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Considering that the global navigation satellite system (GNSS) has the influence of positioning and atmospheric signals from time
to time in meteorology, errors caused by moisture, and so on in the effect of the propagation path, these factors have led to the
influence of various indexes of meteorological factors. In this study, a meteorological prediction algorithm based on the CNSS and
particle swarm optimization is proposed. Aiming at the phenomenon that the particle swarm optimization (PSO) algorithm is
prone to slow convergence speed and low optimization accuracy and there is a local optimal but cannot achieve the global optimal,
an adaptive Kent chaotic map PSO algorithm is proposed. *rough the comprehensive analysis of the meteorological input
indicators in the GNSS, a noncurrent weight evaluation system is proposed. Under different evaluation systems, the PSO al-
gorithm is applied, and PCAweight can obtain the best prediction effect.*en, the GAmodel, PSOmodel, and ADPSOmodel are
used to predict PM2.5 index in meteorology. *e results show that the proposed ADPSO algorithm has a good performance in
RMSE, MAE, and R2 model evaluation.

1. Introduction

*e GNSS has the characteristics of omnibearing, all-
weather, all-time, and high precision. During its positioning,
when GNSS signals pass through Earth’s atmosphere, they
will be affected by the combined action of ionosphere and
atmosphere, which will slow down the signal propagation
speed and bend the propagation path, causing a delay in
time. *is delay in time is equivalent to the growth of the
propagation path. It becomes an error source in GNSS
positioning [1], in which ionospheric errors can be elimi-
nated by receiving dual-frequency signals and linearly
combining them. *e total tropospheric delay in the zenith
direction is approximately 2.5meters.*emain reason is dry
delay caused by dry air, about 90%. *e proportion of wet
delay caused by water vapor is small, about 10%; water vapor
only accounts for 0.1–4% of the whole atmospheric com-
position. It is an important part of the atmosphere, which is
used to describe the atmospheric state. Although the content
of water vapor in the air is low, the wet delay caused by water
vapor changes rapidly, which makes it difficult to estimate

the wet delay effectively. It is a key error that cannot be
ignored in the GNSS positioning error source. Researchers
can retrieve the water vapor in the atmosphere by using this
error source [2].

Conventional detection methods of atmospheric water
vapor include radiosonde technology, satellite remote
sensing inversion, microwave radiometer measurement, and
radar detection. Radiosonde and microwave radiometer are
complicated and expensive to measure. However, the ac-
curacy of satellite remote sensing inversion is low and
cannot meet the needs of daily and scientific research.
*erefore, new atmospheric water vapor detection tech-
nology is urgently needed to obtain accurate atmospheric
data [3]. Duan et al. proposed a method of directly mea-
suring GPS absolute precipitable water in 1996 [4]. Since
then, Boehm et al. have performed a lot of work to promote
the development of GPS meteorology [5, 6]. Literature [7]
proposes that the GNSS prediction value is used to predict
weather forecast, and STD is assimilated into numerical
forecast by using temporal and spatial correlation in the
GNSS. Composite observations obtained from numerical
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weather prediction model fields are used to evaluate the
influence of additional artificial factors (ionosphere, clock,
ambiguity, and multipath) on tropospheric estimates. Lit-
erature [8] uses the comparative advantage of GNSS ob-
servations in large time to quickly obtain clear humidity
information from ZTD. *e forecast is carried out for
specific areas, with emphasis on evaluating the correlation
between humidity and wind.*e GNSS, as an uninterrupted
provision of corresponding timely observation values, has
great advantages in prediction accuracy. Literature [9]
studies and discusses the influence of ZTD weather forecast
analysis obtained by the GNSS network and subsequent
forecast quality. ZTD has obvious positive effects on water
vapor in the middle and lower troposphere, air temperature
in the upper troposphere, and wind in the middle and upper
troposphere. Compared with the model without ZTD as-
similation, the error is reduced by 4%. *e advantages of
ZTD in the GNSS for improving weather forecast are
evaluated, and the construction of the GNSS network is
enhanced. Document [10] proposes an INCA system for
measuring the GNSS tropospheric water vapor content for
areas where climate conditions change rapidly and are
difficult to predict or areas with rugged terrain and great
height differences, with a time resolution of 1 h and a time
delay of less than 1 h. *e results show that the accuracy of
the estimated value of precipitable water (PW) is better than
1mm. In [11], the GNSS-RO system monitors climate, at-
mosphere, ionosphere, and earth. Relevant experiments
show that CNSS-RO can improve the accuracy of hurricane/
typhoon behavior prediction and significantly improve long-
term weather prediction. Document [12] evaluates the ap-
plication effect of RNSSs and GNSSs in space monitoring,
citing GPS radio occultation (RO) data to better simulate
climate models, forecast weather, and monitor ionosphere.
Document [13] proposes a GNSS/PWV dynamic meteo-
rological monitoring system based on Matlab platform.
Considering PWV, temperature, and humidity in meteo-
rological factors, a time series analysis model and a plane
dynamic visualization model are established. *e customer
can reflect that the system can predict the one-dimensional
and two-dimensional water vapor dynamic changes of the
weather and improve the weather prediction ability and
monitoring level. Literature [14] studies the causes of
evaluation errors in view of the uncertainty of GNSS pre-
diction and evaluation of water vapor in the atmosphere.
Statistical analysis and theoretical analysis are used to
evaluate the uncertain factors of water vapor. *e input
variables, software and hardware, data processing, and data
point allocation are emphatically evaluated, and the maxi-
mum uncertain factor is determined to be 75% in ZTD. *e
conversion factors of water vapor and ZTD are positively
correlated, and the proportion increases in humid weather.
Literature [15] puts forward a method of using GNSS ob-
servation data to predict precipitation in meteorology and
uses the current GNSS precipitation to predict this result.
Differential GNSS measurement is used to reduce GNSS and
clock errors, and meteorological measurement data and
delay accuracy GNSS PWV are used to evaluate system
performance. *e results show that the error of real-time

