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(is paper deals with a single-machine resource allocation scheduling problem with learning effect and group technology. Under
slack due-date assignment, our objective is to determine the optimal sequence of jobs and groups, optimal due-date assignment,
and optimal resource allocation such that the weighted sum of earliness and tardiness penalties, common flow allowances, and
resource consumption cost is minimized. For three special cases, it is proved that the problem can be solved in polynomial time. To
solve the general case of problem, the heuristic, tabu search, and branch-and-bound algorithms are proposed.

1. Introduction

In the conventional scheduling models and problems, it is
generally assumed that the job processing times are constants,
but in practice, examples can be found to illustrate that the job
processing times are not necessarily constants (Shabtay and
Steiner [1], Biskup [2], and Azzouz et al. [3]). More recently,
Zhu et al. [4] considered resource allocation single-machine
scheduling problems with learning effects and group tech-
nology. For the linear and convex resource allocation models,
they proved that problem of minimizing the weighted sum of
makespan and total resource cost can be solved in polynomial
time. Lu et al. [5] revisited the same model with Zhu et al. [4],
but they considered the case of resource availability is limited.
For the makespan minimization subject to limited resource
availability, they proposed heuristic and branch-and-bound
algorithms. Sun et al. [6] and Lv et al. [7] worked on single-
machine scheduling group problems with learning effects and
resource allocation. Under the slack (SLK) due-date assign-
ment, for the linear weighted sum of scheduling cost and
resource consumption cost minimization, Sun et al. [6] proved
that the problem can be solved in polynomial time. However,
Lv et al. [7] showed that the results of Sun et al. [6] are incorrect
by two counter-examples, and Lv et al. [7] also provided the

corrected results under a special case. In this paper, we will
consider the samemodel with Sun et al. [6] and Lv et al. [7], i.e.,
three popular features in the recent years: group technology,
resource allocation, and learning effect. (e contributions of
this study are given as follows: (1) we study the SLK assignment
single-machine group scheduling problem along with learning
effect and convex resource allocation; (2) the optimal prop-
erties are provided for the total cost (including earliness, tar-
diness, common flow allowances, and resource consumption
cost) minimization; (3) we propose the heuristic, tabu search,
and branch-and-bound algorithms to solve the problem.

(e reminder of this paper is organized as follows. In
Section 2, the relevant literature review is presented. (e
problem statement is presented in Section 3. Section 4 gives
some properties of the problem. In Section 5, some special
cases are discussed. In Section 6, for the general case, so-
lution algorithms are proposed. Finally, the conclusions are
given in Section 7.

2. Literature Review

In this section, we restrict our literature review to papers that
study scheduling problems with learning effects, resource
allocation, and/or group technology.
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In manufacturing environments, after learning, the time
required for workers (machines) to process some jobs is de-
creasing, which causes scheduling problems with learning
effects (Biskup [2]). Wang et al. [8] considered the flow shop
problemwith a learning effect. Under two-machine and release
dates, the goal is to minimize the weighted sum of makespan
and total completion time.(ey proposed a branch-and-bound
algorithm and a multiobjective memetic algorithm to solve the
problem. Wang et al. [9] considered flow shop problems with
truncated learning effects. For themakespan and total weighted
completion time minimizations, they proposed heuristics and
branch-and-bound algorithms. Yan et al. [10] and Wang et al.
[11] studied single-machine scheduling problems with learning
effects and release times. Sun et al. [12] investigated flow shop
problem with general position weighted learning effects. For
the total weighted completion time minimization, they pro-
posed some heuristics and a branch-and-bound algorithm to
solve the problem.

