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.e development of artificial intelligence technology has brought changes to various industries. Under the concept of green
sustainable development, how to use the progress of science and technology to implement low-carbon strategies is a problem that
every enterprise should consider. Aiming at the problem of picking up goods in logistics industry, this paper proposed a secondary
task assignment theory for multiple unmanned aerial vehicle (Multi-UAV) based on green scheduling. .e theory greatly
improves the utilization rate of unmanned aerial vehicle (UAV) and reduces the energy consumption.We analyzed the advantages
and disadvantages of local optimal algorithm and global optimal algorithm in time and energy consumption. .rough repeated
experiments in different ranges, we have well verified the high efficiency and general applicability of this theory, which can provide
theoretical and practical implications for logistics enterprises using UAV to achieve low-carbon sustainable development in
the future.

1. Introduction

While the rapid economic development has brought con-
venience to the world, the environmental problems are
becoming increasingly serious. In the past century, the
frequency of major natural disasters and diseases has in-
creased from 0.263 times per year from 1920 to 1999 to 1.2
times per year from 2000 to 2020 [1]. Severe environmental
problems have posed challenges for the survival and de-
velopment of mankind. In 2015, the United Nations Sus-
tainable Development Summit was held in New York.
Seventeen sustainable development goals were set to solve
the problems between social development, economic
growth, and the environment.

A feasible solution to the environmental challenge is to
realize low-carbon sustainable development. .e low-carbon
development strategies of enterprises are the key link to
achieve green sustainable development. .is requires enter-
prises to have green supply chain management [2]. With the
rapid development of the Internet, e-commerce is gradually
replacing the traditional entity business model, which also

drives the rapid development of the logistics industry. At the
same time, the development of artificial intelligence tech-
nology has also brought changes to various fields. Due to the
advantages of low cost and high efficiency, more and more
unmanned equipment is used to complete various tasks in-
stead of human beings. In the military field, unmanned aerial
vehicle (UAV) is widely used in security patrol [3], area
detection [4], target strike [5], etc. In the manufacturing
industry, intelligent machines realize the automatic produc-
tion of factories [6]. In the medical field, intelligent machines
are used for some high-precision operations [7]. In the lo-
gistics industry, intelligent machines are mainly used to re-
place the traditional manned transportation mode [8].
Especially in the context of the outbreak of Novel Coronavirus
this year, the use of intelligent machines to achieve contactless
pickup is even more important.

Due to the complexity of ground environmental factors,
it is a hot spot to use UAV to pick up goods instead of truck
or in a combined way [9]. Compared with the complex
constraints of ground operations, there are relatively fewer
restrictions in the air. So UAV can complete the
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transportation task with less time, closer distance, and lower
energy consumption.

In the actual transportation, UAV group and goods
constitute a huge information system. .e collaborative
control of UAV group is an extremely complex process. .is
is mainly reflected in the following:

(i) Diversity of UAV: due to the differences in the size
of each pickup location, homogeneous UAV system
has great limitations in task assignment, and dif-
ferent types of heterogeneous UAV systemmake the
task assignment more complex.

(ii) Complexity of constraints: each UAV has the
maximum loading weight and volume. .e weight
and volume of the goods at each pickup location are
also different, so the correspondence between UAV
and goods is a complex optimization problem.

(iii) Computational complexity: with the increase of the
number of UAV and goods, the amount of calcu-
lation for searching the optimal solution increases
exponentially.

(iv) Environmental complexity: complex terrain and
bad weather will have a great impact in UAV
transportation.

(v) Complexity of communication: with the increase of
the number of pickup locations and UAV and the
expansion of transportation range, the burden of
communication among the UAV group will also
increase.

Under the influence of the above factors, the realization
of multiple unmanned aerial vehicle (Multi-UAV) cooper-
ative transportation is a very complex subject, which has also
caused extensive research at home and abroad.