PWV is 2.1∼3.4mm, and the difference error is 1.4∼2.9mm
after reducing the comparison period for 20 days, which has
a high prediction effect. Document [16] effectively fuses the
input GNSS and InSAR data, geodetic data, and meteoro-
logical data. *e neutral layer phase of InSAR is separated
from the components in InSAR measurement. In the
comparative study of the GNSS, there are related observa-
tion residuals such as the prediction model, mapping
function, and gradient parameters in the GNSS. In addition,
the influence of InSAR residual on information path is
planned, and the midstream layer derived from weather
model data is analyzed suburban. Literature [17] selects
correlation prediction values from GNSS stations and shows
that there is 1% correlation between GNSS and PWV from
linear relationship. Combining PWV in the GNSS with
meteorological data, Bayesian and Levenberg Marquardt
algorithms are used to predict 30% and 50% of the dataset. It
is beneficial to the real-time monitoring of meteorology by
the system and can improve the prediction accuracy. *e
particle swarm optimization algorithm based on improved
self-application proposed in this study is applied to predict
meteorological information. In this study, meteorological
information is predicted according to the concentration
values of PM2.5, PM10, and CO. Tables 1 and 2 have various
input indexes.*e performance of the algorithm is evaluated
as an index, the optimal effect is obtained, and the per-
formance is compared with other algorithms again.

*e second part of this study introduces the GNSS
meteorological information model and PSO model. *e
third part describes the implementation process of the self-
applied PSO algorithm. *e fourth part evaluates the per-
formance of the algorithm by using four weight relation-
ships. In the fifth part, under the optimal weight evaluation,
different algorithms are compared. *e effective prediction
of weather can solve the problem of the poor prediction
effect and can timely understand the space quality and
corresponding climate problems.

2. Introduction of Relevant Theories

2.1. GNSS Meteorological Correlation Model. GNSS stream
layer delay can be described by the data model [18], and
relevant indexes can be obtained by studying delay data. *e
tropospheric delay is described by the length of the prop-
agation path, and the formula is as follows:

ΔL � 􏽚
L
n(s) ds − G. (1)

*ere is a refractive index in the atmosphere on the path
L, G is the physical length between the satellite and the
receiver, and equation (1) can be changed as follows:

ΔL � 􏽚
L
[n(s) − 1] ds − (S − G). (2)

In equation (2), S − G represents the influence of signal
path bending. *e value is relatively small, and the delay is
generally negligible. Considering the relatively small value
(n− 1), N represents the atmospheric refractive index, which
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is 106 (n− 1). *e related formula of total tropospheric delay
can be described as follows:

ΔL � 􏽚
L
[n(s) − 1] ds − (S − G) � ΔLsh + ΔLsw + ΔLsm,

(3)

where ΔLsh and ΔLsw denote the static and wet retardation,
respectively. ΔLsm indicates the delay of water vapor con-
densate in oblique path.

