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A sector is a basic unit of airspace whose operation is managed by air traffic controllers. *e operation complexity of a sector plays an
important role in air traffic management system, such as airspace reconfiguration, air traffic flowmanagement, and allocation of air traffic
controller resources. *erefore, accurate evaluation of the sector operation complexity (SOC) is crucial. Considering there are numerous
factors that can influence SOC, researchers have proposed several machine learning methods recently to evaluate SOC by mining the
relationship between factors and complexity. However, existing studies rely on hand-crafted factors, which are computationally difficult,
specialized background required, and may limit the evaluation performance of the model. To overcome these problems, this paper for the
first time proposes an end-to-end SOC learning framework based on deep convolutional neural network (CNN) specifically for free of
hand-crafted factors environment. A new data representation, i.e., multichannel traffic scenario image (MTSI), is proposed to represent the
overall air traffic scenario. A MTSI is generated by splitting the airspace into a two-dimension grid map and filled with navigation
information. Motivated by the applications of deep learning network, the specific CNNmodel is introduced to automatically extract high-
level traffic features fromMTSIs and learn the SOC pattern. *us, the model input is determined by combining multiple image channels
composed of air traffic information, which are used to describe the traffic scenario.*emodel output is SOC levels for the target sector.*e
experimental results using a real dataset from the Guangzhou airspace sector in China show that our model can effectively extract traffic
complexity information fromMTSIs and achieve promising performance than traditionalmachine learningmethods. In practice, ourwork
can be flexibly and conveniently applied to SOC evaluation without the additional calculation of hand-crafted factors.

1. Introduction

Airspace is the carrier of air traffic system, and air traffic
controllers (ATCos) are responsible for its safe and efficient
operation. In order to regulate air traffic safely, airspace is
divided into several smaller sectors which are in charge of
ATCos. As the air transport industry is developing rapidly,
the surging flight volume and limited airspace have imposed
a higher workload on ATCos. According to researches, the
high workload of ATCos is more likely to lead to operational
errors [1]. *erefore, evaluating and monitoring the ATCos
workload is an important prerequisite for safe and effective
air traffic management. Meanwhile, intending to properly
divide airspace sectors and efficiently manage air traffic flow
so that the traffic control workload of ATCos can be kept

below the maximum limit, it is necessary to determine an
authoritative indicator that can reflect sector control
workload accurately and objectively [2].

According to previous studies, it has been shown that air
traffic complexity (a.k.a. airspace complexity or air traffic
control complexity), which is used to measure the difficulty
and efforts required in managing air traffic safely and or-
derly, might play an important role in the sector traffic
control workload [3]. For several years, many researchers
have been mining the relationship between air traffic
complexity and workload [4–6]. *e prevailing view is that
the workload of ATCos is a subjective factor and is highly
dominated by air traffic complexity, which is an objective
factor [7]. Although air traffic complexity and workload are
not completely equivalent, it is reasonable to evaluate the
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workload by air traffic complexity. *e reason lies in the
subjective factor is so uncertain and complex that it is
necessary for us to quantitatively evaluate the workload in an
ATCo-independent way [8]. Note that we refer to the
concept of “sector operation complexity (SOC)” from [2] to
represent the air traffic complexity of a sector. SOC is more
specific because it specifies the “sector” area rather than a
point, an airway, or other airspace elements, and it can also
distinguish studies on traffic pattern complexity from our
“operational” complexity study [2].

To sum up, SOC domains the air traffic control work-
load, which is essential in the air traffic operation, leading to
its extraordinary role in air trafficmanagement, e.g., airspace
reconfiguration, air traffic flow management, and allocation
of ATCo resources.*erefore, accurately evaluating the SOC
is a hot topic both in research and practical applications
[9–11].

For decades, many researches quantitatively evaluate air
traffic complexity by studying the internal mechanism of air
traffic complexity and modelling from different perspectives
[12–14]. Another part of the research believes that air traffic
complexity is formed due to the influence of a large number
of relevant factors, so we can describe and characterize air
traffic complexity by comprehensively considering these
factors and studying their relationship [2, 15–17]. However,
owing to the numerous nonlinear factors affecting air traffic
complexity and the complex internal pattern relationship of
air traffic data, it is extremely difficult to describe complexity
accurately through rigorous modelling based on a certain
perspective, and there are also difficulties in the construction
of a complete set of complexity-related factors. In addition,
the existing methods mostly rely on the subjective experi-
ence or domain knowledge in complexity related factors
selection, which might encounter calculation problems in
the implementation of actual air traffic management (ATM)
applications or when the airspace sector changes.

Facing these problems, this paper aims to propose a
novel end-to-end SOC learning framework that can directly
extract effective complexity-related features from air traffic
data and learn SOC pattern, which can be independent of
subjective hand-crafted features and make more accurate
and general SOC evaluation.

Motivated by the excellent performance of the deep
learning technique on modelling and extracting complicated
nonlinear features, we put forward a deep convolutional
neural network- (CNN-) based approach to evaluate SOC in
a given airspace sector. First of all, since CNN mainly deals
with data based on image type, we abstract the air traffic
scenario into multichannel images, which are used as the
input of the CNN. *en, CNN could automatically extract
SOC-related high-level features under the guidance of
complexity labels through the convolution and pooling
processing methods of the convolution kernel. In that case,
the extracted features are input into the fully connected layer
to learn the relationship between extracted features and
SOC. Finally, the backpropagation algorithm is utilized to
continuously adjust the weight of feature learning and full
connection layer, so as to learn the SOC pattern and achieve
SOC evaluation. *e experiments show that our image-

based CNN model can automatically extract the effective
features and acquire better performance of SOC evaluation
than traditional machine learning methods.

*e contributions of the paper can be summarized as
follows:

(i) A new data representation, i.e., multichannel air
traffic scenario image (MTSI), is proposed to de-
scribe air traffic scenario, and each channel is
proved to be effective.

(ii) Sector operation complexity features of air traffic
scenario are extracted automatically using a CNN
with a high SOC evaluation accuracy.

(iii) Several model training techniques, such as rotation
data augmentation, category balanced sampling,
and label smoothing, are utilized to improve model
performance.

(iv) *e proposed method implements an end-to-end
SOC learning framework based on the deep
learning, which can achieve a higher SOC evalua-
tion performance without tedious hand-crafted
features.

*e rest of the paper is organized as follows. Section 2
shows related work. Section 3 makes a data description and
proposes a two-step procedure that includes converting air
traffic to images and a CNN model for sector operation
complexity evaluation. In Section 4, we introduce the ex-
perimental configurations and conduct four groups of ex-
periments. *e results are analysed and discussed. Finally,
conclusions are drawn with future study direction in Section
5. For the sake of readability, the acronyms used in this paper
are summarized in Table 1.