In addition, scheduling problems with resource alloca-
tion (controllable processing times) have also attracted
considerable interest from researchers (Shabtay and Steiner
[1]), that is, the scheduler can control processing times of
jobs by allocating a common continuously nonrenewable
resource. Kayvanfar et al. [13, 14] considered single-machine
scheduling with controllable processing times. For the total
tardiness and earliness minimization, Kayvanfar et al. [13]
proposed a mathematical model and three heuristic tech-
niques; Kayvanfar et al. [14] proposed a drastic hybrid
heuristic algorithm. Lu and Liu [15] considered single
machine scheduling problems with resource allocation and
position-dependent workloads. (ey proposed a bicriteria
analysis for the scheduling cost and total resource con-
sumption cost. Tsao et al. [16] considered energy-efficient
single-machine scheduling problem with controllable pro-
cessing time. Under differential electricity pricing, they
proposed a mixed-integer programming model and a fuzzy
control approach. Mor et al. [17] considered single-machine
scheduling problems with resource-dependent processing
times. For a large set of that the scheduling criterion can be
represented as one that includes positional penalties; they
proposed heuristic algorithms to solve the problems. Kay-
vanfar et al. [18] considered unrelated parallel machines
scheduling problem with controllable processing times. For
the linear weighted sum of tardiness, earliness, jobs com-
pressing and expanding costs, and makespan minimization,
they proposed a mixed integer programming model and
some heuristics. Zarandi and Kayvanfar [19] considered a
biobjective identical parallel machines scheduling problem
with controllable processing times. (e goal is to simulta-
neously minimize total cost of tardiness and earliness as well
as compression and expansion costs of job processing times
and makespan. (ey proposed two multiobjective evolu-
tionary algorithms to solve the biobjective problem. Kay-
vanfar et al. [20] studied identical parallel machine
scheduling problem with controllable processing times. For
the linear weighted sum of tardiness, earliness, and job
compressions/expansion cost minimization, they proposed a
mixed integer linear programming model and some heu-
ristic algorithms to solve the problem.

A third possible aspect is that scheduling problems with
group technology (GT, see studies by Mosier et al. [21] and
Webster and Baker [22]), that is, GT is an approach to
manufacturing that seeks to improve efficiency in high-volume
production by exploiting the similarities of different products
and activities in their production (see studies by Yang andYang
[23] and Ji et al. [24]). Xu et al. [25] and Liu et al. [26]
considered single-machine group scheduling with deteriorat-
ing jobs and ready times. For the makespan minimization, Xu
et al. [25] proved that some special cases can be solved in
polynomial time; for the general case, Liu et al. [26] proposed a
branch-and-bound algorithm. Li and Zhao [27] considered
single machine scheduling problem with group technology.
Under multiple due windows assignment, they proved that the
total cost (including earliness, tardiness, and due windows)
minimization can be solved in polynomial time. Zhang and Xie
[28] studied the single machine scheduling problem with
position dependent processing times. Under group technology
and ready times, for the makespan minimization, they proved
that a special case can be solved in polynomial time. Ji and Li
[29] studied single-machine group scheduling with variable job
processing times (including resource allocation, learning ef-
fects, and deteriorating jobs). (ey proved that two versions of
problem can be solved in polynomial time. Zhang et al. [30]
considered single-machine group scheduling problems with
position-dependent processing times. (ey proved that the
makespan and the total completion time minimization can be
solved in polynomial-time algorithm, respectively. Muştu, and
Eren [31]) studied the single-machine scheduling problemwith
sequence-independent setup times and time-dependent
learning and forgetting effects. (ey proved that the makespan
minimization is ordinary NP-hard, and they also proposed an
integer nonlinear programming and a dynamic programming
to solve the problem. Extensive surveys of different scheduling
models and problems with group technology can be found in
studies by Allahverdi [32] and Neufeld et al. [33].

More recently, Wang et al. [34] and Lu et al. [35] delved
into single-machine resource allocation scheduling problems
with learning effects. He et al. [36] considered the single-
machine resource allocation scheduling with truncated job-
dependent learning effect. Under linear and convex resource
allocations, polynomial time algorithms are developed to solve
the problem. Li et al. [37] considered single-machine sched-
uling with general job-dependent learning curves and con-
trollable processing times. (ey proved that some regular and
nonregular objective minimizations can be solved in polyno-
mial time. Wang et al. [38] considered single-machine
scheduling with truncated learning effects and resource allo-
cation. For total weighted flow time cost and total resource
consumption cost, they provided a bicriteria analysis. Geng
et al. [39] and Sun et al. [40] investigated two-machine no-wait
flow shop scheduling with resource allocation and learning
effect. For the common due date assignment, Geng et al. [39]
proved that two versions of the scheduling criteria and resource
consumption cost can be solved in polynomial time. For the
slack due-date assignment, Sun et al. [40] proved that three
versions of the scheduling criteria and resource consumption
cost can be solved in polynomial time. Liu and Jiang [41]
explored due-date assignment scheduling problems with job-
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dependent learning effects and convex resource allocation.
Zhang et al. [30] considered single-machine group scheduling
problems with position-dependent learning effects. (ey
proved that the makespan and total completion time mini-
mizations can be solved in polynomial time algorithm. Wang
and Liang [42] and Liang et al. [43] investigated single-machine
resource allocation scheduling with deteriorating jobs and
group technology. Liao et al. [44] studied a two-competing
group parallel machines scheduling problem with truncated
job-dependent learning effects. Under serial-batchingmachines,
for the makespan minimization, they proposed a greedy
algorithm.