In order to solve the problem of limited capacity of UAV,
a receding horizon task assignment heuristic algorithm [10]
was proposed to achieve persistent UAV delivery schedules.
Ren et al. [11] proposed four transport modes of vehicle
cooperating with UAV. Reference [12] integrated the scal-
able K-means algorithm and genetic algorithm to realize a
UAV scheduling strategy including reverse logistics. Ref-
erence [13] proposed a mixed-integer (0-1 linear) green
routing model to reduce transportation cost and carbon
dioxide emission.

At present, using UAV to pickup and delivery is still in an
initial experimental stage, and there are not many relevant
theories of task assignment. In addition, most references about
the cooperative of Multi-UAV are based on one-time task
assignment. In terms of the difficulty of secondary assignment,
the objective function and constraints of the first and second
task assignment models are different. As we need to redis-
tribute the UAVwhich still has the ability to perform tasks after
the first assignment, the constraints and logical relationship of
the second assignment model are more complex, and the
design and realization of the algorithm are more difficult. So
there are a few studies on secondary assignment which is
exactly the key point of this paper. .e redistribution of UAV
can make full use of its loading capacity, reduce energy con-
sumption, and realize low-carbon operation.

We established a complete set of Multi-UAV pickup
theory. According to the total weight and volume of the
goods, we determine the initial minimum number of UAV.
.e first task assignment order is determined according to
the fitness between the pickup location and UAV. For
unassigned locations, we proposed two algorithms based on
local optimal and global optimal, respectively, and compared
the advantages and disadvantages in distance and time.
.rough a large number of experiments in five different task
area radiuses, we verified the general applicability of the
theory.

We organize the paper as follows. Section 2 introduces
the concept of UAV mission planning, centralized control
structure and corresponding algorithm, green scheduling
theory, and secondary assignment theory. .e first assign-
ment theory based on fitness and the second assignment
theory based on local optimal and global optimal are pro-
posed in Section 3. .en, Section 4 shows the calculated
results of different algorithms and the analysis. Finally, we
summarize the research content of this paper and put
forward some suggestions and prospects for future re-
searches in Section 5.

2. Basic Theory

UAV task planning is to plan path or assign target for UAV
according to the types of tasks, the characteristics of UAV, or
the resources carried by UAV. .e core is to maximize the
total revenue of the UAV group, minimize the task time, or
minimize the energy consumption under all kinds of con-
straints. With the increasing complexity of tasks, we often
need to weight multiple objective functions to make the task
optimal as a whole [14].

In the logistics system, UAV task planning can be di-
vided into pickup tasks and delivery tasks according to the
types of tasks. With the improvement of intelligent system,
UAVmay need to pick up and deliver goods at the same time
in future transportation. According to the real-time per-
formance of UAV tasks, task planning can be divided into
dynamic planning and static planning. Dynamic planning
[15] needs to consider the real-time changes of information
and makes adjustments in time to ensure that the task
planning is optimal within a certain time. Static planning is
to make the optimal transportation scheme according to the
information of current nodes. It is usually used in the case of
stable environment and less influence of uncertain factors.
According to the control structure of UAV group, it can be
divided into centralized control structure and distributed
control structure. In different task systems, the optimal
control type should be selected according to the charac-
teristics of the task. .e Multi-UAV pickup theory that we
proposed in this paper adopted centralized control structure.

2.1. Centralized Control Structure. Centralized control
structure means that there is only one central controller.
Each UAV only inputs and outputs data, so the cost of UAV
is relatively low. After analysis and calculation, the central
controller sends the decision to each UAV for execution, as
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shown in Figure 1. Centralized control structure solves the
problem from a global perspective, which can produce a
global optimal solution. Different from the distributed
control structure, which needs to solve the problem of data
consistency, the centralized control structure does not need
to consider the coordination problem between nodes.
However, as the scale of transportation increases, the
computational load increases significantly. As it has only a
single central controller, when it breaks down, the entire
system will be paralyzed.