2. Related Work

*is section reviews the previous works on air traffic
complexity evaluation, which are more general than SOC
evaluation and the main development of convolutional
neural network.

In the existing literature, there are two main types of
research methods that dominate studies in air traffic com-
plexity evaluation: single model-based methods and factor
system-based methods.*ese two groups of related work are
categorized in Table 2, so as to sum up their main aspects and
highlight their limitations in comparison to the present
study. *e first method mainly focuses on studying the
internal formation mechanism of air traffic complexity,
expecting to build a model to quantify the complexity from
one specific perspective. For instance, Lee et al. defined the
air traffic complexity as the degree of difficulty for ATCos to
resolve the potential flight conflicts when new aircraft enters
the target airspace, and they proposed an input-output
method to evaluate air traffic complexity [12]. Prandini et al.
believed that the probability of flight conflicts within a sector
can reflect the magnitude of complexity, so they charac-
terized complexity by means of conflict risk estimation [13].
Moreover, the Lyapunov exponent was introduced in the
field of air traffic complexity by Delahaye and Puechmorel,
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who proposed the concept of trajectory disorder to measure
intrinsic traffic complexity [14, 18].*e above three methods
(i.e., conflict resolution difficulty, conflict probability, and
Lyapunov exponent) all depicted air traffic complexity from
their separate perspectives. However, as air traffic com-
plexity contains large amounts of information and is em-
bedded with sophisticated relationships, it is usually
insufficient to evaluate air traffic complexity perfectly by a
single indicator or model [19].

For the purpose of overcoming the deficiencies of the
first model-based methods from single perspective, an extra
category of complexity evaluation approach was put forward
by synthesizing multiple complexity-related factors to
characterize air traffic complexity. *e most famous one is
the dynamic density method, which calculated complexity as
the sum of various complexity factors with different weights
[15], whereas these linear methods cannot precisely evaluate
air traffic complexity as these related factors usually interact
in a nonlinear way. Subsequently, machine learningmethods
were adopted as they can handle the nonlinear problem. In
2006, Gianazza proposed to treat the air traffic complexity
evaluation as a complexity level classification task and used
backpropagation neural network (BPNN) to capture the
nonlinear relationship [16]. Later studies inherited the idea
of classification problems and attempted to mine more
internal pattern complexity from air traffic data. Adaptive
boosting learning algorithm [17], semi-supervised learning
[20], and transfer learning [2] have been employed and
acquired fruitful achievements in the domain of small
sample learning area for air traffic complexity evaluation.
*e above machine learning methods have achieved great
results in the air traffic complexity evaluation, but there
remain two problems: (1) this type of algorithm is highly
dependent on the selection of the hand-crafted feature set,

and the quality of the feature set determines the performance
of the final complexity evaluation. Nevertheless, it is ex-
tremely difficult to identify an intact feature set that fully
characterizes air traffic complexity because of the internal
pattern complexity of air traffic scenario. (2) Different
sectors have different traffic properties and airspace struc-
tures, and the characteristics that affect the operation
complexity of different sectors will also differ. For example,
the complexity of some sectors mainly comes from the
maintenance of flight intervals, while other sectors are
mainly concentrated on the complexity of traffic conflict
avoidance. Different sectors may have inconsistent feature
sets, which also lead to uncertainty in the air traffic com-
plexity evaluation. *erefore, the performance of air traffic
complexity evaluation for machine learning methods might
be limited by the incomplete and uncertain hand-crafted
features.

Compared with traditional machine learning methods,
deep learning can capture nonlinear and complex feature
from high-dimensional data and achieve various successful
adoption in applications, such as disease diagnosis and
mobile traffic classification [21–23]. Meanwhile, it also has
an important characteristic of feature learning; that is,
features can be automatically extracted from the original
data. *erefore, in the process of model training, we can
directly use the features extracted by the deep learning
method, without the participation of manual features. In the
deep learning field, CNN is an efficient and effective algo-
rithm for image processing and has been widely applied in
image classification, object detection, etc. [24–26]. Yuki et al.
introduced the deep neural network to automatically extract
features from the trajectory images [27]. A recurrent con-
volutional model for the large-scale visual learning was
developed by Donahue et al. [28]. Baccouche et al. proposed
sequential 3D-CNN models for human action recognition
[29]. In the field of the text classification task, Lai et al.
applied a recurrent architecture to capture contextual in-
formation [30]. *e results demonstrate that the convolu-
tional neural network is suitable for different types of
complex scenes and can automatically learn features from
raw data with better performance.

In summary, abstracting the air traffic complexity evalu-
ation problem as a complexity level classification problem
achieved considerable results by machine learning methods,
but it is faced with the fact that the performance is dependent
on hand-crafted features and the existing feature set is sub-
jective, uncertain, and not necessarily complete. *e deep
learning method has an excellent ability to mine internal
pattern complexity and can automatically extract features from
raw data. *erefore, we apply the deep learning technique to
the problem of air traffic complexity evaluation, which can free
from the limitations of hand-crafted features.

3. Materials and Methods

Since the existing SOC-related factors might be not com-
prehensive, we have to explore other ways to sufficiently
mine more knowledge for better SOC evaluation perfor-
mance. SOC is originated from ATCos, and they manage air

Table 1: List of the acronym used in the paper.

Acronym Definition
Acc Accuracy
AdaBoost Adaptive boosting
ATCOs/
ATM Air traffic controllers/air traffic management

BPNN Backpropagation neural network
CK Cohen’s kappa
CNN Convolutional neural network
DL/ML Deep/machine learning
FP/FN False positive/false negative
GNB Gaussian näıve Bayes
KNN K-nearest neighbour
LLR Logistic linear regression
MAE Mean average error
MLP Multilayer perception
MTSI Multichannel traffic scenario images
PCA Principal component analysis
RF Random forest
RTPE/RTT Run-time per-epoch/run-time test

SOC/SOCNN Sector operation complexity/SOC evaluation
using CNN

SVM Support vector machine
TP/TN True positive/true negative
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traffic operation based on the radar screen, which displays
air traffic situation in the form of video, i.e., continuous
multiframes of images. *erefore, we could convert the air
traffic scenario information into images and then use deep
learning technique to extract useful information. Consid-
ering the image-based method, we propose an end-to-end
learning framework for evaluating sector operation com-
plexity (SOC) by using the deep convolutional neural net-
work (CNN) learning strategy and name the framework as
SOCNN (SOC+CNN). Figure 1 demonstrates the whole
scheme of the proposed SOCNN, which is composed of
three procedures ((1) data preprocess; (2) MTSI generation;
(3) CNN training). It is noted that, in this paper, we will use
MSTIs as model input to replace traditional hand-crafted
features. As a result, CNN can automatically extract
knowledge from MSTIs to achieve the feature learning
process and use the learned features for SOC evaluation,
which is the novel feature of our proposed SOCNN.