*e total delay of the oblique path can be projected to the
zenith direction of the station through the mapping function
to obtain the average value of the total delay on multiple rays
in the zenith direction, as shown in the following formula:

Dzt � Dst · f eel, iaz( 􏼁, (4)

where Dzt represents the total zenith delay, eal and iaz rep-
resent the altitude angle and azimuth angle of the satellite,
respectively, and f is the projection function. On the basis of
ensuring a certain accuracy, the satellite signal rays with
different altitude angles are converted to the zenith direc-
tion, and the influence of satellite signal bending is ignored.
When projected to the zenith, the expression is

Dzt � Dzh + Dzw + Dzhw. (5)

where Dzw is the zenith wet delay, and the main change is
affected by the water vapor content over the station. Dzhm is
the zenith water vapor condensation delay.

2.2. Basic Particle Swarm Optimization (PSO). *e PSO al-
gorithm is based on the simulation process of the predation
behavior of animals and birds. In the whole space, each bird
moves, can capture the optimal position of food in the space
and the global optimal position of food that all birds can
hunt. Birds can adjust their flight speed and position
according to their position in the global situation [19] to
obtain the behavior of the overall optimal food position.

Let the initial bird population be N in D-dimensional
space, the position of the ith particle is xi �

[xi1, xi2, . . . , xi D], and the flight speed is vi �

[vi1, vi2, . . . , vi D]. When the population undergoes t opti-
mization iterations, the optimal position of the particles is
obtained pbest, and the global optimal position of the particle
is gbest. *en, the formula for calculating the particle flight
speed and position update is expressed as follows:

v
t+1
i,d � wv

t
i,d + c1r1 pbestti,d − x

t
i,d􏼐 􏼑 + c2r2 gbesttd − x

t
i,d􏼐 􏼑,

(6)

x
t+1
i,d � x

t
i,d + v

t+1
i,d , (7)

pbest � pi1, pi2, . . . , pi D( 􏼁,

(8)

gbest � pg1, pg2, . . . , pg D􏼐 􏼑.

(9)

In the above equations (6)–(9), in the ith particle opti-
mization process, vt+1

i,d refers to the velocity in D-dimen-
sional space after t+ 1 iterations, xt

i,d refers to the position in
D-dimensional space after t iterations, w is an inertia weight,
c1 and c2 are the learning factors, set c1 � c2 � 2, and r1 and
r2 are the random numbers between 0 and 1.

Equation (6) updates the velocity of the latest particle at
present, and equation (7) predicts that the new position
information is based on the superposition of the last position
and the current velocity. Equations (8) and (9) take local
optimal particles and global optimal particles.

Formula (1) contains three formulas, which represent the
corresponding special meanings in particle swarm optimi-
zation. *e first formula vt

i,d indicates that particles search in
the region according to the speed and direction of previous
normal habits. *e second module c1r1(pbestti,d − xt

i,d) in-
dicates that particles work with the best search effect in
history in the current space. *e third module c2r2(gbesttd −

xt
i,d) is that each particle has the habit of searching in the

solution space following the optimal way of population
history and imparting its historical experience to other
people who want to acquire knowledge. Generally speaking,
the particle swarm optimization algorithm is to find opti-
mization by learning and imitating the way and historical
behavior of creatures discovering things in nature.

*e basic particle swarm optimization algorithm is as
follows:

Step 1: initialize the population
Step 2: calculate the fitness of particles

Table 1: Input of meteorological factors.

Variable Symbol Unit
Daily precipitation R mm
Sunshine time S h
Daily maximum temperature Tmax C
Daily minimum temperature Tmin C
Average air temperature Tave C
Minimum relative humidity Hmin %
Average relative humidity Have %
Large evaporation El mm
Small evaporation Es mm
Maximum wind speed Vmax m/s
Wind direction of maximum wind speed WDmax Azimuth
Maximum wind speed V10− ave m/s
Wind direction of maximum wind speed WD10− ave Azimuth
Average wind speed Vave m/s
Mean water vapor pressure VP hPa
Daily maximum pressure Pmax hPa
Daily minimum pressure Pmin hPa
Daily mean pressure Pave hPa

Table 2: Input of basic value of pollutant mass concentration.