Commonly used centralized task assignment models
include Multiple Traveling Salesman Problem [16], Vehicle
Routing Problems [17], and Mixed-Integer Linear Pro-
gramming [18]. .e algorithms used for solving these
models mainly include genetic algorithm and particle swarm
algorithm.

2.1.1. Traditional Algorithm. Genetic algorithm is a random
search algorithm proposed by Holland [19], which is evolved
from the evolutionary rules of nature. Because of its intel-
ligence, parallelism, and good global search ability, it is
widely used in optimization and combination, machine
learning, and other fields. Many improved genetic algo-
rithms have been proposed to overcome the shortcomings of
local convergence or nonconvergence of genetic algorithm.
Reference [20, 21] solved the multiobjective task assignment
of UAV through improved genetic algorithm.

Inspired by the behavior of bird swarm, Eberhart and
Kennedy [22] proposed particle swarm optimization (PSO).
It is similar to genetic algorithm, which also seeks the op-
timal solution through iteration. But PSO does not need
crossover or variation; it obtains the optimal solution
through the self-adjustment of particles to the optimal so-
lution. Compared with genetic algorithm, PSO is simpler
and more likely to converge to the optimal solution faster.
.e flow chart of PSO is shown in Figure 2.

2.1.2. *e Proposed Algorithm. In this paper, the algorithm
that we used to solve the secondary task assignment of
Multi-UAV is based on some ideas of PSO. We considered
every UAV as a particle. By calculating the fitness between
UAV and pickup locations, the optimal assignment scheme
under the current state was determined. .en, we updated
the UAV status information and fitness to determine the
next task until all pickup locations were assigned. Different
from PSO, the calculation of the optimal solution of our
algorithm is the superposition of the optimal solution of
each subtask.

2.2. Green Scheduling. Green scheduling is a kind of green
and low-carbon task assignment theory under the back-
ground of green logistics policy [23], aiming to reduce the
harm to the environment as much as possible under the
premise of completing the transportation task. It improves
transportation efficiency and reduces cost and energy
consumption by making full use of carrying capacity,
assigning task objectives reasonably, optimizing task path

[24], and many other methods. A good UAV assignment
model can assign tasks more reasonably and reduce the flight
time and distance of UAV. Using secondary assignment can
make full use of the carrying capacity of each UAV and
reduce the total number of UAVs, finally achieving low-
carbon sustainable development.

2.3. Secondary Assignment *eory. In the UAV task as-
signment system, when the number of UAV is more than the
total number of tasks, all tasks can be assigned only once.
.is will lead to excess performance, that the capability of
each UAV is not fully utilized. In the actual task, the number
of UAV dispatched is often less than the number of task
targets. In this case, we need to select UAV that has com-
pleted the first mission and meet the constraints for sec-
ondary task assignment. .rough redistribution, we can
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Figure 1: Centralized control structure.
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Figure 2: Flow chart of PSO.
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reduce the total number of UAV, maximize the utilization of
each UAV, and achieve green task assignment.

3. Multi-UAV Pickup Theory Based on
Green Scheduling

.is paper mainly studies the application of green sched-
uling theory in the pickup problem of transportation system.
In the UAV pickup system, the fewer the UAV completing
the pickup task in a shorter path, the less the energy con-
sumption and exhaust emission. Suppose that there are s

pickup locations. .e jth location has aj goods, and each
piece of goods has weight wjn and volume vjn,
n � 1, 2, . . . , aj. We send homogeneous UAV from the
warehouse to pick up the goods. Set wmax as the maximum
loading weight and vmax as the maximum loading volume.

.e Multi-UAV pickup theory proposed in this paper
combines the idea of green scheduling and the theory of
secondary task assignment, aiming to dispatch the least
UAV to complete the pickup task. In the process of sec-
ondary assignment, we use both local optimal algorithm and
global optimal algorithm to explore the shortest time and
shortest distance of task execution.