3.1.DataDescription. Air traffic data are mainly divided into
static airspace data and dynamic flight data. *e static data
are composed of latitude and longitude data, which is used to
separate the airspace structure and set air routes and po-
sitioning points. *e dynamic data are obtained through
radar equipment or ADS-B transmission equipment, cov-
ering the main air traffic information.*e dynamic data own
a wealth of aircraft operation information, including aircraft
identification number, latitude, longitude, speed, altitude,
and heading. *e dynamic flight data used in this paper
come from radar, which are collected every 4-5 seconds,
including flight position information and flight status
information.

In the traditional process of evaluating complexity based
on machine learning methods, static data are used to filter
the dynamic flight data in the target sector, and then, the
filtered dynamic flight data are used to calculate complexity-
related features, so as to realize the complexity evaluation.
For our MTSI-based deep learning method, static data are
mainly used for gridding the airspace, and then, dynamic
flight data are filled into the gridded airspace using a certain
method to generate traffic scenario images and then use the
generated images to perform feature extraction to complete
the complexity evaluation task.

*e complexity label used in our experiment is obtained
through field collection. We invited several controllers of
similar experience and age as air traffic control experts to

evaluate the complexity of different traffic scenarios. *e
complexity range in this paper is set as five levels, and the
traffic scenario of one-minute time period is an evaluation
sample. In order to avoid cognitive differences between
different people, we have adopted the method of collecting
multiple sets of labels on the same sample to reduce human
error.

3.2. Converting Air Traffic to Images. As previously de-
scribed, SOC is uncertain and changing over time. It
could be affected by other factors besides the number of
aircraft in the sector, such as the aircraft motion pa-
rameters, the relative trends between different aircraft,
and the sector entry point of aircraft. Meanwhile, we
should not only use the local status information of a
single aircraft but also look at the future development of
the traffic situation from a global perspective. *erefore,
we propose a new data representation called multi-
channel air traffic scenario image (MTSI) to represent the
overall air traffic scenario and the interactive influence
among aircraft in a sector.

Image is formed by a two-dimensional matrix, so we
need to grid the target sector first as the basis for subsequent
images. In order to ensure the regularity of the image and the
convenience of subsequent image operations, we use a
circumscribed square of the sector boundary as the range of
the image and divide the target sector into grid maps with a
suitable scale. *e time span of our single air traffic scene
sample is 1 minute. Considering that the actual radar data
are updated every 4-5 seconds and the average flight speed of
aircraft is 15 km per minute, there is only one flight tra-
jectory data every 1–1.25 km. To ensure the existence of real
traffic data at every grid, in other words to prevent the
phenomenon of crossing the grid, the appropriate grid width
should be set within the range of 1.25–15 km. Based on the
above factors, in order to show the flight trajectory of the
aircraft as carefully as possible and the convenience of
calculation, we set the width of the grid at 2 km. *ere is a
spatial position relationship between different grids, so we
can map the position of aircraft in the airspace to the
corresponding grid position, in which the corresponding
grid is filled with the flight status information of the aircraft,
such as speed, altitude, and heading. However, since a grid
can only be filled with one value and cannot contain a large
amount of information at the same time, we use multiple

Table 2: Summary of previous works in air traffic complexity evaluation.

Category Related research Paper

Single model
Difficulty to resolve potential flight conflicts Lee et al. [12]

Probability of flight conflicts Prandini et al. [13]
Lyapunov exponent of trajectory Delahaye and Puechmorel [14, 18]

Factor system

Dynamic density method (linear) Kopardekar and Magyarits [15]
PCA+BPNN Gianazza [16]

Genetic algorithm+AdaBoost Xiao et al. [17]
Semisupervised and active learning Zhu et al. [20]

Transfer learning Cao et al. [2]
Image-based factors Deep convolutional neural network *is paper
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two-dimensional matrices to store the input of traffic in-
formation, respectively. *ese different two-dimensional
matrices can be understood as multichannel images, which
we call as multichannel air traffic scenario image (MTSI).
*ese different channels of MTSI express the traffic infor-
mation of the same traffic scene from different perspectives.
When these channels are combined and superimposed at the
same time, the real traffic scenario can be restored.

As the traffic scenario in our problem is a period of time
rather than a moment, traffic complexity is also not a short-
term and instantaneous indicator. In order to reflect the real
situation of the aircraft in the period of time, we choose to
map all the traffic data received during this period to the
image one by one. In other words, through mapping of fight
status data in the sector to the corresponding position of the
two-dimensional grid matrix, the image will show the his-
torical trajectory of different aircraft, and the grid of the
corresponding trajectory is filled with different flight status
information. Here, we choose to utilize the speed and al-
titude traffic information to generate two kinds of images,
which are called altitude channel and speed channel, shown
in Figure 2.

Furthermore, in order to reflect the operational situation
and flight conflict information of the air traffic in a sector, we
also construct an image of the unreal trajectory (the pre-
dicted trajectory). *e predicted trajectory of aircraft is
generated by using speed, heading, latitude and longitude
information, and simultaneously mapped to the flight
conflict awareness channel. Since the predicted trajectory is
not completely accurate by the affection by other factors, we
think that the influence of the predicted trajectory would
become smaller with the increase in the predicted time. To
distinguish the magnitude of the influence of the predicted
trajectory at different time lengths, we have performed a

weakening treatment on the predicted trajectory. Specifi-
cally, the start point grid of the predicted trajectory is filled
with the maximum pixel value, and then, the grid is filled in
the direction of the predicted trajectory. Whenever a new
grid is filled, the pixel value will be reduced to a certain
extent, until the pixel value is reduced to zero or the pre-
dicted duration limit is reached, so as to achieve the
weakening effect of the predicted trajectory (see Figure 3(a)).

Based on the actual situation of actual air traffic control,
the predicted trajectory time is set to 3 minutes and a
predicted trajectory will occupy approximately 20–30 grids
according to the grid width setting in the previous part. In
order to reflect the gradual weakening of the influence of the
predicted trajectory, the starting trajectory point should be
set with an appropriate initial value and then gradually
decreased. At the end of the predicted trajectory, the grid
value should be close to 0. We set the initial value to 10000
and the decline rate to 100. With the passage of the predicted
trajectory, the decline rate is dynamic, that is, every decline,
and the decline rate increases by 40, so as to reflect the actual
situation of the rapid weakening of the real trajectory in-
fluence. According to the above settings, the last predicted
trajectory grid value will approach 0.