Variable name Variable symbol Unit
Mass concentration of PM2.5 Vpm2.5 G/m3

Mass concentration of PM10 Vpm10 G/m3

CO mass concentration Vco G/m3

O3 mass concentration Vo3 G/m3

NO2 mass concentration Vno3 G/m3

SO2 mass concentration Vso2 G/m3
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Step 3: update the global extreme value and the individual
extreme value according to the fitness of the particles
Step 4: update the velocity and position of particles
according to equations (6) and (9)
Step 5: determine whether the maximum iteration
number is reached, if the program ends, and if it does
not, enter Step 2.

3. Adaptive Optimization Particle Swarm
Optimization (ADPSO)

Particle swarm optimization (PSO) has the advantages of the
simple model, few adjusted parameters, and easy imple-
mentation, but it is easy to have slow convergence speed and
low optimization accuracy in the optimization process of
some complex functions. In view of the shortcomings of the
PSO algorithm, the standard algorithm is improved.

3.1. Initialization Population of Quantum Bloch Coordinate
Coding. In quantum computation, the smallest information
unit is expressed by qubits. *e state of a qubit can be
expressed as [12]

|φ〉 � cos(θ/2)|0〉 + e
iφ sin(θ/2)|1〉. (10)

In equation (3), the numbers θ and φ sum defines a point
P on the Bloch sphere, as shown in Figure 1.

As is known from Figure 1, there is a one-to-one cor-
respondence between quantum position and Bloch spherical
point. Bloch coordinates are used to describe the quantum
position:

|φ〉 � cos φ sin θ sin φ sin θ cos θ􏼂 􏼃
T
. (11)

Points on Bloch coordinates are used to describe the
coding relationship of qubits, so that the ith candidate so-
lution of pi population is described as follows:

pi �

cos φi1 sin θi1

sin φi1 sin θi1

cos θi1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

· · ·

· · ·

· · ·

cos φin sin θi d

sin φin sin θi d

cos θi d

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (12)

where φij � 2π × rnd, θij � π × rnd, and rnd is a random
number between 0 and 1; i � 1, 2, . . . , n; j � 1, 2, . . . , d; n is
the size of the population, and d is the dimension of the
space. *e three optimal solutions for candidate solutions in
space are described as follows:

Pix � cos φi1 sin θi1, . . . , cos φi d sin θi d( 􏼁,

Piy � sin φi1 sin θi1, . . . , sin φi d sin θi d( 􏼁,

Piz � cos θi1, cos θi2, . . . , cos θi d( 􏼁.

(13)

*e corresponding feasible solutions are

xix � x
1
i1, x

1
i2, . . . , x

1
in􏼐 􏼑,

xiy � x
2
i1, x

2
i2, . . . , x

2
in􏼐 􏼑,

xiz � x
3
i1, x

3
i2, . . . , x

3
in􏼐 􏼑.

(14)

Solution space transformation: for Bloch coordinates
[xix, xiy, xiz]T on Pi, find the corresponding qubits. In the
optimization problem, the value range of the jth dimension
of each solution space is [aj, bj], and the solution space
formula of unit space Id � [− 1, 1]d is

x
1
ij �

1
2

bj 1 + xix( 􏼁 + aj 1 − xix( 􏼁􏽨 􏽩,

x
2
ij �

1
2

bj 1 + xiy􏼐 􏼑 + aj 1 − xiy􏼐 􏼑􏽨 􏽩,

x
3
ij �

1
2

bj 1 + xiz( 􏼁 + aj 1 − xiz( 􏼁􏽨 􏽩.

(15)

3.2. Optimization Strategy. *e Kent chaotic map model is
described as follows:

Z
t+1

�

Z
t

a
, 0<Z

t ≤ a,

1 − Z
t

􏼐 􏼑

(1 − a)
, a<Z

t < 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

In formula (16), parameter a ∈ (0, 1); when
Lyapunov> 0 of Kent mapping, the mapping relationship is
in a chaotic state. Set a� 0.4, and the probability density
function needs to obey uniform distribution, and its value is
between 0 and 1. Lyapunov describes the divergence ratio of
small uncertainties in the initial state. *e Lyapunov is 0.696
for Kent chaos and 0.691 for logistic, which is dominant.