To the best of our knowledge, apart from the recent papers
of Sun et al. [6] and Lv et al. [7], the single-machine slack due-
date assignment scheduling problem with resource allocation,
group technology, and learning effects has not been investi-
gated. In this paper, we consider the samemodel as in Sun et al.
[6] and Lv et al. [7], but with the tabu search and branch-and-
bound algorithms to solve the problem.

3. Problem Formulation

We have n jobs grouped into f groups (i.e.,
(G1, G2, . . . , Gf)) to be processed by a single machine, where
the number of jobs in the group Gi(i � 1, 2, . . . , f) is mi, i.e.,


f
i�1 mi � n. Each group Gi(i � 1, 2, . . . , f) has an inde-

pendent setup time si and contains mi jobs which are
processed consecutively. Let Ji,j be the j th job in group Gi,
i � 1, 2, . . . , f, j � 1, 2, . . . , mi, i.e., group Gi has jobs
Ji,1, Ji,2, . . . , Ji,mi

. Let J[i],[j] be the job in the i th group
position and j th internal job position. As in the study by
Liang et al. [43], if the job Ji,j is scheduled in r th position in
group Gi, the actual processing time of job Ji,j is

p
A
i,j �

pi,jr
ai,j

ui,j

 

η

, (1)

where η is a constant positive parameter, pi,j is the normal
processing time of job Ji,j, ai,j ≤ 0 is the learning rate (see the
study by Biskup [2]) of job Ji,j, ui,j ≥ ui

′ > 0, ui
′ is the minimal

resource allocation to the jobs of group Gi (if ui,j is close to
zero, pA

i,j will be close to infinity, which is not realistic; hence,
we set ui,j ≥ ui

′ > 0). Let Ci,j (di,j) be the completion time (due-
date) of job Ji,j. For the slack (SLK) due-date assignment, we
assume that the due-date of job Ji,j is di,j � pA

i,j + qi, where qi is
the common flow allowance for group Gi and qi is a decision
variable. Let Ei,j � max di,j − Ci,j, 0  (Ti,j � max Ci,j − di,j,

0) be the earliness (tardiness) of job Ji,j; our goal is to find the
optimal group sequence π∗G, job sequence π∗i (i � 1, 2, . . . , f)

within group Gi, and resource allocation such that the fol-
lowing cost is minimized:



f

i�1


mi

j�1
αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j, (2)

where αi, βi, and ci are the nonnegative parameters of group
Gi and ]i,j represents the per unit cost of the resource ui,j

allocated to job Ji,j. Using the three-field classification (see
the studies by Shabtay and Steiner [1], Biskup [2], and
Azzouz et al. [3]), the problem can be denoted as

1 GT, si,CRA, SLK


 

f

i�1


mi

j�1
αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j,

(3)

where GT denotes the group technology and CRA represents
the convex function of resource allocation (1).

4. Some Properties

Obviously, an optimal sequence exists that starts at time zero
and without any machine idle time between all the jobs.
Similar to the study by Adamopoulos and Pappis [45], we
have the following.

Lemma 1. If C[i],[j] ≤d[i],[j]⟹C[i],[j−1] ≤d[i],[j−1], (i � 1, 2,

. . . , f; j � 1, 2, . . . , mi).
If C[i],[j] ≥d[i],[j]⟹C[i],[j+1] ≥d[i],[j+1], (i � 1, 2, . . . ,

f; j � 1, 2, . . . , mi).

Lemma 2. For the problem 1|GT, si,CRA, SLK| 
f
i�1 

mi

j�1

(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j, there exists an op-
timal schedule such that the optimal value of q[i] coincides
with the job completion time of the group G[i], i.e.,
q[i] � C[i],[ki−1] � S[i] + s[i] + 

ki−1
j�1 pA

[i],[j], where

k[i] � min m[i], max 0, ⌈
m[i] β[i] − c[i] 

α[i] + β[i]

⌉
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭, (4)

and S[i] is the starting time of group G[i].