In addition, as aircraft intersection conflict might be an
important factor affecting SOC, in order to describe the
information, we have carried out pixel enhancement pro-
cessing on the grid of intersection conflict points of the
predicted trajectory (see Figure 3(b)). *e steps are as fol-
lows: (1) locating of the predicted trajectory conflict grid
firstly, (2) extracting the altitude information of the inter-
section conflict grid of the corresponding aircraft from al-
titude channel, and (3) determining the grid pixel
enhancement value of the intersection conflict point
according to

Conflict channel

MTSI
Input sequence (173∗173∗3)

SOC feature extraction

So�max

SOC–1

SOC–2

SOC–3

SOC–4

SOC–5

SOC evaluationData preprocess

Altitude channel
Speed channel

Convolution kernels

Flight data Conflict awareness

Flight speed

Flight altitude

ReLU

Airspace data

Figure 1: Architecture of the proposed SOCNN.
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enhancement pixel �

intersection pixeli + intersection pixelj􏼐 􏼑∗ 2, altitude differenceij ≤ 300m,

intersection pixeli + intersection pixelj􏼐 􏼑∗ 1.8, 300m< altitude differenceij ≤ 900m,

intersection pixeli + intersection pixelj􏼐 􏼑∗ 1.6, 900m< altitude differenceij ≤ 1500m,

intersection pixeli + intersection pixelj􏼐 􏼑∗ 1.4, 1500m< altitude differenceij ≤ 2100m,

intersection pixeli + intersection pixelj􏼐 􏼑∗ 1.2, altitude differenceij > 2100m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where intersection pixeli denotes the pixel value of the in-
tersection of ith aircraft in predicted trajectory channel and
altitude differenceij is the altitude difference between ith and
jth aircraft in intersection grid.

Consequently, several single channels are encoded as a
multichannel image whose pixel values are represented by
various air traffic data. It should be noted that three channel
images are used in our final model, namely, altitude, speed,
and flight conflict awareness channel. However, more

channels can be constructed to accommodate comprehen-
sive air traffic information in future study.

3.3. CNN for Sector Operation Complexity Evaluation

3.3.1. Basic Principle of CNN. Convolutional neural network
(CNN), which is proposed to extract high-level features of
spatial dependencies, is mainly used in the field of image
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Figure 2: Channels of historical trajectory: (a) altitude channel; (b) speed channel.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

(a)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

(b)

Figure 3: Channel of predicted trajectory: (a) no conflict scenario; (b) conflict scenario.
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recognition. It refers to a kind of network, rather than a
certain network, which contains many different structures.
Different network structures often behave differently. A
typical CNN consists of three parts: the convolutional layer,
the pooling layer, and the full connection layer. *e con-
volutional layer is responsible for mining spatial correlations
between adjacent grids and extracting local features in the
MTSI. *e pooling layer is used to mine discriminative
features and significantly reduce parameter magnitude. *e
full connection layer is the part of a traditional neural
network that outputs the desired result.

In order to extract diverse features for modelling spatial
correlations, a large number of different convolution kernels
would be designed to work together. *e weights among
interdependent adjacent grids are shared so that information
learned from one local area can be applied to other parts of
the image, which makes the feed-forward propagation and
backward training more efficient [31]. *e above weight
sharing and local perception enable CNN to learnmore basic
features at the shallow level and maintain the rotation,
distortion, and scaling invariance for spatial modelling:

x
l
j � f 􏽘

Nt−1

i�1
x

l−1
i ∗ k

l
ij􏼐 􏼑 + b

l
j

⎛⎝ ⎞⎠, (2)

x
l
ij � g x

l−1
ς􏼐 􏼑. (3)

Equations (2) and (3), which represent the operation of
the convolution layer and pooling layer, respectively, con-
stitute the operation of the feedforward. xl

i represents the jth
feature map of the lth layer. *e number of feature maps on
the upper layer is denoted by Nt−1. *e convolutional kernel
kl

ij used for image feature extraction and its corresponding
offset term is represented by bl

j. Operator ∗ denotes the
convolution operation. f(·) is the nonlinear activation
function, such as sigmoid, tanh, and ReLU (rectified linear
unit). After completing the convolution operation, it enters
the sampling process. *e sampling layer realizes the
downsampling of all input feature maps, so as to meet the
requirement of the invariant feature scale. Unlike the
convolutional layer operation, the downsampling layer does
not change the number of feature maps but only its size, as
shown in equation (3). ς indicates the spatial field of the
pooling operation. g(·) is the downsampling function in a
pooling layer, which is usually specified as average, median,
or maximal operation. When the whole network structure
model completes the convolution and pooling operation, all
the feature maps are transformed into an intermediate value
transition and finally expanded into a one-dimensional
vector, which is used as the input of the next neural network,
and finally, the classification results are obtained.

3.3.2. SOCNN Network Architecture and Model Training.
As described before, in order to meet the CNN input data
format requirements, we convert the air traffic data into
MTSI, which can include the most basic navigation elements
(i.e., altitude, speed, and heading) and conflict awareness
capabilities. Considering that the deep learning method is

first introduced into SOC evaluation, we design a concise
deep convolutional neural network, which is shown in
Figure 4. It is used to learn and predict the operation
complexity of a certain airspace sector under the premise of
given navigation information. *e input data are multi-
channel input images (MTSIs) converted from air traffic
data, and the transformation process can be referred to
Section 3.2. *e output label data are sector operation
complexity level provided by ATCos based on real-time air
traffic scenario judgement.

*e model consists of several convolutional layers,
pooling layers, and full-connected layers. Drawing on the
idea of VGG [32], we adopt small convolution kernels (3∗ 3)
and use a number of successive convolutional layers to
replace large convolution kernel because the multilayer
nonlinear layers can increase the depth of the network to
ensure the learning of more complex patterns, and the
computation cost is also lower. *e number of convolution
kernels in each convolutional layer is (32, 32, 64, 64, 128,
128), and the maximum pooling size is (2∗ 2). *e con-
volution process uses the “SAME” mode.*e learning rate is
0.001, and the batch size is 50. *e activation function of
ReLU is adopted.*e goal of deep learning model training is
to iteratively optimize the parameters of the network model
and learn the distribution of data from the training set
samples. In general, the optimization direction is deter-
mined by the objective function, which consists of an error
item (J) and a regularization item (R):

θ � argmin
θ

L(X, Y) � argmin
θ

(J + λR), (4)

J � −
1
m

􏽘

N

i�1
f(y(i), y′(i)). (5)

In equation (4), X and Y are the input and output of the
model. *e loss function and regularization item are rep-
resented by J and R, respectively. θ denotes the parameters of
a deep neural network, and λ determines the weight of
regularization item. *e cross entropy is employed as the
loss function in this paper and confirmed by f(·), in which
y(i) and y′(i) are the ground truth label and predicted
output of the ith training sample. *e dropout layer is
employed to effectively alleviate the occurrence of over-
fitting. *e Adam optimizer is applied to improve the
performance of gradient descent algorithm.