3.1. Determine the Initial Number of UAV. By calculating the
total weight and volume of the goods at each pickup lo-
cation, we obtain the goods information matrix X. Set u as
the initial number of UAV. It should make the total weight
and volume of the UAV group exceed the total weight and
volume of all goods. It can be expressed as the following
mathematical model:

min u,

s.t. uwmax ≥ 􏽘
s

j�1
X1j, uvmax ≥ 􏽘

s

j�1
X2j,

⎧⎪⎨

⎪⎩

(1)

where u is an integer and X1j and X2j represent the total
weight and volume of all goods at the jth pickup point,
respectively.

3.2. *e First Task Assignment. Formula (1) only gives the
minimum number of UAV that can complete the pickup
task in theory. As the UAV will not be fully loaded in the
actual situation, the initial u UAVs cannot be spread over s

pickup locations at the same time. Set f as the fitness be-
tween the pickup location and UAV. It is calculated by the
proportion of the goods in the UAV’s maximum carrying
capacity, including weight fitness fw and volume fitness fv.
We assign tasks from large to small according to f.

Set εw, εv as the minimum weight proportion and the
minimum volume proportion of the goods in the UAV’s
carrying capacity. When the remaining capacity of UAV is
less than this ratio, we say that the utilization rate of UAV
has reached the upper limit. In order to minimize the
secondary assignment of UAV, we give priority to the pickup
location with the highest utilization rate of UAV, which
means

fw > 1 − εw, (2)

or

fv > 1 − εv. (3)

.e remaining pickup locations will be assigned
according to f, if there are still UAVs available. .e flow
chart of the first task assignment is shown in Figure 3 and the
pseudo-code is shown in Algorithm 1.

.is assignment mode can maximize the utilization rate
of UAV in the first task, reduce the number of times of UAV
picking up goods at different locations, and reduce the
energy consumption of UAV flying between each location.

3.3. *e Second Task Assignment. When the number of lo-
cations is more than the number of UAVs, one-time as-
signment cannot meet the whole task. In this case, we need
to make a secondary assignment for the remaining locations
according to f. In order to improve the utilization rate of
UAV, we redistributed the UAV that still had the ability to
perform other tasks after the first assignment. For a specific
task, we would give priority to the UAV that has been
dispatched. When more than one UAV can complete the
task, we choose the optimal assignment scheme by com-
paring the time and distance. A new UAV will be dispatched
from the warehouse only when there is no UAV available.

In the first task assignment, all UAVs are located in the
warehouse, so the distance from the pickup location is the
same. We only need to consider the size of f of each pickup
location. After the first assignment, the position of each
UAV will be different, which makes the distance between
UAV and the unassigned location different. In this case, if we
only consider the size of f, it may appear that the task will be
assigned to the UAV far away from the task location. .is
will reduce the efficiency of the whole UAV group. .ere-
fore, we need to select the UAV with the shortest flight
distance from all the UAVs that can complete the pickup
task.

3.3.1. Local Optimal Algorithm. For the unassigned pickup
location k, we set Rk as its quantity of goods. .e remaining
carrying capacity of UAV i after the first task assignment is
set as Ii. If

Ii ≥Rk, (4)

we say that UAV i can complete the pickup task of location k.
For all the UAVs that can complete the pickup task, we
calculate the distance between each UAV and location k and
then select the shortest path to assign the task. When no
UAV is available or needs to be called from two or more
locations, we directly assign a new UAV q from the ware-
house to perform the task and add its remaining carrying
capacity Iq to the total UAV information list I. .e flow
chart of the second task assignment based on the local
optimal algorithm is shown in Figure 4 and the pseudo-code
is shown in Algorithm 2.
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3.3.2. Global Optimal Algorithm. .e distance obtained by
the above algorithm is optimal only in the process of sec-
ondary task assignment; it may not reach the global opti-
mization in the whole UAV pickup task. .is is because the
unassigned pickup location may be around the return route
of UAV. If selected from these UAVs to carry out the pickup
task, although it may increase the time for the entire UAV

group to complete the task, it will shorten the total flight
distance of the UAV group. .e global optimal algorithm
not only considers the distance between UAV and unas-
signed location but also considers the impact on other UAVs
in path planning when the task is assigned to a UAV. .e
global optimal algorithm selects the UAV which makes the
total distance of the UAV group the shortest.