Lemma 3 (see [43]). For a given sequence π, the optimal
resource allocation is

u
∗
[i],[j] � max u[i],[j], u[i]

′ , (5)

where

u[i],[j] �

η α[i]j + 
f

h�i m[h]c[h] 

][i],[j]

⎛⎝ ⎞⎠

(1/(η+1))

p[i],[j]j
a[i],[j] 

(η/(η+1))
, i � 1, . . . , f; j � 1, . . . , k[i]−1,

ηβ[i] m[i] − j 

][i],[j]

⎛⎝ ⎞⎠

(1/(η+1))

p[i],[j]j
a[i],[j] 

(η/(η+1))
, i � 1, . . . , f; j � k[i], . . . , m[i].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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From the study by Liang et al. [43], we have



f

i�1


mi

j�1
αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j

� 

f

i�1


f

h�i

m[h]c[h]
⎛⎝ ⎞⎠s[i]

+ η(1/(η+1))
+ η(− η/(η+1))

  

f

i�1


k[i]−1

j�1
α[i]j + 

f

h�i

m[h]c[h]
⎛⎝ ⎞⎠

(1/(η+1))

][i],[j]p[i],[j]j
a[i],[j] 

(η/(η+1))

+ η(1/(η+1))
+ η(− η/(η+1))

  

f

i�1


m[i]

j�k[i]

β[i] m[i] − j  
(1/(η+1))

][i],[j]p[i],[j]j
a[i],[j] 

(η/(η+1))
.

(7)

Lemma 4 (see [43]). For the problem 1|GT, si,CRA, SLK|


f

i�1 
mi

j�1(αiEi, j + βiTi,j + ciqi)+ 
f

i�1 
mi

j�1 ]i,jui,j, if the
sequence of groups is given by πG � [G[1], G[2], . . . , G[f]], the
optimal job sequence in the group G[i](i � 1, 2, . . . , f) can be
obtained by the following assignment problem (AP-i):

(AP − i)Min 

m[i]

j�1


m[i]

h�1
ϑ[i],j,hx[i],j,h, (8)

s.t. 

m[i]

h�1
x[i],j,h � 1, i � 1, 2, . . . , f; j � 1, 2, . . . , m[i],

(9)



m[i]

j�1
x[i],j,h � 1, i � 1, 2, . . . , f; h � 1, 2, . . . , m[i], (10)

x[i],j,h � 0 or 1, (11)

where

ϑ[i],j,h �
η(1/(η+1))

+ η(− η/(η+1))
  α[i]h + 

f

l�i

m[l]c[l]
⎛⎝ ⎞⎠

(1/(η+1))

][i],jp[i],jh
a[i],j 

(η/(η+1))
, i � 1, 2, . . . , f; j � 1, 2, . . . , m[i]; h � 1, 2, . . . , k[i] − 1

η(1/(η+1))
+ η(− η/(η+1))

  β[i] m[i] − h  
(1/(η+1))

][i],jp[i],jh
a[i],j 

(η/(η+1))
, i � 1, 2, . . . , f; j � 1, 2, . . . , m[i]; h � k[i], k[i] + 1, . . . , m[i].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

Lemma 5. ;e term 
f
i�1(

f

h�i m[h]c[h])s[i] is minimized if
s[1] ≤ s[2] ≤ · · · ≤ s[f].

Proof. It is similar to the proof of Liang et al. [43]. □

Lemma 6. If the optimal job sequence within each group is
given, the term,

η(1/(η+1))
+ η(− η/(η+1))

  

f

i�1


k[i]−1

j�1
α[i]j + 

f

h�i

m[h]c[h]
⎛⎝ ⎞⎠

(1/(η+1))

][i],[j]p[i],[j]j
a[i],[j] 

(η/(η+1))

+ η(1/(η+1))
+ η(− η/(η+1))

  

f

i�1


m[i]

j�k[i]

β[i] m[i] − j  
(1/(η+1))

][i],[j]p[i],[j]j
a[i],[j] 

(η/(η+1))
,

(13)
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is minimized if m[1]c[1] ≥m[2]c[2] ≥ · · · ≥m[f]c[f].

Proof. By using simple group interchanging technique, the
result can be easily obtained. □

5. Polynomial Time Solvable Cases

5.1. Case 1. As in the study by Liao et al. [44], if the groups
have agreeable conditions, i.e., if si ≤ sh implies mici ≥mhch

for all groups Gi and Gh, the problem 1|GT, si,CRA, SLK,

(si ≤ sh)⟹ (mici ≥mhch)| 
f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) +


f
i�1 

mi

j�1 ]i,jui,j can be solved in polynomial time.