*e actual SOC dataset has the problems of limited
sample size, data imbalance, and label noise. Given the above
problems, we adopted several techniques to solve these
defects during the model training process. On the problem
of limited sample size, data augmentation is an extremely
important step in deep learning, and we use the random
rotation of images to increase the diversity of our MTSI
samples. Considering the problem of data imbalance, we
adopt the category equalization sampling technology and
equalize the sampling when generating each minibatch to
ensure that the learning process will not be biased towards
categories with more samples. In order to prevent the model
from overlearning noisy samples, we perform label
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smoothing processing on the input data, which helps to
improve the robustness of its learning process.

*e computational complexity of our proposed network
architecture can be regarded as the accumulation of the
computational complexity of all convolutional layers and
represented as O (􏽐D

l�1 M2
l · K2

l · Cl−1 · Cl). Among them, D

is the number of layers in the neural network; l represents
the l-th convolutional layer of the network; M is the side
length of the feature map output by convolution kernel and
is mainly determined by input matrix size X, convolution
kernel sizeK, padding, and stride;K is the side length of each
convolution kernel; and Cl and Cl−1, respectively, represent
the number of convolution kernels of the l-th convolutional
layer and the number of output channels of the (l −1)-th
layer.

4. Experiments and Discussion

4.1. Experimental Configurations. In this section, in order to
verify the effectiveness of our proposed complexity evalu-
ation method based on deep convolutional neural network,
several experiments are conducted on the real air traffic
operation data. *e target airspace, as shown in the yellow
part of Figure 5, is located in the main air route from
Guangzhou to Wuhan in China. We collected and filtered
out 3605 samples (sample category distribution: SOC-1: 19,
SOC-2: 742, SOC-3: 1787, SOC-4: 1010, and SOC-5: 47) of
this sector from December 1st to December 15th in 2019.
Each sample corresponds to a generated MTSI originated
from one-minute air traffic data and a corresponding
complexity level (five levels) provided by ATM experts. In
the following experiments, the whole dataset is randomly
shuffled and divided into two parts. 80% of the samples are
training set, and the rest are test set.We also designed several
comparison experiments based on machine learning algo-
rithms, in which the hand-crafted features we used have
been consistently found to be relevant to air traffic com-
plexity, and their definitions can be referred to [2].

To evaluate the performances of different complexity
evaluation models, we employ several criteria, including
recall, precision, F1-score, accuracy, MAE, and Cohen’s
kappa (CK). For the criteria definition, the following ab-
breviations will be used: the number of true positives, TP; the
number of false positives, FP; the number of true negatives,
TN; and the number of false negatives, FN. Accuracy (Acc) is
one of the most commonly used metrics for evaluating the

overall performance of classification problems and is the
percentage of correctly predicted samples to the total
number of samples. Note that the global criterion Acc
cannot measure complexity evaluation performance accu-
rately as the category distribution of the sample space is
unbalanced.*erefore, the metric of recall, precision, and F1
score is introduced. Recall can be thought of percentage of
the true samples that are correctly identified by models, and
precision focuses on evaluating the proportion of the pre-
dicted true samples which are indeed true.*e F1 score is the
harmonic mean of the recall and precision. Cohen’s kappa
(CK) can also evaluate overall classification performance by
consistency. Mean average error (MAE) is metric for re-
gression and is applied to SOC evaluation as there is an
ordinal relationship between different complexity levels. *e
definition of all above metrics is shown as follows:

Acc �
TP + TN

TP + TN + FP + FN
,

Recall �
TP

TP + FN
,

Precision �
TP

TP + FP
,

F1score � 2 ×
Precision × Recall
Precision + Recall

,

CK �
Accuracy − pe

1 − pe

,

pe � ptrue + pfalse �
(TP + FN)(TP + FP)

N
2

+
(TN + FN)(TN + FP)

N
2 ,

MAE �
1
N

􏽘

N

i�1
􏽢yi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(6)

where 􏽢Y � yi|i � 1, 2, . . . , N􏼈 􏼉 denotes the predicted value,
Y � yi|i � 1, 2, . . . , N􏼈 􏼉 represents the ground truth, and N

is the size of test samples. *e main configuration of the
training server is summarized as follows: 40 ∗ Intel Xeon
E5-2640 CPUs, 128GB memory, 2 ∗ NVIDIA Tesla M60
GPUs, and the operating system is Windows Server 2012 R2.

173∗173∗3
173∗173∗32

86∗86∗64 43∗43∗128

Subsampling Subsampling
Subsampling

173∗173∗32
86∗86∗64

43∗43∗128

Dropout
Dropout Dropout

Softmax

1∗320
1∗160 1∗5

Figure 4: Network architecture of our convolutional neural network.
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*e programming language of all codes is Python, and the
deep learning model is built based on the TensorFlow (2.2.0)
framework.

4.2. PerformanceComparison betweenComplexity Evaluation
Methods. *e first experiment focuses on comparing the
performance of our SOCNN model, learning from MTSIs,
with several machine learning methods based on hand-
crafted features. *ese contrastive machine learning
methods include Gaussian naı̈ve Bayes (GNB), k-nearest
neighbour (KNN), logistic linear regression (LLR), support
vector machine (SVM), multilayer perception (MLP), and
ensemble learning algorithms, such as random forest (RF)
and adaptive boosting (AdaBoost). *eir parameters have
been adjusted by the grid search method. In order to
measure the generalization capability of the model more
rigorously and avoid the particularity brought by the fixed
division of small datasets, we conducted a (stratified) five-
fold cross-validation and provided the mean and standard
variance of each performance measure on the five different
folds. Considering the limited space and the conciseness of
the result presentation, we have selected the three most
important metrics (i.e., accuracy, F1 score, and MAE) to
study the performances of different methods, which are
shown in Table 3.

