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Bipolar soft set is formulated by two soft sets; one of them provides us the positive information and the other provides us the
negative information. *e philosophy of bipolarity is that human judgment is based on two sides, positive and negative, and we
choose the one which is stronger. In this paper, we introduce novel belong and nonbelong relations between a bipolar soft set and
an ordinary point. *ese relations are considered as one of the unique characteristics of bipolar soft sets which are somewhat
expression of the degrees of membership and nonmembership of an element. We discuss essential properties and derive the
sufficient conditions of some equivalence of these relations. We also define the concept of soft mappings between two classes of
bipolar soft sets and study the behaviors of an ordinary point under these soft mappings with respect to all relations introduced
herein. *en, we apply bipolar soft sets to build an optimal choice application. We give an algorithm of this application and show
the method for implementing this algorithm by an illustrative example. In conclusion, it can be noted that the relations defined
herein give another viewpoint to explore the concepts of bipolar soft topology, in particular, soft separation axioms and
soft covers.

1. Introduction

Many problems in engineering, artificial intelligence,
economy, environmental science, social science, etc. involve
data that contain ambiguity/vagueness. *erefore, tradi-
tional methods which were based on the exact case may not
be convenient for solving or modeling them.

From this point, the need of new theories that help to
surpass these types of instabilities arose. With the passage of
time, engineers and mathematicians found alternative ap-
proaches to solve the problems that contain ambiguity/
vagueness such as probability theory, fuzzy set [1], intui-
tionistic fuzzy set [2], and rough set [3].

However, all these tools require the prespecification of
some parameters to start with, for example, an equivalence
relation in rough set theory and density function in prob-
ability theory. According to the fuzzy set theory, the diffi-
culties in many problems appear in two sides: the first one is
how we can determine a membership function for each
particular case, and the second difficulty is the extremely

individual characteristic of a membership function. *at is,
everyone understands the meaning of the membership
function equal to 0.85 in his own manner.

To cope with these difficulties, Molodtsov [4] proposed a
new approach, namely, soft sets. Simply, soft set is defined as
a map of a set of parameters into the power set of the
universe of discourse. He demonstrated the efficiency of soft
sets in handling complicated problems compared with the
probability theory and fuzzy sets theory. *en, many re-
searchers have studied the properties, operations, and ap-
plications of soft set theory (see, for example, [5–13]). *e
authors of [14, 15] explained the relationship between soft
set, rough set, and fuzzy set.

In recent years, a number of authors have extensively
explored some extensions of soft set. *ese studies go in two
directions:*e first one is given by generalizing the structure
of soft set. *is leads to defining double framed soft set [16],
bipolar soft set [17], binary soft set [18], and N-soft set [19].
*e second one is introduced by combining soft set (or its
updated forms) with rough set or fuzzy set or both.*is leads
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to defining fuzzy soft set [12], fuzzy bipolar soft set [20],
bipolar fuzzy soft set [21], soft rough set [14], bipolar soft
rough set [22], and modified rough bipolar soft set [23].

In [24], the authors pointed out that human decisions
rely on two types of information having positive and neg-
ative flavor. In this case, if we determine a set of parameters
which gives us positive data, we also need to know an as-
sociated set of oppositely meaning parameters called the
“not set of parameters.” For instance, if a parameter a stands
for a “tall” characteristic, then not a stands for a charac-
teristic of “not tall.” It should be noted that a characteristic of
“not tall” does not mean “short.” *at is, the members who
are tall and not tall need not be the universal set. Due to the
importance of providing positive and negative aspects of
data at a time, Shabir and Naz [17] formulated the idea of
bipolar soft sets and discussed its application to decision-
making problems. After this study, bipolar soft sets are
gaining momentum among researchers. In 2015, Karaaslan
and Karataş [25] redefined a bipolar soft set using a bijective
map between a set of parameters and its negative. *ey also
provided a decision-making manner using bipolar soft set
with the aid of an example. In [26], the authors revealed
some algebraic structures of bipolar soft sets. It was followed
by Karaaslan et al. [27] who studied a group structure on
bipolar soft sets.

In 2017, Shabir and Bakhtawar [28] first introduced the
concept of bipolar soft topological spaces over a crisp
set along with an investigation into bipolar soft compactness
and connectedness. *en, Öztürk [29] further discussed the
concepts of interior and closure operators, basis, and sub-
space in the bipolar soft topological spaces. Fadel and
Hassan [30] presented the concepts of bipolar soft separation
axioms and established fundamental properties. Recently,
Fadel and Dzul-Kifli [31] have generalized the concept of
bipolar soft topological spaces given in [28] by redefining it
on a bipolar soft set. *ey have presented its main notions
and described properties along with some illustrative
examples.

In 2018, the authors of [32] came up with the idea of
partial belong and total nonbelong relations between an
ordinary point and soft set which somewhat indicate the
degree of membership and nonmembership of an element.
In fact, these relations widely open the door to the studying
and redefining of many soft topological notions and the
obtaining of many fruitful properties. Some applications of
these two relations in the domains of soft separation axioms
and decision-making problems were introduced in [33–35].
*e authors of [36–38] applied these relations to study
separation axioms on soft topological ordered spaces and
supra soft topological ordered spaces.

*e rest of this paper is organized as follows. Section 2
involves some operations and properties of bipolar soft sets.
In Section 3, we define five sorts of belong relations between
bipolar soft set and ordinary point called positively partial
belong, negatively partial belong, partial belong, positively
total belong, and negatively total belong relations; we also
define six sorts of nonbelong relations between a bipolar soft
set and an ordinary point called positively partial nonbelong,
negatively partial nonbelong, partial nonbelong, positively

total nonbelong, negatively total nonbelong, and total
nonbelong relations. *en, we ascertained their behaviors
with respect to the operations of soft union and intersection.
Later, we define the concept of soft mappings between two
classes of weak bipolar soft sets and discuss the relationship
between an ordinary point and its image and preimage with
respect to the different types of belong and nonbelong re-
lations. In Section 4, we make use of bipolar soft sets to
construct an application of optimum choice and present its
algorithm. We give a practical example to illustrate how this
algorithm can be applied. In the end, we outline the main
obtained results and suggest some future work in Section 5.