Lemma 7 (see [44]). For the problem 1|GT, si,CRA, SLK,

(si ≤ sh)⟹ (mici ≥mhch)| 
f

i�1 
mi

j�1 (αiEi,j + βiTi,j + ciqi)

+ 
f

i�1 
mi

j�1 ]i,jui,j, if the groups have agreeable conditions,
i.e., if si ≤ sh implies mici ≥mhch for all groups Gi and Gh,
then the optimal group sequence π∗G can be obtained by se-
quencing groups in nondecreasing order of si, or equivalently,
the optimal group sequence π∗G can be obtained by sequencing
groups in nonincreasing order of mici.

For the problem 1|GT, si,Con, (si ≤ sh)⟹ (mici ≥mh

ch)| 
f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j, the
optimal solution algorithm is given as follows:

Theorem 1 (see [44]). ;e problem,

1 GT, si,CRA, SLK, si ≤ sh( ⟹ mici ≥mhch( 






f

i�1


mi

j�1
αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j,

(14)

can be solved by Algorithm 1 in O(n3) time.

5.2. Case 2. In this subsection, a special case will be con-
sidered, i.e., if si � s, mici � mc, for i � 1, 2, . . . f.

Lemma 8. For the problem 1|GT, si,CRA, SLK, si � s, mici �

mc| 
f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j, the
optimal group sequence π∗G can be obtained by an assignment
problem.

Proof. From Lemma 4, the sequence π∗i (i � 1, 2, . . . , f)

within the group Gi can be obtained. For the group Gi, if
si � s, and mici � mc (i � 1, 2, . . . , f), from (7), we have



f

i�1


mi

j�1
αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j

�
f(f + 1)smc

2
+ η(1/(η+1))

+ η(− η/(η+1))
  

f

i�1


k[i]−1

j�1
α[i]j +(f − i + 1)mc 

(1/(η+1))
][i],[j]p[i],[j]j

a[i],[j] 
(η/(η+1))

+ η(1/(η+1))
+ η(− η/(η+1))

  

f

i�1


m[i]

j�k[i]

β[i] m[i] − j  
(1/(η+1))

][i],[j]p[i],[j]j
a[i],[j] 

(η/(η+1))
.

(15)

Let xi,r � 1, if group Gi is assigned to position r, and
xi,r � 0 otherwise. For ((f(f + 1)smc)/2) is a constant,
hence the optimal group sequence π∗G can be obtained by an
assignment problem (AP-G):

(AP − G)Min

f

i�1


f

r�1
ϑi,rxi,r

s.t. 

f

r�1
xi,r � 1, i � 1, 2, . . . , f,



f

i�1
xi,r � 1, r � 1, 2, . . . , f,

xi,r � 0 or 1,

(16)

where the optimal sequence of group Gi is π∗i � (Ji,(1), Ji,(2),

. . . , Ji,(mi)
) (by Lemma 4), and

ϑi,r � η(1/(η+1))
+ η(− η/(η+1))

  

ki−1

j�1
αij +(f − r + 1)mc( 

(1/(η+1))

· ]i,(j)pi,(j)j
ai,(j) 

(η/(η+1))

+ η(1/(η+1))
+ η(− η/(η+1))

  

mi

j�ki

βi mi − j( ( 
(1/(η+1))

· ]i,(j)pi,(j)j
ai,(j) 

(η/(η+1))
.

(17)

For the problem 1|GT, si,CRA, SLK, si � s, mici �

mc| 
f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j, the
optimal solution algorithm is given as follows: □
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Theorem 2. ;e problem,

1 GT, si,CRA, SLK, si � s, mici � mc


 

f

i�1


mi

j�1

· αiEi,j + βiTi,j + ciqi  + 

f

i�1


mi

j�1
]i,jui,j,

(18)

can be solved by Algorithm 2 in O(n3) time.

Proof. Time complexity of Step 1 is O(n); time complexity of
Step 2 is O(f log f) time. Step 3 needs 

f
i�1 O(m3

i )≤O(n3)

time. Steps 4-5 need O(n) time, respectively. (us, the total
time complexity of Algorithm 2 is O(n3) time. □

5.3. Case 3. In this subsection, it is assumed that the number
of groups f is a given constant.

Theorem 3. For the 1|GT, si,CRA, SLK| 
f

i�1 
mi

j�1(αiEi,j +

βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j problem, an optimal schedule
can be solved in O(f!n3) time, i.e., the problem
1|GT, si,CRA, SLK| 

f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1


mi

j�1 ]i,jui,j can be solved in polynomial time if f is a given
constant.