From the results above, we have the following
observation:

(i) Compared to these machine learning methods,
SOCNN acquires the best result on the three per-
formance criteria, i.e., Acc, F1 score, and MAE. *e
main difference between SOCNN and machine
learning methods lies in the features used. Among
them, SOCNN automatically extracts features from
MTSIs through a deep convolution neural network,
while machine learning methods use hand-crafted

features. Even if excellent algorithms such as en-
semble learning are used, the performance gap still
remains from our SOCNN method. *e result
demonstrates that the existing hand-crafted features
might be insufficient in describing air traffic com-
plexity, and the deep learning method can extract
effective information from the constructed MTSIs.

(ii) In addition to SOCNN, we also used the results of
single-layer convolution and pooling CNN (shallow
CNN) as a comparison. *e result of it is the worst
except for GNB.*is shows that CNN has the ability
to learn SOC pattern, but a shallow network cannot
learn high-level knowledge well. *erefore, a more
complex CNN network should be constructed to
learn the knowledge better.

(iii) Among the machine learning algorithms, AdaBoost
has achieved great results, which shows that the
ensemble learning method is effective. In addition,
SVM andMLP perform better than LLR because the
air traffic data have nonlinearity and internal pat-
tern complexity, which cannot be learnt by general
linear models. Finally, due to the imbalance prob-
lem, the performance of models could not be
measured only by Acc. For example, the Acc of SVM
and MLP are not much different, but the F1 score of
SVM is significantly worse, indicating that SVM is
more inclined to the majority category and per-
forms poorly in minority categories.

To further study the evaluation performance of different
methods, we have grouped six performance metrics by
training datasets and test datasets and presented them as
radar charts (see Figure 6). *e outermost and largest circle
would be the perfect score on all metrics.

From the radar chart, it is readily apparent to analyse the
overfitting phenomenon of models, in which the scores of

Figure 5: Target airspace sectors structure.
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the training set are high, while the test set has low scores.*e
shape of these irregular polygons can also represent the
quality of different algorithms.*e larger the polygon area of
the test set, the better its performance.

On the radar chart of the training set (see Figure 6(a)),
SOCNN, RF, AdaBoost, andMLP all have achieved excellent
results. *e evaluation metrics such as Acc, recall, precision,
and F1 score have reached more than 80%, and the accuracy
of RF and SOCNN in the training set is almost close to 100%,
which reflects that these two algorithms have strong learning
capabilities for existing samples. However, the accuracy of
the training set does not guarantee that the model has the
same performance on unfamiliar samples.

From the radar chart of the test set (see Figure 6(b)), it
can be seen that the performance of RF, AdaBoost, and MLP
on the test set has dropped significantly. Only SOCNN
maintains a relatively high level, in which Acc and precision
are all close to 80%.*is indicates that the serious overfitting
phenomenon has occurred in RF, MLP, and AdaBoost
methods. It is also clear that the polygonal figure of SOCNN
completely surrounds all the evaluation indicators of other

methods, indicating that the performance of SOCNN on the
test set is better than all others. AdaBoost performs best in
machine learning categorymethods. GNB and shallow-CNN
have the worst performance.

According to the above experimental results, we can see
that our method surpasses the traditional machine learning
methods in several performance metrics on our dataset. In
the same kind of research [2, 19, 20], the complexity eval-
uation accuracy of existing studies is generally at the level of
70%–80%. It can be seen that the accuracy (76.06%) of our
experimental evaluation is comparable to that of existing
studies. It should be noted that, in terms of the dataset used,
our complexity level is collected at 5 levels, while the existing
research has 3 levels, which undoubtedly makes our com-
plexity evaluation task more difficult. *erefore, we believe
that our experimental evaluation is meaningful in terms of
evaluation performance metrics compared to existing sim-
ilar studies. In practical application, the air traffic system is a
system with a person in the loop. *e complexity evaluation
results are generally used to provide ATCos with decision-
making assistance and reference. In this case, the current

Table 3: Evaluation performance of different methods.

Methods Accuracy MAE F1 score

ML (features required)

GNB 58.28% (±1.86%) 0.4422 (±0.0228) 47.56% (±2.78%)
KNN 72.09% (±1.59%) 0.2891 (±0.0260) 62.60% (±4.42%)
LLR 68.26% (±1.10%) 0.3212 (±0.0118) 46.31% (±2.72%)
SVM 71.96% (±1.01%) 0.2874 (±0.0113) 52.22% (±4.14%)
MLP 71.98% (±1.66%) 0.2885 (±0.0163) 59.46% (±8.19%)
RF 69.49% (±0.93%) 0.3129 (±0.0008) 59.88% (±4.06%)

AdaBoost 73.84% (±0.91%) 0.2705 (±0.0080) 64.16% (±9.64%)

DL (MTSI) Shadow-CNN 61.63% (±1.05%) 0.4132 (±0.0129) 51.23% (±5.42%)
SOCNN 76.06% (±1.04%) 0.2499 (±0.0080) 70.23% (±4.61%)
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Figure 6: Rader chart of different metrics: (a) training set; (b) test set.
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evaluation accuracy is sufficient to meet the needs of
practical work, so we think that the experimental evaluation
of our method is effective in practice. We are also trying
more methods to improve evaluation accuracy to explore
other SOC application possibilities in the future.

4.3. Performance Analysis of SOCNN. Figure 7 shows the
changes in Acc and loss function on the training set and the
test set during the training process of SOCNN. We con-
ducted a 300-epoch experiment. It can be found that, at the
100th epoch, the Acc and loss on the test set have reached the
convergence state, and they fluctuate stably in the later stage.
*e Acc is basically stable between 75% and 80%, while the
loss is stable at 1.15–1.20. *e situation in the training set is
slightly different. *e Acc on the training set tends to
converge at the 70th–80th epoch, while the loss is still in a
declining state at the same time; it gradually reaches the
convergent state until the 200th epoch. *e above results
show that the iterative training process of SOCNN is rea-
sonable and no serious overfitting phenomenon.

Confusion matrix is a performance measurement in
classification problems, in which the table has size equal to
the number of classes squared. As shown in Figure 8(a), the
confusion matrix of SOCNN has high values on the diag-
onals, and hence, SOCNN is proved to be an efficient
method for SOC evaluation. From the previous metric of
MAE, it is clear that the average mean error of our SOCNN
method is quite small. Here, we further calculated SOC
evaluation error distribution based on the confusion matrix
(see Figure 8(b)). Different coloured bars represent different
degrees of error. In the results of the SOCNNmethod, 77.1%
of the cases are evaluated with the same complexity level as
the true complexity level, and 22.2% of the cases have an
evaluation error of 1 level. In summary, the evaluation error
of 99.3% cases is within 1 level. Only 5 samples, accounting
for less than 1%, have an estimated complexity error greater
than 1 level and no sample with an error of more than 2
levels.*is result once again shows that our SOCNNmethod
not only has a great performance in the overall accuracy but
also owns a relatively low prediction error.