2. Preliminaries

In the following, we recall some definitions related to bipolar
soft sets.

*rough this paper, A, B, C, D, E, M, N denote the sets
of parameters, and X, Y denote the initial universal sets.

Definition 1 (see [4]). A map f of A into the power set of a
nonempty set X is called a soft set over X, where X is an
initial universal set and A is a set of parameters.

A soft set is symbolized by an ordered pair (f, A) and it
is expressed as a set of ordered pairs:

(f, A) � (a, f(a)): a ∈ A andf(a) ∈ 2X
􏽮 􏽯. (1)

Definition 2 (see [17]). A bipolar soft set is a triple (f, g, A)

over a nonempty set X with a set of parameters A, where
f: A⟶ 2X and g: ¬A⟶ 2X are two crisp maps such
that f(a)∩g(¬a) � ∅ for each a ∈ A.

A bipolar soft set is expressed as a set of ordered triples:

(f, g, A) � (a, f(a), g(¬a)): a ∈ A andf(a), g(¬a) ∈ 2X
􏽮 􏽯.

(2)

A class of all bipolar soft sets defined over X with all sets
of parameters which are subsets of A is symbolized by
C(XA).

Henceforth, we consider that any bipolar soft set is
defined on X≠∅, unless otherwise specified.

Example 1. Let X � x1, x2, . . . , x6􏼈 􏼉 be the universe con-
taining set six cars and A � a1, a2, a3, a4􏼈 􏼉 be a set of pa-
rameters, where a1, a2, a3, and a4 stand for “expensive,” “in
good repair,” “red colored,” and “made in Japan,”
respectively.

Let f: A⟶ 2X and g: ¬A⟶ 2X be two maps given
as follows:

f a1( 􏼁 � x3, x4􏼈 􏼉, g ¬a1( 􏼁 � x1􏼈 􏼉,

f a2( 􏼁 � x3, x5, x6􏼈 􏼉, g ¬a2( 􏼁 � ∅,

f a3( 􏼁 � x1, x2, x4􏼈 􏼉, g ¬a3( 􏼁 � x3, x5, x6􏼈 􏼉,

f a4( 􏼁 � x3, x6􏼈 􏼉, g ¬a4( 􏼁 � x1, x2, x4, x5􏼈 􏼉.

(3)

Now, we can describe this system using a bipolar soft set
as follows:
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(f, g, A) � a1, x3, x4􏼈 􏼉, x3, x1􏼈 􏼉( 􏼁, a2, x3, x5, x6􏼈 􏼉,∅( 􏼁,􏼈

a3, x1, x2, x4􏼈 􏼉, x3, x5, x6􏼈 􏼉( 􏼁, a4, x3, x6􏼈 􏼉,(

x1, x2, x4, x5􏼈 􏼉􏼁􏼉.

(4)

Definition 3 (see [17]). A bipolar soft set (f, g, A) is said to
be

(i) A relative null bipolar soft set if f(a) equals the
empty set and g(¬a) equals the universal set for each
a ∈ A. It is symbolized by (Φ, X, A).

(ii) A relative absolute bipolar soft set if f(a) equals the
universal set and g(¬a) equals the empty set for each
a ∈ A. It is symbolized by (X,Φ, A).

Definition 4 (see [17]). *e intersection of two bipolar soft
sets (f1, f2, A) and (g1, g2, B) is a bipolar soft set (h1, h2, C)

such that C � A∩B≠∅ and the two mappings
h1: C⟶ 2X and h2: ¬C⟶ 2X are given by

h1(c) � f1(c)∩g1(c),

h2(¬c) � f2(¬c)∪g2(¬c).
(5)

It is symbolized by (f1, f2, A)􏽦∩ (g1, g2, B).

Definition 5 (see [17]). *e union of two bipolar soft sets
(f1, f2, A) and (g1, g2, B) is a bipolar soft set (h1, h2, C),
where C � A∪B and the two mappings h1: C⟶ 2X and
h2: ¬C⟶ 2X are given by

h1( c ) �

f1( c ): c ∈ A\B,

g1( c ): c ∈ B\A,

f1( c )∪g1( c ): c ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

h2(¬c ) �

f2(¬c ): ¬c ∈¬A\¬B,

g2(¬c ): ¬c ∈¬B\¬A,

f2(¬c )∩g2(¬c ): ¬c ∈¬A∩¬B.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

It is symbolized by (f1, g1, A)􏽦∪ (f2, g2, B).

Definition 6 (see [17]). A bipolar soft set (f, g, A) is said to
be a subset of a bipolar soft set (h, l, B), denoted by
(f, g, A) 􏽥⊆ (h, l, B), provided that

(i) A⊆B

(ii) For all a ∈ A, we have f(a)⊆ h(a) and
l(¬a)⊆g(¬a)

*e bipolar soft sets (f, g, A) and (h, l, B) are said to be
soft equal if (f, g, A) 􏽥⊆ (h, l, B) and (h, l, B) 􏽥⊆ (f, g, A).

Definition 7 (see [17]). *e relative complement of a bipolar
soft set (f, g, A) is a bipolar soft set (f, g, A )′ � ( f′, g′, A),
where f′: A⟶ 2X and g′: ¬A⟶ 2X are defined as
follows:

f′(a) � g(¬a),

g′(¬a) � f(a),

for all a ∈ A and¬a ∈¬A.