Assign task
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Begin
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number of UAV 

Calculate fitness

N

Y
Assign task

Figure 3: Flow chart of the first task assignment.

Input: Goods information matrix X, maximum loading weight wmax, maximum loading volume vmax.
(1) Initialize u1, b, j,
(2) Calculate initial number of UAV u, fitness matrix f, minimum weight proportion εw, minimum volume proportion εv, UAV for

each location A;
(3) u1 � u;
(4) for j � 1 to s

(5) if f1j ≥ 1 − εw||f2j ≥ 1 − εv

(6) Send UAV to location j;
(7) Update u1 and f;
(8) end
(9) end
(10) while u1 ∼ � 0
(11) Finding the column c where the largest element is located in f;
(12) if u1 >Ac

(13) Send UAV to location c;
(14) Update u1 and f;
(15) b � b + 1;
(16) end
(17) if b≥ s

(18) break
(19) end
(20) end

Output: .e first assignment matrix L.

ALGORITHM 1: .e pseudo-code of the first task assignment.
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4. Experiments and Analysis

.e experiment consists of three parts. Firstly, determine the
initial number of UAV according to the total quantity of goods.
Secondly, carry out the first task assignment according to the
size of f. Finally, use the local optimal algorithm and global
optimal algorithm, respectively, to carry out the second task
assignment for the unassigned locations.

Set the warehouse as the center of a circle. We consider
homogeneous UAV to pick up at 8 locations randomly

generated in the circle with radius R � 1 km. Set
wmax � 10 kg, vmax � 60 dm3. .e parameters of all goods
at each pickup location are shown in Table 1. According to
Table 1, we can calculate the total amount of goods of each
pickup location, as shown in Table 2.

From formula (1), we get u � 7. It can be calculated from
Table 2 that εw � 0.0730, εv � 0.0567. .e fitness matrix f of
each pickup location is shown in Table 3.

We can see from Table 3 that locations 1, 4, and 6 satisfy
the constraints of formula (2) or (3). .e number of UAVs

Begin

Calculate fitness and 
status information 

Assign task

Update status 
information

Dispatch 
new UAV

UAV 
available?

Output

N

Y

Meet the 
termination 
condition?

Y

N

Figure 4: Flow chart of the second task assignment.

Input: Fitness matrix f, goods surplus X1, UAV payload surplus X2, number of locations s, location coordinate matrix P.
(1) while f ∼ � 0
(2) Finding the column c where the largest element is located in f;
(3) f1c � f2c � 0;
(4) for j � 1 to s

(5) if X11j ≥X11c&X22j ≥X22c

(6) Calculate the assignment matrix D;
(7) end
(8) end
(9) if column c of D is not all zero
(10) Finding the column d where the minimum element is located in D, D1dc � 1;
(11) else
(12) Dispatch new UAV;
(13) end
(14) end

Output: Secondary assignment matrix D1.

ALGORITHM 2: .e pseudo-code of the second task assignment.
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that they needed is 2, 1, and 2, respectively. For the
remaining two UAVs, we will assign them according to the
size of f. .at is, we assign location 8 first for its proportion
of weight which is 0.6860 and then assign location 2 for its
proportion of volume which is 0.6477. .e first assignment
matrix L is shown in Table 4. Seven UAVs are sent to lo-
cations 1, 2, 4, 6, and 8. .e specific effect of the first task
assignment is shown in Figure 5.

For secondary assignment, we calculate the goods sur-
plus Rj (j � 1, 2, . . . , s) at each location and the payload
surplus Ii (i � 1, 2, . . . , s) of each UAV, respectively, as
shown in Tables 5 and 6. According to Table 3, the order of
secondary task assignment is 5⟶ 3⟶ 7.