4.4. Effectiveness Verification of Multichannel Structure.
In this group of experiments, we will verify the effectiveness
of our proposed channels and explore the impact of different
channel numbers on the performance of SOCNN. First of all,
we define the three channels proposed in Section 3.2 as basic
channels, in which there is no channel of heading. *e
reason is we believe that the channel of conflict awareness
already contains heading information, but in this experi-
ment, we still take the channel of heading into consideration
in order to verify the effects of different channels. So, we
currently have a total of 4 channels, namely, channel-altitude
(C1), channel-speed (C2), channel-conflict awareness (C3),
and channel-heading (C4). According to the number of
selected channels, 4 major groups of experiments were
designed.*e experimental results are shown in Table 4. As a

representation of the computational complexity of our
model, we report their training time and test time. Specif-
ically, since training is performed on several epochs, we
report such information in a normalized way, by providing
the run-time per-epoch (RTPE). Similarly, we express the
prediction time spent on the test set as the run-time test
(RTT).

*rough the experimental results obtained, we observe
the following:

(i) *e single channel group experiment is used to
study the utility of single channel for SOC evalu-
ation. *is group experiment shows that even when
there is only one channel information, the SOC
evaluation can reach an accuracy of about 70%. It
may be that every single channel is composed of a
historical trajectory or predicted trajectory. Al-
though the pixel value of the channel is filled with
single navigation information such as altitude or
speed, the shape of the trajectory still contains the
spatial structure relationship. Convolution and
pooling operations of CNN can mine the spatial
relationship feature, restore the traffic scenario, and
use the extracted features for SOC pattern learning.
It is worth noting that C3 channel alone can achieve
an accuracy of 72.4%. *e reason is that the C3
channel generates a predicted trajectory to provide
the ability of conflict awareness. *e direction of the
predicted trajectory is provided by the heading, and
the length is determined by the speed.*erefore, the
C3 channel not only contains navigation informa-
tion such as heading and speed but also has the
ability to sense flight conflicts, which make it
achieve better performance in SOC evaluation.

(ii) Comparing the experimental results of the two
channels group and the single channel group can
prove that the combination of two channels is better
than the effect of single channel alone, because two
channels contain more information and could
produce a synergistic joint effect to describe the
traffic information together. For example, the joint
effect of heading and altitude may determine
whether there is a conflict between aircraft.

(iii) Because of the mutual supplement function and
joint effect of multichannels, the accuracy is as high
as 77.12% when using three channels (C1, C2, and
C3), which is the optimal number and combination
of channels. However, other experimental results in
three channels group experiment are not as ex-
pected. From the comparison experiment in this
group experiments, we found that due to the ad-
dition of the C4 channel, the result is not as well as
the previous fewer channels. C4 belongs to the
heading channel. *e pixel values in the channel are
filled with heading data. We originally expected this
channel to provide heading information of aircraft
for the deep learning process, but the result does not
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Figure 7: Training process of SOCNN: (a) change in ACC in training; (b) change in loss in training.
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Figure 8: Situation between the predicted SOC and real SOC: (a) confusion matrix of prediction; (b) SOC evaluation error distribution.

Table 4: Performance of different channels combination.

Channels combination Accuracy (%) MAE F1 score (%) RTPE (s) RTT (s)

Single channel
C1 70.32 0.3093 56.94 19.20 1.19
C2 69.63 0.3176 44.71 18.79 1.23
C3 72.40 0.2843 65.83 20.61 1.22

Two channels
C1, C2 70.60 0.3037 50.00 39.58 1.47
C1, C3 75.59 0.2538 62.46 37.62 1.51
C2, C3 74.48 0.2635 56.60 37.19 1.45

Aree channels

C1, C2, C3 77.12 0.2358 69.91 42.50 1.81
C1, C2, C4 69.21 0.3190 54.26 44.77 1.86
C1, C3, C4 74.62 0.2649 61.80 43.68 1.67
C2, C3, C4 73.09 0.2753 60.37 44.17 1.63

Four channels C1, C2, C3, C4 74.90 0.2600 65.66 63.79 1.92
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seem to be the case. *e analysis shows that it is not
appropriate to use heading data directly as the pixel
values for the channel because the heading data have
a special relationship. For example, a heading of 1
degree and a heading of 365 degrees are very similar
in actual space, but in terms of the magnitude of the
numerical relationship, there is a huge difference
between them. It is precisely because of the wrong
information provided by heading data that the CNN
model might be affected, which reduces the accu-
racy of the final prediction.

In summary, it can be seen that each channel of C1, C2,
and C3 is effective in complexity evaluation, and the
combined effect of different channels can improve the
evaluation performance of our model, but this does not
mean that the more the channels, the better the evaluation
performance. *e addition of redundant and inappropriate
channels, such as C4 channel might harm the evaluation
performance of the model.

To investigate the computational complexity of our
method, we report their RTPE and RTT of different channel
combinations. *e result is obviously that the training time
and prediction time of the model increase with the increase
in the number of channels because the number of input data
channels is positively correlated with computational com-
plexity. Taking the C1-C2-C3 channel combination as an
example for specific analysis, the average training time of
one epoch is 42.50 s and the prediction time on the test set is
within 2 s. As can be seen from Figure 7(a), the model
generally converges when it is trained to 70–80 epochs, so it
will take less than one hour (42.5 s∗ 80 epoch< 1 h) to
complete the whole model training process. In the actual air
traffic control problem, since the complexity labels are
difficult to obtain in real time, historical data are generally
used offline to train the model; then, the trained model is
used for real-time SOC evaluation. *erefore, the compu-
tational cost of the model on the test set is critical in practical
application, and our method, within 2 s prediction time, is
applicable. If it is necessary to consider the impact of sample
updates on the model in the future, high requirements will
be put forward for the model training time. Our method can
realize the updated sample about one hour before the
evaluation time is included in the model training process.

4.5. Research on SOCNN’s Parameters. During the con-
struction of the proposed SOCNN, there are several critical
parameters that should be properly set up. In this section, we
will investigate the range of random rotation angle in data
augmentation and label smoothing coefficient in overfitting
suppression with respect to their impact on the performance
of SOCNN. In these experiments, except for the researched
parameters, all of the settings of SOCNN remain the same as
in Section 4.2.