(7)

3. Belong and Nonbelong Relations between
Bipolar Soft Sets and Ordinary Points

In this section, we initiate five types of memberships and six
types of nonmemberships between bipolar soft set and
ordinary point and ascertain the relationships between
them. We investigate their main properties in terms of soft
union and intersection operators, the product of bipolar soft
sets and soft mappings.

Definition 8. Let (f, g, A) be a bipolar soft set and x ∈ X.
We say that

(i) x⋐pp(f, g, A), reading as x positively partially be-
longs to (f, g, A), if x ∈ f(a) for some a ∈ A

(ii) x⋐np(f, g, A), reading as x negatively partially
belongs to (f, g, A), if x ∈ g(¬a) for some ¬a ∈¬A

(iii) x⋐p(f, g, A), reading as x partially belongs to
(f, g, A), if x ∈ f(a) and x ∈ g(¬a′) for some
a ∈ A and ¬a′ ∈¬A

(iv) x∈pt(f, g, A), reading as x positively totally belongs
to (f, g, A), if x ∈ f(a) for all a ∈ A

(v) x∈nt(f, g, A), reading as x negatively totally belongs
to (f, g, A), if x ∈ g(¬a) for all ¬a ∈¬A

Definition 9. Let (f, g, A) be a bipolar soft set and x ∈ X.
We say that

(i) x⋐pp(f, g, A), reading as x does not positively
partially belong to (f, g, A), if x ∉ f(a) for some
a ∈ A

(ii) x⋐np(f, g, A), reading as x does not negatively
partially belong to (f, g, A), if x ∉ g(¬a) for some
¬a ∈¬A

(iii) x⋐p(f, g, A), reading as x does not partially belong
to (f, g, A), if x ∉ f(a) and x ∉ g(¬a′) for some
a ∈ A and ¬a′ ∈¬A

(iv) x ∉ pt(f, g, A), reading as x does not positively
totally belong to (f, g, A), if x ∉ f(a) for all a ∈ A.

(v) x ∉ nt(f, g, A), reading as x does not negatively
totally belong to (f, g, A), if x ∉ g(¬a) for all
¬a ∈¬A

(vi) x ∉ t(f, g, A), reading as x does not totally belong
to (f, g, A), if x ∉ f(a) and x ∉ g(¬a) for all a ∈ A

and ¬a ∈¬A

To well understand the results initiated in this work, we
give the following example and remark.

Example 2. Let A � a1, a2, a3􏼈 􏼉 be a set of parameters and
(f, g, A) be bipolar soft set over X � x1, x2, . . . , x10􏼈 􏼉 de-
fined as follows:
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(f, g, A) � a1, x1􏼈 􏼉, x2, x4, x10􏼈 􏼉( 􏼁, a2,∅, x4, x10􏼈 􏼉( 􏼁, a3, x2, x3􏼈 􏼉, x4, x5, x10􏼈 􏼉( 􏼁􏼈 􏼉. (8)

*en, it follows from Definition 7 that
(f′, g′, A) � (g, f, A). We note the following:

(f, g, A)􏽦∩ f′, g′, A( 􏼁 � a1,∅, x1, x2, x4, x10􏼈 􏼉( 􏼁, a2,∅, x4, x10􏼈 􏼉( 􏼁, a3,∅, x2, x3, x4, x5, x10􏼈 􏼉( 􏼁􏼈 􏼉≠ (Φ, X, A). (9)

*at is, the intersection of a bipolar soft set and its
relative complement need not be the null bipolar soft set.

(f, g, A)􏽦∪ f′, g′, A( 􏼁 � a1, x1, x2, x4, x10􏼈 􏼉,∅( 􏼁, a2, x4, x10􏼈 􏼉,∅( 􏼁, a3, x2, x3, x4, x5, x10􏼈 􏼉,∅( 􏼁􏼈 􏼉≠ (X,Φ, A). (10)

*at is, the union of a bipolar soft set and its relative
complement need not be the absolute bipolar soft set.

Remark 1. *e possibility of existence and nonexistence of
an element in the same place is well-known in the quantum
physics, that is, corresponding of a thing and its opposite.
*is matter also occurs here with respect to positively partial
belong and positively partial nonbelong relations; negatively
partial belong and negatively partial nonbelong relations;
and partial belong and partial nonbelong relations. For
instance, in Example 2, it can be seen that

x1⋐pp(f, g, A),

x1⋐pp(f, g, A),

x2⋐np(f, g, A),

x2⋐np(f, g, A),

x2⋐p(f, g, A),

x2⋐p(f, g, A).

(11)

Proposition 1. For two bipolar soft sets (f, g, A) and
(h, l, A) and x ∈ X, we have the following results:

(i) x⋐pp(f, g, A)⟺x⋐np(f′, g′, A).
(ii) x⋐p(f, g, A)⟺x⋐p(f′, g′, A).
(iii) x∈pt(f, g, A)⟺x∈nt(f′, g′, A).

Proof

(i) x⋐pp(f, g, A)⇔x ∈ f(a) for some a ∈ A⇔x ∈ g′
(¬a) � f(a) for some ¬a ∈¬A⇔x⋐np(f′, g′, A).

(ii) x⋐p(f, g, A)⇔x ∈ f(a) and x ∈ g(¬a) for some
a ∈ A and ¬a ∈¬A⇔x ∈ f′(a) � g(¬a) and
x ∈ g′(¬a) � f(a) for some a ∈ A and
¬a ∈¬A⇔x⋐p(f′, g′, A).

(iii) x∈pt(f, g, A)⇔x ∈ f(a) for all a ∈ A⇔x ∈ g′
(¬a) � f(a) for all ¬a ∈¬A⇔x∈nt(f′, g′, A).