Proof. From Lemma 4, if the schedule of groups is given,
then an optimal schedule can be obtained in


f
i�1 O(n3

i )≤O(n3) time. Obviously, there are f! possible
group schedules, hence an optimal schedule can be solved in
O(f!n3) time.

Based on (eorem 2, an algorithm can be proposed to
solve the problem 1|GT, si,CRA, SLK| 

f
i�1 

mi

j�1(αiEi,j+

βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j. □

6. General Case

For the general case of the problem 1|GT, si,CRA, SLK|


f

i�1 
mi

j�1(αiEi, j + βiTi,j + ciqi) + 
f

i�1 
mi

j�1 ]i,jui,j, the
complexity is an open question. Hence, the heuristic algo-
rithm and branch-and-bound (B&B) algorithm might be a
good way to solve the problem.

6.1. Heuristic Algorithm. From Lemma 4, the optimal job
sequence within the same group can be obtained, and the
optimal resource allocation of a given schedule can be
obtained by Lemma 3. In this subsection, we apply the well-
known heuristic procedure from the study by Nawaz et al.
[46], and the following heuristic algorithm can be proposed.

6.2. Tabu Search Algorithm. Tabu search (TS) algorithm is a
metaheuristic algorithm first proposed by Glover [47]. In
this subsection, tabu search (TS) is used to find a near-
optimal solution (Xu et al. [48]). (e initial sequence used in
the TS algorithm is chosen by the nondecreasing order of si,
and the maximum number of iterations for the TS algorithm
is set at 100f, where f is the number of groups. As in the
study by Wu et al. [49], the implementation of the TS al-
gorithm is given as follows:

6.3. A Lower Bound. Let πG � [πGS, πGU] be a sequence of
groups in which πGS is the scheduled part, and πGU is a
unscheduled part. Assume that there are g groups in πGS;
from (7), it is noticed that the terms,
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Step 1. Calculate k[i] by using (4), i � 1, 2, . . . , f.
Step 2. (e optimal sequence between groups is arranged in nondecreasing order of s[i].
Step 3. (e jobs in each group are arranged according to the assignment problem AP (Lemma 4).
Step 4. Calculate the optimal resource allocation u∗[i][j] according to (5).
Step 5. Calculate the optimal common flow allowance q[i] � C[i],[k[i]]−1 and the corresponding optimal objective function


f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j by using (7).

ALGORITHM 1: Optimal solution for Case 1.
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can be minimized by Lemmas 5–6. Hence, the lower bound
can be obtained by the following formula:
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(20)

where s(g+1) ≤ s(g+2) ≤ · · · ≤ s(f) and m〈g+1〉c〈g+1〉 ≥m〈g+2〉

c〈g+2〉 ≥ · · · ≥m〈f〉c〈f〉 (note that s(i) and m〈i〉c〈i〉 ((i � g +

1, r + 2, . . . , f)) do not necessarily correspond to the same
group).

6.4. Branch-and-Bound (B&B) Algorithm. (e branch-
and-bound (B&B) algorithm search follows a depth-first
strategy; this algorithm assigns groups in a forward manner
starting from the first position (assign a group to a node).

6.5.AnExample for B&BAlgorithm. Consider an example in
which there are 13 jobs belonging to 5 groups G1 � J11, J12 ,

G2 � J21, J22, J23 , G3 � J31, J32, J33 , G4 � J41, J42 , and
G5 � J51, J52, J53 . (e processing times of each job,
learning rate, and setup time of each group and other pa-
rameters are shown in Tables 1 and 2.

From Algorithm 3 (HA), the initial sequence is
[G1, G2, G4, G5, G3], and the objective function value (upper
bound) is 

f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,j

ui,j � 295.8274. According to Algorithm 4 (B&B algorithm),
the following search tree can be obtained, which is repre-
sented by Figure 1. (e numbers in Figure 1 represent the
lower bound values, and G0 is defined as the level 0.

At level 1, i.e., g � 1, for group G1, from formula (8), the
lower bound is

Step 1. Calculate k[i] by using (4), i � 1, 2, . . . , f.
Step 2. (e optimal sequence between groups can be obtained by Lemma 8.
Step 3. (e jobs in each group are arranged according to the assignment problem AP (Lemma 4).
Step 4.Calculate the optimal resource allocation u∗[i],[j] according to (5).
Step 5. Calculate the optimal common flow allowance q[i] � C[i][k[i]]−1 and the corresponding optimal objective function


f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi)+ 
f
i�1 

mi

j�1 ]i,jui,j by using (7).