4.5.1. Parameter Research on the Range of Rotation Angle.
Deep learning requires a large amount of labelled data, but
in many cases, the amount of data is insufficient, and our

SOC evaluation problem is no exception. *erefore, we
adopted a data augmentation strategy to prevent overfitting
under conditions of insufficient sample size. Due to the
particularity of the SOC evaluation, data augmentation
such as random cropping and noise addition is not ap-
plicable, and only the random rotation method is used to
enhance the diversity of our MTSIs in this paper. In the
experiment, we found that the data augmentation of
random rotation will indeed improve the performance of
SOC evaluation, but the setting of the random rotation
angle range will have different effects on the final result. So,
we designed a group of experiments to explore how the
range of rotation angles influences the performance of
SOCNN.*e experimental settings are the same as those in
Section 4.2 apart from the range of rotation angle and batch
size. Here, the range of rotation angle varies from 0 to 360,
and experiments of different batch sizes (25, 50, 75, and
100) were conducted to investigate the robustness of our
method for each setting. *e specific experimental results
are shown in Figure 9.

As can be seen from the above figure, when the
random rotation angle is set between 0 and 60 degrees,
the performance of SOCNN shows a state of rising first
and then falling. Judging from the performance metrics
(i.e., Acc, MAE, and F1 score) we used, it can be con-
sidered that, in this interval which we call positive range,
the data augmentation operation has indeed improved
the overall SOC evaluation performance. When the
random rotation range is set to 10, our method has
reached the optimal performance. However, when the
random rotation angle range exceeds 90 degrees, the
overall performance begins to be lower than the case
without data augmentation. *is phenomenon tells us
that, for our SOC evaluation problem, random rotation
strategy can certainly impact the performance of the
model, and its performance is greatly affected by the
setting of the rotation angle range.

Analysing the reasons, it can be seen that as SOC
evaluation considers the traffic operation complexity in the
whole sector, in order to ensure the overall integrity, the data
augmentation methods of zooming, shearing, and panning
may not be applicable. *e real air traffic operation is based
on fixed airways, which is not as strict as ground traffic. *e
aircraft may not fly completely according to airways, and its
flight direction tends to be different from real airway di-
rection, under which our random rotation method can be
effective. However, this method is limited. *e deviation of
airctafts from the airways has to meet the flight require-
ments. In actual flight, it is almost impossible to cause a
large-angle deviation. At the same time, the restriction of
airways also ensures that the overall air traffic flowmaintains
a certain direction. *erefore, the angle of our random
rotation cannot be too large. Otherwise, it will produce
samples that are completely irrelevant to the actual situation.
*ese samples might misunderstand CNN model and affect
the final evaluation performance. From the above experi-
mental results, it can be found that when the random ro-
tation angle is set to 10 degrees, the best performance can be
achieved.
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4.5.2. Parameter Research on Label Smoothing Coefficient.
*e label smoothing strategy is a loss function modification
to solve the shortcomings in the process of training deep
learning networks, that is, deep neural networks become
“overconfident” in their predictions during training, which

will reduce their generalization ability. Here, we design a
group of experiments to explore the relationships between
label smoothing coefficient and the performance of SOCNN.
We let the label smoothing coefficient vary from 0 to 0.4
while keeping the other setting unchanged, and then, a total
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of 14 experiments were conducted. *e metrics of Acc and
MAE are utilized for evaluating the performance of SOCNN,
and the experimental results are shown in Figure 10.

In Figure 10, the blue histogram and orange dashed line
represent the changing trend of Acc and MAE on the test
set, respectively. *e subgraph denotes the convergence
curve of the loss function of the training set and the test set
under different parameter settings. If the coefficient is 0, the
label smoothing strategy has not been performed. We can
find that, in terms of model performance, with the increase
in the label smoothing coefficient, the evaluation perfor-
mance first increases and then decreases. *e evaluation
performance with a label smoothing coefficient between
0.003 and 0.03 is better than the performance without label
smoothing strategy; that is, the coefficient is 0. When the
coefficient is greater than 0.03, the model performance will
be weakened or even lag behind the performance of the
nonlabel smoothing strategy. In terms of the convergence
curve of the loss function, it can be seen from the subgraph
that the cross-entropy loss curve on the test set cannot
converge when the label smoothing strategy is not carried
out (as shown in Inset 1 of Figure 10), and the label
smoothing strategy is helpful to the loss function con-
vergence of the test set (as shown in Inset 2 of Figure 10),
but too large coefficient leads to high loss of training set (as
shown in Inset 3 of Figure 10).

*e reason for the above phenomenon is that an ex-
cessively large label smoothing coefficient will lose part of
useful information and reduce the learning ability of the
model, thereby affecting the evaluation performance of the
model and the abnormality of the loss function convergence
curve of the test set. Considering the above analysis results
and real experimental results, we choose a label smoothing
coefficient of 0.02, which can not only ensure the im-
provement of model performance but also make the loss
curve of the test set converge correctly.

5. Conclusions

Deep learning techniques are widely used in the field of image
processing and have achieved fruitful results because of its
powerful complex feature representation capabilities than other
methods [33, 34]. However, there are limited studies in SOC
evaluation. Extracting more complex features by deep learning
methods will improve the performance of SOC evaluation.

*is paper proposes an image-based SOC evaluation
method that can automatically extract abstract traffic fea-
tures to learn SOC pattern. *e method mainly consists of
two parts. *e first one involves converting air traffic sce-
nario to the multichannels image that contains navigation
and conflict information.*e second procedure is to utilize a
deep CNN to learn airspace operation complexity infor-
mation based on the constructed multichannels image and
realize SOC evaluation. In the experimental results, our
methods outperform other prevailing machine learning
methods among all performance metrics and every channel
of the image is proved to be effective. In addition, we also
performed parameters analysis on data augmentation and
label smoothing.

Due to the implementation of the end-to-end learning
framework, the proposed method can be applied more easily
in practice than traditional machine learning methods,
which rely on mass hand-crafted features and have difficulty
in feature calculation. Moreover, we believe that our method
can be further improved in the future in the following di-
rections: (1) we can attempt to design more complex and
efficient networks, such as ResNet, DenseNet, and Mobi-
leNet, to further improve the SOC evaluation performance
and efficiency; (2) the real air traffic scene is not based on a
single frame image, and the 2D image may not take into
account the motion information between frames in the time
dimension, so 3D CNN or Conv-LSTM method can be used
to better capture the temporal and spatial feature infor-
mation in the air traffic scenarios; (3) since it is difficult to
obtain labelled samples of the target sector, we can try to
build a more accurate SOC evaluation model by making use
of unlabelled samples of target sector or labelled sample of
nontarget sectors in the case of limited labelled samples
through semi-supervised learning or transfer learning
techniques.
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