*e proofs of the following results follow from Defini-
tion 8. □

Proposition 2. For two bipolar soft sets (f, g, A) and
(h, l, A) and x ∈ X, we have the following results:

(i) x⋐p(f, g, A)⇔x⋐pp(f, g, A) and x⋐np(f, g, A)

(ii) x∈pt(f, g, A)⇔x⋐pp(f, g, A)

(iii) x∈nt(f, g, A)⇔x⋐np(f, g, A)

Proposition 3. For two bipolar soft sets (f, g, A) and
(h, l, A) and x ∈ X, we have the following results:

(i) x⋐p(f, g, A)⇔x⋐pp(f, g, A) and x⋐np(f, g, A)

(ii) x ∉ p(f, g, A)⇔x ∉ pp(f, g, A) and x ∉ np(f, g, A)

(iii) x ∉ pt(f, g, A)⇔x⋐pp(f, g, A)

(iv) x ∉ nt(f, g, A)⇔x⋐np(f, g, A)

(v) x ∉ t(f, g, A)⇔x⋐p(f, g, A)

To show that the converse of (ii) and (iii) of Proposition 2
and (ii) to (v) of Proposition 3 fails, we give the following
example.

Example 3. In Example 2, we note the following:

(i) x1⋐pp(f, g, A) and x5⋐np(f, g, A), but x1∈pt

(f, g, A) and x5∈nt(f, g, A) do not hold true
(ii) x2⋐p(f, g, A), x2⋐pp(f, g, A) and x2⋐np(f, g, A),

but x2 ∉ t(f, g, A), x2 ∉ pt(f, g, A), and
x2 ∉ nt(f, g, A) do not hold true

Proposition 4. Let (f, g, A) and (h, l, A) be bipolar soft sets
such that (f, g, A) 􏽥⊆ (h, l, A). 4en, we have the following
results:

(i) if x⋐pp(f, g, A) (resp., x∈pt(f, g, A)), then
x⋐pp(h, l, A) (resp., x∈pt(h, l, A))

(ii) if x∈nt(h, l, A), then x∈nt(f, g, A)

(iii) if x⋐pp(h, l, A) (resp., x ∉ pt(h, l, A)), then
x⋐pp(f, g, A) (resp., x ∉ pt(f, g, A))
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(iv) if x ∉ nt(f, g, A), then x ∉ nt(h, l, A)

Proof. *e proof is straightforward. □

Proposition 5. For two bipolar soft sets (f, g, A) and
(h, l, A) and x ∈ X, we have the following results:

(i) x⋐pp(f, g, A) or x⋐pp(h, l, A)⇔x⋐pp(f, g, A)􏽦∪
(h, l, A)

(ii) x⋐np(f, g, A)􏽦∪ (h, l, A)⇒x⋐np(f, g, A) and x⋐np
(h, l, A)

(iii) x⋐p(f, g, A)􏽦∪ (h, l, A)⇒x⋐p(f, g, A) or x⋐p(h,

l, A)

(iv) x∈pt(f, g, A) or x∈pt(h, l, A)⇒x∈pt(f, g, A)􏽦∪
(h, l, A)

(v) x∈nt(f, g, A) and x∈nt(h, l, A)⇒x∈nt(f, g, A) 􏽦∪
(h, l, A)

(vi) x⋐pp(f, g, A)􏽦∩ (h, l, A)⇒x⋐pp(f, g, A) and x⋐pp
(h, l, A)

(vii) x⋐np(f, g, A)􏽦∩ (h, l, A)⇒x⋐np(f, g, A) or x⋐np
(h, l, A)

(viii) x⋐p(f, g, A)􏽦∩ (h, l, A)⇒x⋐p(f, g, A) or x⋐p
(h, l, A)

(ix) x∈pt(f, g, A) and x∈pt(h, l, A)⇒x∈pt(f, g, A)􏽦∩
(h, l, A)

(x) x∈nt(f, g, A) and x∈nt(h, l, A)⇒x∈nt(f, g, A)􏽦∩
(h, l, A)

Proof. We will just prove (i), (iv), (v), (vi), and (ix).
Since (f, g, A) and (h, l, A) are subsets of

(f, g, A)􏽦∪ (h, l, A), then the necessary parts of (i), (iv), and
(vi) hold; since (f, g, A)􏽦∩ (h, l, A) are subsets of (f, g, A)

and (h, l, A), then the sufficient parts of (v) and (ix) hold.
To prove the sufficient part of (i), let

x⋐pp(f, g, A)􏽦∪ (h, l, A). *en, x ∈ f(a)∪ h(a) for some
a ∈ A. *erefore, x ∈ f(a) or h(a) for some a ∈ A, and
hence x⋐pp(f, g, A) or x⋐pp(h, l, A).

To prove the necessary part of (v), let x∈nt(f, g, A) and
x∈nt(h, l, A). *en, for all ¬a ∈¬A, we have x ∈ g(¬a) and
x ∈ l(¬a). *erefore, x ∈ g(¬a)∩ l(¬a) for all ¬a ∈¬A.
Hence, x∈nt(f, g, A)􏽦∪ (h, l, A).

Similarly, one can prove the necessary part of (ix).
We provide the next example to clarify that the converse

of results (ii), (iii), (vi), and (viii) to (x) of Proposition 5
fails. □

Example 4. Let A � a1, a2􏼈 􏼉 be a set of parameters and
(f, g, A), (h, l, A) be bipolar soft sets over X � x1, x2,􏼈

x3, x4, x5, x6, x7} defined as follows:

(f, g, A) � a1, x1, x3􏼈 􏼉, x5, x7􏼈 􏼉( 􏼁, a2, x4, x6􏼈 􏼉, x3, x5􏼈 􏼉( 􏼁􏼈 􏼉,

(h, l, A) � a1, x1, x4􏼈 􏼉, x3, x4, x5􏼈 􏼉( 􏼁, a2, x2􏼈 􏼉, x1, x3, x5, x7􏼈 􏼉( 􏼁􏼈 􏼉.