When chaos searches, the ergodicity of chaotic motion is
used to generate chaotic series based on the current search
stagnant solution, and the global optimization is obtained
from the optimal solution of the whole sequence, so that the
algorithm falls into local optimization. In PSO particle
optimization, the optimal sequence of the solution space is
not significantly improved after continuous limit iteration
search, which shows that the global optimal solution is not
easy to obtain in the local optimal solution of the solution
space, so Kent is used for chaotic optimization. Chaotic
optimization is carried out on the local optimal position of
the PSO algorithm. *e solution space of the optimization

|ϕ〉

|0〉

z

θ

φ
x y

p

|1〉

Figure 1: Bloch sphere representation of a qubit.
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problem is [Xmin, Xmax]. Kent implementation steps are as
follows:

Step 1 : the sums X1
ij, X2

ij, and X3
ij are mapped into the

domain [0, 1] of Kent equation by using
equation (16):

Z
0

�
Xα − Xmin

Xmax − Xmin
. (17)

Step 2 : generating Cmax chaotic variable sequences by
iteration of Kent equation (k � 1, 2, . . . , Cmax);

Step 3 : Zk is amplified by carrier operation and
then loaded on particle individuals Pix, Piy, and
Piz to be searched. *e chaotic operator is
operated in the original solution space to obtain
a new individual position Uk, wherein
(k � 1, 2, . . . , Cmax);

Uk � Xx,y,z +
Xmax − Xmin( 􏼁

2
× 2Zk − 1( 􏼁. (18)

Step 4 : the fitness value f(Uk) of Uk is calculated and
compared with the fitness value f(X) of X to
retain the best solution, and the above process is
shown in Algorithm 1:

4. Weather Forecast Model

4.1. Meteorological Data. *e meteorological data collected
in this study are the average mass concentration of 1 h, and
the data were converted into 24-hour daily average. *e
corresponding meteorological data in this area are 18 sta-
tistical variables commonly used in meteorology, as given in
Table 1.

Table 1 provides the important indicators monitored in
meteorological information which are important for pre-
dicting actual meteorological values. *rough the index
research of input variables, the corresponding values, and
units of different indexes, Table 2 provides the important
indexes of predicted output values.

4.2. Weight Analysis and Model Evaluation. *e input var-
iable prediction fusion method is to fuse 18 input variables,
and the fused variables can effectively analyze the effec-
tiveness of the model proposed in this study.

4.2.1. PCA Weight. w represents the coefficient of each
principal component, wij represents the coefficient of the jth
index of the first principal component, fi represents the
variance contribution rate of the first principal component,
and the weight of the qth index is

rq �
􏽐

n
i�1 wiq · fi

􏽐
n
i�1 fi

. (19)

Normalization of equation (19) is

wq �
rq

􏽐
m
i�1 ri

. (20)

4.2.2. Entropy Weight. *e analysis method of the entropy
weight method is to judge the weight based on the variation
of index. By calculating the information entropy, the weight
relationship is analyzed by the information entropy of each
index. When the information entropy of the index is rela-
tively small, it means that the variation probability of the
index is relatively large, the amount of information that can
be reflected is relatively large, and the representative weight
in the whole index evaluation system is relatively large. If the
information entropy of the index is relatively large, it means
that the variation probability of the index is small, the
amount of information that can be reflected is small, and the
representative weight in the whole index evaluation system is
relatively small.

hi � −
1

ln n
􏽘

n

j�1

rij

􏽐
n
j�1 rij

ln fij,

wi �
1 − hi

m − 􏽐
m
i�1 hi

, 0≤ 1, 􏽘
m

i�1
wi � 1⎛⎝ ⎞⎠.

(21)

4.2.3. Correlation Analysis. *rough the analysis of the
correlation of input variables, it is mainly to analyze which
input indicators have input weight relationships among
different output variables. We adopt the correlation formula
as follows:

ρ(x, y) �
Cov(x, y)

[V(x) · V(y)]
0.5. (22)

According to the correlation coefficients between the
calculated meteorological parameters, the appropriate input
can be selected when constructing the particle algorithm,
which can not only reduce the parameters of model training
but also avoid the negative impact of unnecessary param-
eters on the prediction results.

4.2.4. Model Evaluation. In order to comprehensively
evaluate the prediction accuracy of the model, three types of
evaluation indexes, namely, root mean square error (RMSE),
average absolute error (MAD), and determination coeffi-
cient (R2), are used to evaluate the difference level, absolute
error, and goodness-of-fit between the predicted value and
the measured value of the model.