For location 5, the remaining UAV carrying capacity
cannot meet its demand, so we directly dispatch a new UAV
8 from the warehouse and add its remaining carrying ca-
pacity Im to the total information list I so that the UAV can
continue to participate in the subsequent task assignment.
For locations 3 and 7, we select the UAV with the shortest
distance from all the UAVs that satisfy the constraints. Based
on the generated coordinates of 8 locations above, we use the
global optimal algorithm to calculate the total time and total

Table 1: .e parameters of all goods.

Location
Goods

1 2 3 4 5 6 7 8

1 4.01 0.75 12.39 1.57 0.99 — — —
3.22 2.67 33.81 9.22 6.17 — — —

2 1.02 1.32 0.3 1.1 0.46 0.35 1.56 —
12.11 7.57 2.57 5.63 3.78 4.51 2.69 —

3 0.78 0.91 0.32 0.4 0.58 — — —
4.48 7.61 16.48 1.58 1.15 — — —

4 1.74 2.25 0.41 1.15 — — — —
16.69 17.69 8.34 15.66 — — — —

5 2.54 0.88 1.43 — — — — —
25.73 5.57 1.38 — — — — —

6 2.39 1.06 3.78 3.76 1.97 0.54 3.09 0.74
17.23 18.12 10.29 7.23 9.89 13.14 35.55 3.69

7 0.64 0.82 1.01 0.31 0.43 0.44 — —
2.46 3.67 4.72 2.34 0.83 7.05 — —

8 2.22 3.51 1.13 — — — — —
3.5 13.76 7.63 — — — — —

Note: for every location, the first row represents the weight and the second row represents the volume.

Table 2: .e total amount of goods of each pickup location.

Location
Number 1 2 3 4 5 6 7 8
Weight (kg) 19.71 6.11 2.99 5.55 4.85 17.33 3.65 6.86
Volume (dm3) 55.09 38.86 31.30 58.38 32.68 115.14 21.07 24.89

Table 3: Fitness matrix f.

Location
Number 1 2 3 4 5 6 7 8
fw 0.9855 0.6110 0.2990 0.5550 0.4850 0.8665 0.3650 0.6860
fv 0.9182 0.6477 0.5217 0.9730 0.5447 0.9595 0.3512 0.4148

Table 4: .e first assignment matrix L.

Location
Number 1 2 3 4 5 6 7 8
UAV 2 1 0 1 0 2 0 1

1

5

7
2

4

6

8 3

Figure 5: .e effect of the first task assignment.
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distance of the UAV group. .e comparison with the local
optimal algorithm is shown in Table 7 and Figure 6.

Due to the randomness of the coordinate of each pickup
location, we repeat the above experiment 100 times to
compare the advantages and disadvantages of the local
optimal algorithm and the global optimal algorithm under
more general conditions, as shown in Figure 7. We can see
that the local optimal algorithm focuses on minimizing the
task time of the UAV group, while the global optimal al-
gorithm focuses on minimizing the total flight distance of
the UAV group. .is is because the local optimal algorithm
considers the shortest flight path of a single UAV. .e total
time of UAV group depends on the UAV with the longest
task time, in other words, the UAV with the longest flight
path. .e local optimal algorithm is optimizing from the
perspective of a single UAV, which can shorten the longest

path of one UAV and increase the total distance of the whole
UAV group. On the contrary, the global optimal algorithm is
optimizing from the perspective of the whole UAV group.
.e distance of a single UAV may increase, but the flight
distance of the whole UAV group will decrease.

In order to verify the universal applicability of the al-
gorithm, we also simulate in a larger circle with
R � 2, 3, 4, 5 km, respectively. .e results are shown in
Figures 8–11. We marked the maximum effect of the op-
timization and calculated the average values of different
algorithms, as shown in Table 8.