(12)
*en, (f, g, A)􏽦∪ (h, l, A) � (a1, x1, x3, x4􏼈 􏼉, x5􏼈 􏼉), (a2,􏼈

x2, x4, x6􏼈 􏼉, x3, x5􏼈 􏼉)}, and (f, g, A)􏽦∩ (h, l, A) � (a1, x1􏼈 􏼉,􏼈

x3, x4, x5, x7􏼈 􏼉), (a2,∅, x1, x3, x5,􏼈 x7})}

We note the following:

(i) x7⋐np(f, g, A) and x7⋐np(h, l, A)x7⋐np(h, l, A), but
x7⋐np(f, g, A)􏽦∪ (h, l, A) does not hold true

(ii) x7⋐p(f, g, A) and x7⋐p(h, l, A)x7⋐p(h, l, A), but
x7⋐p(f, g, A)􏽦∪ (h, l, A) and x7⋐p (f, g, A)􏽦∩ (

h, l, A) do not hold true
(iii) x4⋐pt(f, g, A)􏽦∪ (h, l, A)x4⋐pt(f, g, A)􏽦∪ (h, l, A),

but x4⋐pt(f, g, A) or x4⋐pt(h, l, A) does not hold
true

(iv) x4⋐pp(f, g, A) and x4⋐pp(h, l, A)x4⋐pp(h, l, A), but
x4⋐pp(f, g, A)􏽦∩ (h, l, A) does not hold true

(v) x7⋐nt(f, g, A)􏽦∩ (h, l, A)x7⋐nt(f, g, A)􏽦∩ (h, l, A),
but x7⋐nt(f, g, A) and x4⋐pt(h, l, A) do not hold
true

One can prove the following result similarly.

Proposition 6. For two bipolar soft sets (f, g, A) and
(h, l, A) over X and x ∈ X, we have the following results:

(i) x⋐pp(f, g, A)􏽦∪ (h, l, A)⇒x⋐pp(f, g, A) and x

⋐pp(h, l, A)

(ii) x⋐np(f, g, A)􏽦∪ (h, l, A)⇔x⋐np(f, g, A) and x

⋐np(h, l, A)

(iii) x⋐p(f, g, A)􏽦∪ (h, l, A)⇒x⋐p(f, g, A) and x

⋐p(h, l, A)

(iv) x ∉ pt(f, g, A)􏽦∪ (h, l, A)⇔x ∉ pt(f, g, A) and x

∉ pt(h, l, A)

(v) x ∉ nt(f, g, A) or x ∉ nt(h, l, A)⇒x ∉ nt
(f, g, A)􏽦∪ (h, l, A).

(vi) x⋐pp(f, g, A) or x⋐pp(h, l, A)⇒x⋐pp (f, g, A)􏽦∩
(h, l, A).

(vii) x⋐np(f, g, A)􏽦∩ (h, l, A)⇒x⋐np(f, g, A) or
x⋐np(h, l, A)

(viii) x⋐p(f, g, A)􏽦∩ (h, l, A)⇒x⋐p(f, g, A) or x⋐p
(h, l, A)

(ix) x ∉ pt(f, g, A) or x ∉ pt(h, l, A)⇒x ∉ pt(f, g, A)
􏽦∩ (h, l, A).

(x) x ∉ nt(f, g, A)􏽦∩ (h, l, A)⇔x ∉ nt(f, g, A) and x

∉ nt(h, l, A)

(xi) x ∉ t(f, g, A); x ∉ t(h, l, A)⇔x ∉ t(f, g, A)􏽦∩
(h, l, A); and x ∉ t(f, g, A)􏽦∪ (h, l, A)

Definition 10. A bipolar soft set (f, g, A) is said to be stable
if there are two disjoint subsets U, V of X such that f(a) � U

for each a ∈ A and g(¬a) � V and for each ¬a ∈¬A.
(f, g, A) is said to be positive stable if V � ∅; and

(f, g, A) is said to be negative stable if U � ∅.
It is clear that positive (negative) stable bipolar soft set is

stable; however, the converse is not true.

Proposition 7. Let (f, g, A) be a stable bipolar soft set.4en,

(i) x⋐pp(f, g, A)⇔x⋐pt(f, g, A)

(ii) x⋐np(f, g, A)⇔x⋐nt(f, g, A)
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(iii) x⋐p(f, g, A)⇔x ∉ t(f, g, A)

(iv) x⋐pp(f, g, A)⇔x⋐pt(f, g, A)

(v) x⋐np(f, g, A)⇔x⋐nt(f, g, A)

Proof. Since (f, g, A) is a stable bipolar soft set, then there
are two disjoint subsets U, V of X such that f(a) � U for
each a ∈ A and g(¬a) � V for each ¬a ∈¬A. *erefore, the
following properties hold:

(i) x ∈ f(a) for some a ∈ A if and only if x ∈ f(a) for
each a ∈ A

(ii) x ∈ g(¬a) for some ¬a ∈¬A if and only if
x ∈ g(¬a) for each ¬a ∈¬A

(iii) x ∉ f(a) for some a ∈ A and x ∉ g(¬a) for some
¬a ∈¬A if and only if x ∉ f(a) for each a ∈ A and
x ∉ g(¬a) for each ¬a ∈¬A

(iv) x ∉ f(a) for some a ∈ A if and only if x ∉ f(a) for
each a ∈ A

(v) x ∉ g(¬a) for some ¬a ∈¬A if and only if
x ∉ g(¬a) for each ¬a ∈¬A

Hence, the desired results are proved. □

Corollary 1. Let (f, g, A) be a positive stable bipolar soft set.
4en,

(i) x⋐pp(f, g, A)⇔x⋐pt(f, g, A)