ALGORITHM 2: Optimal solution for Case 2.
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Table 1: Numerical parameters.

si αi βi ci ui
′

G1 3 1 2 1 1
G2 5 1 2 1 1
G3 7 1 2 1 1
G4 4 1 2 1 1
G5 6 1 2 1 1

Table 2: Numerical parameters.

η � 1
J11 J12 J21 J22 J23 J31 J32 J33 J41 J42 J51 J52 J53

pi,j 4 6 5 3 5 4 7 7 6 3 2 8 5
ai,j −0.16 −0.21 −0.22 −0.12 −0.24 −0.23 −0.32 −0.31 −0.15 −0.17 −0.19 −0.2 −0.26
]i,j 5 4 7 6 8 6 3 4 2 5 6 4 5

(1) Input: k[i]⟵ using equation (4) for i � 1, 2, . . . , f; the internal job sequence π∗i⟵ using Lemma 4 for each group Gi,
i � 1, 2, . . . , f.

(2) Output: the suboptimal resource allocation u∗[i],[j], suboptimal common flow allowance q[i] �, C[i][k[i]]−1, and corresponding
objective function value 

f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi)+, 
f
i�1 

mi

j�1 ]i,jui,j.
3) For each π∗i , groups are scheduled by the nondecreasing order of si, (i � 1, 2, . . . , f);
(4) For each π∗i , groups are scheduled by the nonincreasing order of mici, (i � 1, 2, . . . , f);
(5) From Step 3 and Step 4, the smallest objective function value 

f

i�1 
mi

j�1(αiEi,j + βiTi,j + ciqi), + 
f

i�1 
mi

j�1 ]i,jui,j is selected as the
original group sequence πG;

(6) Pick the two groups from the first and second position of the list of Step 5 and find the best sequence for these two groups by
calculating 

f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j for the two possible sequences. Do not change the relative positions
of these two groups with respect to each other in the remaining steps of the algorithm. Set i � 3;

(7) Pick the group in the ith position of the list generated in Step 5 and find the best sequence by placing it at all possible i positions in
the partial sequence found in the previous step, without changing the relative positions to each other of the already assigned
groups. (e number of enumerations at this step equals i;

(8) If i>f, then stop
(9) Otherwise,
(10) i⟵ i + 1, and return to Step 7;
(11) Calculate the suboptimal resource allocation u∗[i],[j] according to (5). Calculate the suboptimal common flow allowance q[i] �

C[i][k[i]]−1 and the corresponding optimal objective function 
f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j by using (7).

ALGORITHM 3: HA.

Step 1. Finding the upper bound: use Algorithm 3 to obtain an initial solution for the problem.
Step 2. Bounding: calculate the lower bound (see (8)) for the node. If the lower bound for an unfathomed partial schedule of groups is
larger than or equal to the value of the objective function of the initial solution, eliminate the node and all the nodes following it in the
branch. Calculate the objective function value of the completed schedule; if it is less than the initial solution, replace it as the new
solution; otherwise, eliminate it.
Step 3. Termination: continue until all nodes have been explored.

ALGORITHM 4: B&B algorithm.
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×

Figure 1: Search tree of the B&B algorithm for the example (× denotes pruning).
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LB G1(  � (2 × 1 + 3 × 1 + 3 × 1 + 3 × 1 + 2 × 1) × 3

+(3 × 1 + 3 × 1 + 3 × 1 + 2 × 1) × 4 +(3 × 1 + 3 × 1 + 2 × 1) × 5

+(3 × 1 + 2 × 1) × 6 + 2 × 1 × 7

+ 2 ×

(2 ×(2 − 1))
(1/2)

×(4 × 5)
(1/2)

+(2 ×(3 − 1))
(1/2)

×(3 × 6)
(1/2)

+(2 ×(3 − 2))
(1/2)

× 5 × 7 × 2− 0.22
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(1/2)

× 5 × 5 × 2− 0.26
 

(1/2)

+(2 ×(2 − 1))
(1/2)

×(2 × 6)
(1/2)
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� 279.8274.

(21)

(e calculation process of lower bounds of the remaining
node is similar to that of this node. From Figure 1, the optimal
sequences are [G1, G2, G4, G5, G3], [G1, G2, G5, G4, G3], and
[G5, G1, G2, G4, G3], and the optimal value of objective
function is 

f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j

� 295.8274.

