asked each individual to re-
port all words he/she can remember belonging to the
category of animals, within a time interval of 60 seconds. No
clues nor incentives are given to the subjects during the tests.
As soon as the patient pronounces a word, the neuropsy-
chologist takes note by hand of the spoken word, the
neuropsychologist also notes the order in which the words
are pronounced, and any repetitions are not marked.

4.2. Semantic Space. To define the semantic space, we lev-
eraged on the powerful tool of word embeddings as plausible
geometric proxy of such a space. Particularly, we have used
three distinct word embeddings, obtained from the Italian
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language and generated with the popular word represen-
tation models, word2vec [27]:

(i) Italian Word Embeddings, trained on the Italian
Wikipedia, and embedded in 300 dimensions [38];

(ii) itWaC, constructed from theWeb limiting the crawl
to the .it domain and using medium-frequency
words from the Repubblica corpus and basic Italian
vocabulary lists as seeds. Words are embedded in a
128-dimensional space [39];

(iii) Twitter trained on 46.935.207 tweets and embedded
in a 128-dimensional space [39].

In order to get the number of animal words potentially
available in the hypersphere built from the exploration
radius R of spoken words for each subject, we translated into
Italian the list of animals made by Greg Borenstein, available
on GitHub at https://gist.github.com/atduskgreg/
3cf8ef48cb0d29cf151bedad81553a54. (is is used to com-
pute the density of exploration ρw, as specified in the next
paragraph.

4.3. Geometry. At the scale of single concepts, we provided
five different indicators useful to characterize the local ex-
ploration of concepts and eventually to discriminate be-
tween healthy and nonhealthy subjects. Each subject p

speaks an amount of words N during the SVF test, we call
this set of words Wp � wi with 0≤ i≤N􏼈 􏼉. For each patient
and for the healthy controls, we define the following metrics:

(1) Maximum jump MaxJ, it is the maximum distance,
in the semantic space, between two consequent
words pronounced during the test. It defines the
maximum instantaneous capacity to change context
as follows:

MaxJ
p

� max dist wt, wt+1( 􏼁( 􏼁wherewt, wt+1 ∈W
p
,

(1)

where dist can be both Euclidean distance and cosine
distance. Results are presented (in section Results)
considering the cosine distance for all the metrics.

(2) Diameter of exploration DOE, it is the maximum
distance, in the word embeddings, between the
words pronounced during the test, whatever the
order is; it defines the maximum capacity to change
context in the whole test duration as follows:

DOEp
� max dist wi, wj􏼐 􏼑􏼐 􏼑where wi, wj ∈W

p
.

(2)

According to the measure of distance, i.e., Euclidean
or cosine distance, this metric is defined, respec-
tively, as Diameter of exploration (DOE) or Am-
plitude of exploration (AOE).

(3) Density of exploration ρw, it corresponds to the total
amount of animal words potentially available in the
hypersphere built from the exploration radius R, half
the DOE, which has as its center the centroid C of
spoken words in the semantic space as follows:

ρp
w � 􏽘

A

a�1
dist C

p
, wa( 􏼁<R

p
( 􏼁,wherewa ∈ A, (3)

where Cp is the centroid of spoken words by patient
p, for each coordinates x of the semantic space, and it
is defined as follows:

C
p
x �

1
N

􏽘

N

w�1
xwi

. (4)

According to the dimension of the word embedding,
the centroid will have 300 or 128 dimensions, while A

is the complete set of animals in the word embeddings,
and R is the radius of exploration, i.e., half the DOE.

(4) Distance d, it is the total distance covered during the
test as follows:

d � 􏽘
N−1

i�1
dist wi, wi+1( 􏼁,wherewi ∈W

p
. (5)

(5) Farness far, it is the average distance of the words
pronounced; it defines the ability to go far with a
certain number of jumps as follows:

far �
􏽐

N−1
i�1 dist wi, wi+1( 􏼁

N − 1
. (6)

(e significance of the above defined indicators in
discriminating the three groups of subjects is eval-
uated by means of Kolmogorov–Smirnov statistical
test and t-test, with a 95 % confidence interval
(detailed results available in Tables 1 and 2 of
Supplementary Materials). It is to be noticed that we
are testing if each metric can separate between the
three categories DEM, MCI, and healthy controls (in
each word embedding). For this reason, being in a
case of multiple testing, we have adjusted the p

values of each performed test (Kolmogor-
ov–Smirnov and t-test) according to the
Holm–Bonferroni method.

4.4. Hierarchy. For each geometry, we provided its meso-
scale organization of concepts by performing a semi-
supervised clustering, using the linear algorithm of k-means,
and setting the number of clusters accordingly to the elbow
method (see Figure 5). Relying on these clustering config-
urations, we defined the explorative potential of the navi-
gation as the total number of visited clusters and as the total
number of words included in the visited clusters, for each
subject. (ese descriptors report the total amount of clusters
potentially visitable during the test and the total number of
words potentially retrievable during the test. Also, for
geometric indicators of previous section, even in this case,
the significance of the two explorative potential metrics in
discriminating the three groups of subjects has been eval-
uated by means of Kolmogorov–Smirnov statistical test and
t-test, with a 95% confidence interval (resulting values
available in Tables 2 and 3 of Supplementary Materials) and
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by adjusting p values according to the Holm–Bonferroni
method. By performing a clustering analysis between the
embedded visited clusters, we are able to evaluate the ex-
istence of a hierarchy in the way subjects explore concepts.

Once the clustering configuration for each geometry has
been obtained, it is possible to extract the hierarchical
configuration of these clusters, thanks to the coordinates of
the centroids of each cluster in the geometries. In other
words, the clusters are the same of k-means output, and
given the position of each cluster in the geometry (identified
by the centroid), it is possible to define a spatial hierarchical
relationship between such clusters, in terms of distances
between centroids.