(ii) x⋐pp(f, g, A)⇔x⋐pt(f, g, A)

⇔x⋐p(f, g, A)⇔x ∉ t(f, g, A)

Corollary 2. Let (f, g, A) be a negative stable bipolar soft
set. 4en,

(i) x⋐np(f, g, A)⇔x⋐nt(f, g, A)

(ii) x⋐np(f, g, A)⇔x⋐nt(f, g, A)⇔x⋐p
(f, g, A)⇔x ∉ t(f, g, A)

Definition 11. *e Cartesian product of two bipolar soft sets
(f, g, A) and (h, l, B), denoted by (f × h, g × l, A × B), is
defined as (f × h)(a, b) � f(a) × h(b) for each (a, b) ∈ A ×

B and (g × l)(¬a,¬b) � g(¬a) × l(¬b) for each
(¬a,¬b) ∈¬A × ¬B.

Proposition 8. We have the next four results:

(i) (x, y)⋐pp(f, g, A) × (h, l, B) if and only if
x⋐pp(f, g, A) and y⋐pp(h, l, B)

(ii) (x, y)⋐np(f, g, A) × (h, l, B) if and only if x⋐np
(f, g, A) and y⋐np(h, l, B)

(iii) (x, y)⋐p(f, g, A) × (h, l, B) if and only if x⋐p
(f, g, A) and y⋐p(h, l, B)

(iv) (x, y)⋐pt(f, g, A) × (h, l, B) if and only if x⋐pt
(f, g, A) and y⋐pt(h, l, B)

(v) (x, y)⋐nt(f, g, A) × (h, l, B) if and only if x⋐nt
(f, g, A) and y⋐nt(h, l, B)

Proof. We will just prove (iii). *e other cases can be proved
similarly.

(iii) (x, y)⋐p(f, g, A) × (h, l, B) � (f × h, g × l, A × B)

⇔(x, y) ∈ (f × h)(a, b) � f(a) × h(b) and
(x, y) ∈ (g × l)(¬a′,¬b′) � g(¬a′) × l(¬b′) for
some (a, b) ∈ A × B and (¬a′,¬b′) ∈¬A × ¬B
⇔x ∈ f(a) and y ∈ h(b) for some a ∈ A and b ∈ B;
x ∈ g(¬a′) and y ∈ l(¬b′) for some ¬a′ ∈¬A and
¬b′ ∈¬B
⇔x ∈ f(a) and x ∈ g(¬a′) for some a ∈ A and
¬a′ ∈¬A; y ∈ h(b) and y ∈ l(¬b′) for some b ∈ B

and ¬b′ ∈¬B
⇔x⋐p(f, g, A) and y⋐p(h, l, B). □

Definition 12. A weak bipolar soft set is a triple (f, g, A)

over a nonempty set X with a set of parameters A, where
f: A⟶ 2X and g: ¬A⟶ 2X are two crisp maps.

A weak bipolar soft set is expressed as a set of ordered
triples:
(f, g, A) � (a, f(a), g(¬a)): a ∈ A andf(a), g(¬a) ∈ 2X

􏽮 􏽯.

(13)

A class of all weak bipolar soft sets defined over X with
all sets of parameters which are subsets of A is symbolized by
WC(XA).

Remark 2. It is clear that a bipolar soft set is a special case of a
weak bipolar soft set, and a weak bipolar soft set is not
necessarily a bipolar soft set. We will prove that the image of a
bipolar soft set is not necessarily a bipolar soft set; however,
the image of a weak bipolar soft set is a weak bipolar soft set.
*erefore, we define a soft mapping between two classes of
weak bipolar soft sets instead of two classes of bipolar soft sets.

Definition 13. A soft mapping πφ of WC(XA) into WC(YB)

is a pair (π,φ) of crisp mappings π: X⟶ Y and
φ: A⟶ B such that πφ is defined as follows: the image of a
weak bipolar soft set (f1, f2, M) in WC(XA) is a weak
bipolar soft set πφ(f1, f2, M) � (g1, g2, E) in WC(YB) such
that E � φ(M)⊆B and the two maps g1 and g2 are given by

g1(e) � π ∪
λ∈φ− 1(e)∩M

f1(λ)􏼠 􏼡, for each e ∈ E,

g2(¬e) � π ∪
¬λ∈¬ φ− 1(e)∩M( )

f2(¬λ)⎛⎝ ⎞⎠, for each¬e ∈¬E.

(14)

*e following example shows that the image of a bipolar
soft set need not be a bipolar soft set.

Example 5. Consider that A � a1, a2, a3􏼈 􏼉 and B � b1, b2􏼈 􏼉

are two sets of parameters and X � Y � x1, x2, x3􏼈 􏼉 are the
universal sets. We define two crisp maps π: X⟶ Y and
φ: A⟶ B as follows:
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π xi( 􏼁 � xi, for eachxi ∈ X,

φ a1( 􏼁 � b1,

φ a2( 􏼁 � φ a3( 􏼁 � b2.

(15)

Let M � a2, a3􏼈 􏼉 ⊂ A and (f1, f2, M) be a bipolar soft
set over X with M defined as follows:

f1 a2( 􏼁 � x1, x2􏼈 􏼉,

f1 a3( 􏼁 � x1􏼈 􏼉,

f2 ¬a2( 􏼁 � x3􏼈 􏼉,

f2 ¬a3( 􏼁 � x2􏼈 􏼉.