6.6. Computational Experiments. An enumeration algo-
rithm (i.e., Algorithm 5), heuristic algorithm (i.e., Algo-
rithm 3), TS algorithm (i.e., Algorithm 6), and B&B
algorithm (i.e., Algorithm 4) were programmed in C++ and
carried out on a CPU Intel Core i5-8250U 1.4 GHz PC with
8.00GB RAM. (e number of jobs and groups
n � 50, 100, 150, 200 and f � 8, 9, 10, 11, 12 were tested, and
each group must contain at least one job. (e parameters
setting can be obtained as follows: si, vi,j, αi, βi, and ci were
drawn from a discrete uniform distribution in [1, 10]; pi,j

were drawn from a discrete uniform distribution in [1,

100]; ai,j were drawn from a uniform distribution in [−0.1,
−1]; and η � 2. To avoid the contingency, each problem
instance was conducted 20 times, setting the maximum
CPU time per instance at 3600 seconds. (e percentage
relative error of the solution produced by Algorithms 3 and
6 is calculated as

Z(Ai) − Z
∗

Z
∗ × 100%, (22)

where i � 4, 5,Z(Ai), andZ∗ are the objective function values


f
i�1 

mi

j�1(αiEi,j + βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j generated
by Algorithm 1 and Algorithm 4, respectively.

On the other hand, “A3-CPU time (s)” (“A4-CPU time (s),”
“A5-CPU time (s),” and “A6-(B&B) CPU time (s)”) as the
running time of Algorithm 5 (Algorithms 3–4) is defined. (e
results are summarized in Table 3. FromTable 3, it is easy to find
that the maximum relative error percentage of Algorithm 3 is
less than 6.1% for n≤ 200, and performance of Algorithm 3 (i.e.,
the heuristic algorithm) performs very well in terms of the

Step 1. Calculate k[i] by using (4), i � 1, 2, . . . , f.
Step 2. (e jobs in each group are arranged according to the assignment problem AP (Lemma 4).
Step 3. List all the group schedules.
Step 4. For each group schedule, calculate the corresponding objective value 

f
i�1 

mi

j�1 (αiEi,j + βiTi,j+ ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j.
Step 5. Comparing all the objective values 

f

i�1 
mi

j�1(αiEi,j +βiTi,j+ ciqi) + 
f

i�1 
mi

j�1 ]i,jui,j, the minimum one is optimal, and its
corresponding schedule is the optimal sequence of the problem 1|GT, si,CRA,SLK|

f
i�1 

mi

j�1 (αiEi,j+ βiTi,j + ciqi) + 
f
i�1 

mi

j�1 ]i,jui,j.

ALGORITHM 5: Optimal solution for Case 3.

Step 1. Let the tabu list be empty and the iteration number be zero.
Step 2. Set the initial sequence of the TS algorithm, calculate its objective function, and set the current sequence as the best
solution π∗.
Step 3. Search the associated neighborhood of the current sequence and resolve if there is a sequence π∗∗ with the smallest objective
function in associated neighborhood and it is not in the tabu list.
Step 4. If π∗∗ is better than π∗, then let π∗ � π∗∗. Update the tabu list and the iteration number.
Step 5. If there is not a sequence in associated neighborhood but it is not in the tabu list or the maximum number of iterations is
reached, then output the final sequence. Otherwise, update tabu list and go to Step 3.

ALGORITHM 6: TS.
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relative error percentages. Moreover, Table 3 shows that the
mean CPU time (s) for the enumeration algorithm (i.e., Al-
gorithm 5) is larger than the B&B algorithm (i.e., Algorithm 4).

7. Conclusions

In this paper, we studied the single-machine resource al-
location scheduling problem with learning effect and group
technology.(e goal is to determine the optimal sequence of
jobs and groups, the optimal common flow allowances, and
the optimal resource allocation such that the weighted sum
of the scheduling cost and the resource allocation cost is
minimized. For some special cases (i.e., cases
(si ≤ sh)⟹ (mici ≥mhch), si � s, mici � mc, and f is a
given constant), it was shown that the problem can be solved
in polynomial time. For the general case of the problem, the
heuristic, tabu search, and B&B algorithms were proposed.
(e results show that themaximum relative percentage error
of the proposed heuristic algorithm (i.e., Algorithm 3) from
optimal solutions is less than 6.1% for all sizes of instances.

Further research may focus on the extensions of this
model to more complicated machine setting (such as flow
shop and/or parallel machines) or study other nonregular
objective functions (such as due-window assignment
scheduling problems with position-dependent weights, see
the study by Wang et al. [50]).
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