Particularly, we computed the clusters’ distance metric
for each group setting the distance between not visited
clusters equal to the double of the maximum distance be-
tween visited clusters (i.e., a proxy to infinite), in this way, we
assure that the not visited clusters will not be relevant in the
hierarchical analysis of that group. With the distance ma-
trices so computed, we performed a hierarchical clustering
algorithm to discover the relationship between clusters.
Hierarchical relationship among clusters visited by a group
is shown through dendrograms, while differences between
hierarchies, i.e., in the way different groups explore concepts,
are displayed through tanglegrams Figure 3. Finally, we
investigated the correlation between the three groups by
computing Baker’s Gamma correlation coefficient in pairs
for the three groups’ trees (dendrograms) and by testing it
against a null model. For a better understanding of the
clustering analysis, we summarized below what we have
done in two main steps:

(1) Clustering configuration: We defined the mesoscale
organization of concepts; i.e., we identify the clusters
of concepts for each category (DEM, MCI, and
healthy control) and for each geometry by means of
linear semisupervised clustering algorithm (k-
means). (ese clusters represent how the expressed
concepts grouped together on a semantic space and
they will constitute the states of the Markov chains.
(rough k-means clustering, we also provided the
explorative potential which defines the total amount
of clusters explored by each category (see Figure 1 of
Supplementary Materials).

(2) Hierarchical configuration of clusters: (e clusters
identified by the k-means algorithm are then given as
input to a hierarchical clustering algorithm, which
provides the spatial hierarchy of such clusters based
on their relative distance. Intuitively, since the three
categories explore different clusters, the study of the
hierarchy gives us an insight into the way such
clusters are explored. In order to detect any possible
difference in the hierarchy, we compute the values of
Baker’s gamma correlation, a measure of similarity
between two trees (dendrogram) of hierarchical
clustering (see Figure 3).

4.5. Networks. At the macroscale, i.e., the scale of clusters of
concepts, the navigation of concepts is tested by means of its
Markov representation, to probe the possible alterations of
mental pathways emerging from the exploration of concepts
in patients with dementia. Mathematically, this corresponds
to defining the transition probability from one state (i.e.,
cluster) to another, regardless of previously visited states.
Operatively, we build three Markov chains, one for each
group g, i.e. the two diagnosis and the healthy control,
considering all the clusters visited by each group as the states
of the Markov chain of that group, and setting the transition
probabilities m equal to the relative transition frequencies
from one state (r) to another (s) in each group gas follows:

m
g
r,s �

􏽐
Pg

p E(r⟶ s)p

􏽐
Pg

p 􏽐
S
s E(r⟶ s)p

, (7)

where Pg is the total number of subjects of group g, S is the
total number of visited clusters by group g, and E(r⟶ s)p is
the outgoing edge from cluster r to cluster s for patient pth.
After calculating the entries m

g
r,s we obtain, as result, the

transition probability matrix 􏽢M for each category of subjects.
Here, the assumption is that each subject of each category is
considered as the “typical subject of that category” and
corresponds to a possible realization of the typical explo-
ration of that category. To clarify with an example, we
considered 93 patients suffering of MCI; this means that the
typical subject belonging to MCI has performed the tests 93
times. For practical reasons, we have transformed each
transition matrix 􏽢M according to the PageRank algorithm;
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Figure 5: Elbow plots of each geometry. (is figure has been generated using the publicly available R software version 3.6.3.
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this means that the stochastic process we are assuming to
model the exploration of concepts behaves 85% of time
according to the probabilities of the above determined
Markov chain and 15% of the time according to a discrete
uniform distribution [45–48] (for more details on the choice
of teleportation parameter in the PageRank algorithm, we
refer the reader to the dedicated section in Supplementary
Materials) as follows:

􏽢T � α 􏽢M +(1 − α)
1
S
, (8)

where 􏽢T represents the new transition matrix, α is equal to
0.85 according to the PageRank algorithm, and S is the
number of the states of the Markov chain. Each Markov
chain is then characterized by the steady state distribution π→

and by the mean first passage time matrix MFPT. (rough
the former, we gain information about the process at the
equilibrium, while, through the latter, we can have an insight
into the dynamic of the process during the exploration of
concepts. Bearing in mind the memoryless property of
Markov chains and that the probability of being in state r

after n steps is the rth entry of

πn
�→

� π0
�→

T
n
, (9)

where π0
�→ is the probability distribution of the initial state,

the steady state corresponds to the long-run equilibrium,
whatever the starting state is, as follows :

πs
→

� limn⟶+∞T
n
r,s. (10)

(e steady-state distribution is found by solving the
system of equations obtained by imposing

π→T � π→. (11)

with the constraint that all the components of π→ must sum
up to 1. (e steady state distribution can be obtained also by
means of eigenvectors. In this case, π→T � π→ can be seen as

v
→

A � λ v
→

. (12)

(erefore, π→ can be obtained from to the left-eigen-
vector of the square matrix T corresponding to the eigen-
value λ� 1. (e MFPT is obtained from the fundamental
matrix Z:

Z � (I − T + W)
− 1

, (13)

where I is the identity matrix, and W is a matrix of rows
identical to π→. (e MFPT is determined by

mfpti,j �
zj,j − zi,j

πj

. (14)

We compare descriptors (i.e., π→ and MFPT) according
to four different metrics: Pearson correlation, Spearman’s
correlation, covariance, and Euclidean norm of the differ-
ence, and for MFPT, we compare also its Frobenius norm. It
is to be noticed that, for theMFPT, we consider the common
visited states by the groups of which we want to compute the
metrics and take the matrix as a vector (resulting values
available in Tables 5–11 of Supplementary Materials).
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