(16)

*en, πφ: WC(XA)⟶WC(YB) is a soft mapping such
that the image of (f1, f2, M) is (g1, g2, E) in WC(YB) such
that E � φ(M) � b2􏼈 􏼉⊆B and the two maps g1 and g2 are
given by

g1 b2( 􏼁 � π f1 a2( 􏼁∪f1 a3( 􏼁( 􏼁 � π x1, x2􏼈 􏼉( 􏼁 � x1, x2􏼈 􏼉,

g2 ¬b2( 􏼁 � π f1 ¬a2( 􏼁∪f ¬a3( 􏼁( 􏼁 � π x2, x3􏼈 􏼉( 􏼁 � x2, x3􏼈 􏼉.

(17)

It is clear that (g1, g2, E) is not a bipolar soft set because
g1(b2)∩g2(¬b2)≠∅.

Proposition 9. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping such that π: X⟶ Y and φ: A⟶ B are injective
maps. 4en, the image of a bipolar soft set is a bipolar soft set.

Proof. Let (f1, f2, M) be a bipolar soft set in WC(XA).
*en, its image is (g1, g2, E) in WC(YB) such that E �

φ(M)⊆B and the two maps g1 and g2 are given by

g1(e) � π ∪
λ∈φ− 1(e) ∩M

f1(λ)􏼠 􏼡, for each e ∈ E,

g2(¬e) � π ∪
¬λ∈¬ φ− 1(e)∩M( )

f2(¬λ)⎛⎝ ⎞⎠, for each¬e ∈¬E.

(18)

Since φ is injective, φ− 1(e) is empty or a singleton set.
*is with the injectiveness of π leads to the fact that g1(e)

and g2(¬e) are empty or singleton sets such that
g1(e)∩g2(¬e) � ∅ for each e ∈ E. Hence, (g1, g2, E) is a
bipolar soft set. □

Definition 14. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping. *en a crisp map φ′: ¬A⟶¬B is defined as
follows: φ′(¬a) � ¬φ(a), where φ: A⟶ B is a crisp map
given in Definition 13.

It is clear that φ′− 1
(¬b) � ¬φ− 1(b).

Definition 15. A soft map πφ: WC(XA)⟶WC(YB) is
said to be injective (resp., surjective, bijective) if
πφ: WC(XA)⟶WC(YB)aπ and φ are injective (resp.,
surjective, bijective).

Definition 16. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping. *en, the preimage of a bipolar soft set (h1, h2, N)

in C(YB) is a bipolar soft set π−1
φ (h1, h2, N) � (l1, l2, D) in

C(XA) such that D � φ−1(N)⊆A and the two maps l1 and l2
are given by

l1( d ) � π− 1
( h1(φ( d ) ), for each d ∈ D,

l2(¬d ) � π− 1
( h2(¬(φ( d ) ) ), for each¬d ∈¬D.

(19)

Proposition 10. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping. 4en, the preimage of a bipolar soft set is a bipolar
soft set.

Proof. Let (h1, h2, N) be a bipolar soft set in C(YB). *en,
π−1
φ (h1, h2, N) � (l1, l2, D) in C(XA) such that

D � φ− 1(N)⊆A and the two maps l1 and l2 are given by

l1(d) � π− 1
h1(φ(d))( 􏼁, for each d ∈ D,

l2(¬d) � π− 1
h2(¬(φ(d)))( 􏼁 for each¬d ∈¬D.

(20)

Let φ(d) � d′.
*en, l1(d)∩ l2(¬d) � π−1(h1(d′ )∩π−1(h2(¬d′ )) �

π−1(h1 (d′ )∩h2(¬d′ ) ) � π−1(∅) �∅. Hence, (l1, l2,D) is a
bipolar soft set. □

Proposition 11. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping and let (f1, f2, M) and (h1, h2, M′) be two bipolar
soft sets in WC(XA). 4en, we have the following results:

(i) (Φφ( A ), Xφ( A ),φ( A ) ) 􏽥⊆ πφ(ΦA, XA, A). 4e
equality holds if π and φ are surjective.

(ii) (Xφ( A ),Φφ( A ),φ( A ) ) 􏽥⊆ πφ( XA,ΦA, A). 4e
equality holds if π and φ are surjective.

(iii) If (f1, f2, M) 􏽥⊆ (h1, h2, M′), then πφ(f1, f2, M)
􏽥⊆ πφ(h1, h2, M′).

(iv) πφ[(f1, f2, M)􏽦∪ (h1, h2, M′)] � πφ(f1, f2, M) 􏽦∪
πφ(h1, h2, M′).

(v) πφ[(f1, f2, M)􏽦∩ (h1, h2, M′)] 􏽥⊆ πφ(f1, f2, M)􏽦∩ πφ
(h1, h2, M′).

4e equality holds if π and φ are injective.

Proof. To prove (i), let πφ(ΦA, XA, A) � πφ (u1, u2, A) �

(f1, f2, E), where u1(a) � ∅ and E � φ(A), and u2(¬a) �

X for each ¬a ∈¬A. *en, f1(e) � π(∪ λ∈φ−1(e)u1(λ))

� π(∅) � ∅ for each e ∈ E, and f2(¬e) � π
(∪ ¬λ∈¬φ−1(¬e)u2(¬λ)) � π(X) � Z⊆Y for each ¬e ∈¬E.
*erefore, (f1, f2, E) � (ΦE, ZE, E). Since E � φ(A),
f1(e)⊆∅ and f2(¬e) � Z⊆Y, then (Φφ( A ), Xφ( A ),

φ( A ) ) 􏽥⊆ πφ(ΦA, XA, A ) � (ΦE, ZE, E).
If π and φ are surjective, then E � φ(A) � B and