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

, (23)

MAE �
1
N

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (24)

R
2

�
􏽐

n
i�1 yi − y( 􏼁

2
− 􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2 . (25)
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*ere are differences in the adoption methods of the
above three methods. For the judgment and correlation
analysis of all input indexes of the first twomethods, only the
better indexes may be selected for input research to see how
the final prediction results are. *e PSO algorithm is used to
predict PM2.5 in meteorology under different weights, and
the prediction effect is shown in Figure 2.

As can be seen from Figure 1, the weight index application
using PCA weight has the best performance, is highly con-
sistent with actual data on the whole, and has a good overall
prediction effect. However, the worst prediction effect is the
related index relationship model, which may lack some input
attributes, and the overall performance is not ideal.

In order to reflect the different advantages of the three
evaluation methods, the performance of the above three
evaluation models under the PSO algorithm is compared by
using formulas (23)–(25), as shown in Figure 3.

Figure 3 shows the advantages and disadvantages of
evaluation indexes under different weights. It is obvious that
PCA weight has the best performance and correlation

analysis model has the worst performance. On the whole, the
prediction effect is relatively ideal. In the following, various
algorithms and the PCA weight model are used to com-
prehensively predict different index weights.

4.3. Comparison of Prediction Methods of Different
Algorithms. Considering that the adaptive optimization
particle swarm optimization algorithm proposed in this
study has certain advantages in the above three weight re-
lationships, PCA weight relationship is used to set the
weights of the other three algorithms proposed in this
section. Compare the prediction effects of other algorithms
under meteorological data, as shown in Figure 4.

From Figure 4, it can be seen that the ADPSO algorithm
has obvious advantages in the overall prediction effect, and
its good performance on dates 6-5 and 6–15 basically co-
incides with the original data. *e prediction effect is not
ideal for the GAmodel, and the prediction effect is the worst
on dates 3–5, 3–25, 10–15, and 10–25, which is almost close

Step 1: algorithm parameter setting: PSO scale N, maximum iteration times Tmax, iteration times t;
Step 2: for population initialization, let t� 0;
Step 3: perform iteration on that particle swarm optimization algorithm;
While (t<Tmax) do

Calculate the fitness value of particle swarm, update the positions of pbest and tbest according to the fitness value, and record the
positions Pix, Piy, and Piz;
For i � 1 to N do

Calculate the speed and position values of control parameters according to equations (1)–(4);
Update the initialization population coded by parameter coordinates according to equations (11)–(13);
Update the positions of the remaining particles according to equations (4)–(6);
Update the position of Pix, Piy, and Piz according to Kent chaotic search strategy;

End for
t � t + 1

End while

ALGORITHM 1: ADPSO algorithm pseudocode.
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Figure 2: Prediction results of different weights under PSO prediction.
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to the difference of 20. *e average prediction difference of
the GA model is greater than 10, the average prediction
difference of the PSO model is 8, and the average prediction

difference of the ADPSOmodel is 3.*en, the specific effects
of different algorithms are analyzed through model evalu-
ation, as shown in Figure 5.
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Figure 4: Comparison of the ADPSO algorithm with other algorithm prediction.
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Figure 5: Comparison of evaluation models of different algorithms.
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As can be seen from Figure 5, the overall performance of
ADPSO is relatively advantageous, and the prediction effect
is most obvious compared with other algorithms.

5. Conclusion

In this study, an improved particle swarm optimization
algorithm is proposed to predict meteorological data under
the influence of the GNSS, and the proposed method has
obvious advantages in the prediction effect and perfor-
mance. Different evaluation models also have different
differences when comparing the same kind of algorithms,
which may be related to the variability of data input or
different dimensions. When evaluating the model, the better
weight relationship is used to predict the model. Considering
the later research work, the application prediction of other
adaptive algorithms is deeply analyzed, and the execution
time and prediction accuracy are improved. Furthermore,
the evaluation and prediction of the ADPSO algorithm
under other meteorological indicators can improve the
prediction accuracy of the algorithm and comprehensively
apply the evaluation under different scenes and non-
meteorological factors.
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[1] A. Rovira-Garcia, D. Ibáñez-Segura, R. Orús-Perez, J. M. Juan,
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