We can see clearly that, in a variety of different ranges,
the local optimal algorithm can always get theminimum task
time and the global optimal algorithm gets the shortest flight
distance. And with the increase of the range, the advantages
of each algorithm become more and more obvious.

Table 5: Goods surplus.

Location
Number 1 2 3 4 5 6 7 8
Weight (kg) 0 0 2.99 0 4.85 0 3.65 0
Volume (dm3) 0 0 31.30 0 32.68 0 21.07 0

Table 6: UAV payload surplus.

Location
Number 1 2 3 4 5 6 7 8
Weight (kg) 0.29 3.89 0 4.45 0 2.67 0 3.14
Volume (dm3) 64.91 21.14 0 1.62 0 4.86 0 35.11

Table 7: Comparison of two algorithms.

Local optimal algorithm Global optimal algorithm
Time (min) 4.5049 6.2503
Distance (km) 10.5244 10.4409

1
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5
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7

8

(a)

1

2

3

4

5

6

7

8

(b)

Figure 6: .e effect of two algorithms: (a) local optimal algorithm and (b) global optimal algorithm.
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Figure 8: .e results of two algorithms when R � 2 km: (a) total task time of two algorithms; (b) total task distance of two algorithms.
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Figure 9: .e results of two algorithms when R � 3 km: (a) total task time of two algorithms; (b) total task distance of two algorithms.
Maximum optimization rate: 22.62%; maximum optimization rate: 7.17%
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Figure 10: .e results of two algorithms when R � 4 km: (a) total task time of two algorithms; (b) total task distance of two algorithms.
Maximum optimization rate: 36.50%; maximum optimization rate: 4.88%.
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5. Conclusion and Prospect

.is paper proposed a set of secondary task assignment
theory based on the idea of low-carbon and sustainability
under the background ofMulti-UAV pickup. Byminimizing
the number of UAV and minimizing the task time and the
total distance, the energy consumption can be reduced as
much as possible to achieve green scheduling.

.e feasibility and universal applicability of the theory
were well verified by a large number of simulations in
many different situations. We compared the local optimal
algorithm and the global optimal algorithm in detail and
verified their advantages in time and distance, respec-
tively. In the actual task assignment, managers can choose
a more appropriate algorithm according to their own
needs.

At present, the use of UAV for transportation is still in
the stage of continuous exploration and improvement. Our
theory of Multi-UAV secondary assignment has realized the
green scheduling to a certain extent, but there are still the
following main deficiencies:

(i) .e UAV group is homogeneous. When there is a
large difference in the quantity of goods among
pickup locations, the homogeneous UAV group may
not be able to meet the needs of the task.

(ii) With the increase of the number of pickup locations
and the amount of goods, whether the theory pro-
posed in this paper can get good task assignment
effect needs to be further verified.

.erefore, in the following research work, we plan to set
up more pickup locations to verify the feasibility of this
theory. We also consider a heterogeneous UAV system.
.rough the reasonable collocation of UAVs of different
specifications, the utilization rate of the UAV group is
further improved, the resource consumption is reduced, and
the goal of low-carbon sustainable development is achieved.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 11: .e results of two algorithms when R � 5 km: (a) total task time of two algorithms; (b) total task distance of two algorithms.
Maximum optimization rate: 17.16%; maximum optimization rate: 5.52%.

Table 8: .e average of the results of the two algorithms.

R � 1 km R � 2 km R � 3 km R � 4 km R � 5 km
Distance
(km)

Time
(min)

Distance
(km)

Time
(km)

Distance
(min)

Time
(km)

Distance
(km)

Time
(min)

Distance
(km)

Time
(km)

Local 12.1281 6.5031 24.0385 12.8648 36.3274 19.6593 46.8312 25.5667 62.3682 34.0831
Global 12.0771 6.5364 23.9490 12.9662 36.1841 19.8004 46.6705 25.7123 62.1633 34.2576
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