π(X) � Y. Hence, πφ(ΦA, XA, A) � (ΦB, XB, B).
Following similar argument above, one can prove (ii).
One can prove (iii) easily.
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(iv) First, let πφ[(f1, f2, M)􏽦∪ (h1, h2, M′)] � πφ
(u1, u2, M∪M′) � (g1, g2, E), where E � φ
(M∪M′). Now, for each e ∈ E, we have
g1(e) � π(∪ λ∈φ−1(e)∩Eu1(λ)). Since

u1( λ ) �

f1( λ ), λ ∈M − M′,

h1( λ ), λ ∈M′ − M,

f1( λ )∪ h1( λ ), λ ∈M∩M′,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

then

π ∪
λ∈φ− 1( e )∩E

u1( λ )􏼠 􏼡

� π ⋃
f1( λ ) λ ∈ ( M − M′ )∩φ− 1

( e )

h1( λ ) λ ∈ ( M′ − M )∩φ− 1
( e )

f1( λ )∪ h1( λ ) λ ∈ ( M∩M′ )∩φ− 1
( e )

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(22)

Also, for each ¬e ∈¬E, we have g2(¬e) � π
(∪ ¬λ∈¬(φ−1(e)∩E)u2(¬λ)). Since

u2(¬λ ) �

f2(¬λ ), ¬λ ∈¬M − ¬M′,

h2(¬λ ), ¬λ ∈¬M′ − ¬M,

f2(¬λ )∪ h2(¬λ ), ¬λ ∈¬M∩¬M′,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

then

π ∪
¬λ∈¬( φ− 1( e )∩E )

u2(¬λ )􏼠 􏼡

� π ⋃
f2(¬λ ) ¬λ ∈¬[ ( M − M′ )∩φ− 1

( e ) ]

h2(¬λ ) ¬λ ∈¬[ ( M′ − M )∩φ− 1
( e ) ]

f2(¬λ )∪ h2(¬λ ) ¬λ ∈¬[ ( M∩M′ )∩φ− 1
( e ) ]

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(24)

Second, let πφ(f1, f2, M)􏽦∪ πφ(h1, h2, M′) � (w1,

w2, N), where N � φ(M)∪φ(M′). Now, for each n ∈ N, we
have

w1( n ) � π ∪
λ∈φ− 1( n )∩N

f1( λ )􏼠 􏼡∪ π ∪
λ∈φ− 1( n )∩N

h1( λ )􏼠 􏼡

� π ∪
λ∈φ− 1( n )∩N

f1( λ ) ∪ ∪
λ∈φ− 1( n )∩N

h1( λ )􏼠 􏼡

� π ⋃
f1( λ ) λ ∈ ( M − M′ )∩φ− 1

( n )

h1( λ ) λ ∈ ( M′ − M )∩φ− 1
( n )

f1( λ )∪ h1( λ ) λ ∈ ( M∩M′ )∩φ− 1
( n )

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(25)

Also, for each ¬n ∈¬N, we have

w2(¬n ) � π ∪
¬λ∈¬( φ− 1( n )∩N )

f2(¬λ )􏼠 􏼡∪ π ∪
¬λ∈¬(φ− 1( n )∩N )

h2(¬λ )􏼠 􏼡

� π ∪
¬λ∈¬( φ− 1( n )∩N )

f2(¬λ ) ∪ ∪
¬λ∈¬( φ− 1( n )∩N )

h2(¬λ )􏼠 􏼡

� π ⋃

f2(¬λ ) ¬λ ∈¬[ ( M − M′ )∩φ− 1
( n ) ]

h2(¬λ ) ¬λ ∈¬[ ( M′ − M )∩φ− 1
( n ) ]

f2(¬λ )∪ h2( λ ) λ ∈¬[ ( M∩M′ )∩φ− 1
( n ) ]

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

Since φ(M∪φM′) � φ(M)∪φ(M′), then E � N. *us
v1(e) � w1(e) for each e ∈ E � N and v2(¬e) � w2(¬e) for
each ¬e ∈¬E � ¬N. Hence, we obtain the desired result.

One can prove (v) similarly.
By using a similar technique, one can prove the following

result. □

Proposition 12. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping and let (g1, g2, N) and (l1, l2, N′) be two bipolar
soft sets in WC(YB). 4en, we have the following results:

(i) π−1
φ (ΦB, XB, B) � (ΦA, XA, A)

(ii) π−1
φ (XB,ΦB, B) � (XA,ΦA, A)

(iii) If (g1, g2, N) 􏽥⊆ (l1, l2, N′), then π−1
φ (g1, g2, N)

􏽥⊆ π−1
φ (l1, l2, N′)

(iv) π−1
φ [(g1, g2, N)􏽦∪ (l1, l2, N′)] � π−1

φ (g1, g2, N) 􏽦∪
π−1
φ (l1, l2, N′)

(v) π−1
φ [(g1, g2, N)􏽦∩ (l1, l2, N′)] � π−1

φ (g1, g2, N)􏽦∩
π−1
φ (l1, l2, N′)

Proposition 13. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping and let (f1, f2, M) be a bipolar soft set in WC(XA).
4en, we have the following results:

(i) If x⋐pp(f1, f2, M), then π(x)⋐ppπφ(f1, f2, M)

(ii) If x⋐np(f1, f2, M), then π(x)⋐npπφ(f1, f2, M)
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(iii) If x⋐p(f1, f2, M), then π(x)⋐pπφ(f1, f2, M)

(iv) If x∈pt(f1, f2, M), then π(x)∈ptπφ(f1, f2, M)

(v) If x∈nt(f1, f2, M), then π(x)∈ntπφ(f1, f2, M)

(vi) If x⋐pp(f1, f2, M) and φ is injective, then
π(x)⋐ppπφ(f1, f2, M)

(vii) If x⋐np(f1, f2, M) and φ is injective, then
π(x)⋐npπφ(f1, f2, M)

(viii) If x⋐p(f1, f2, M) and φ is injective, then
π(x)⋐pπφ(f1, f2, M)

(ix) If x ∉ pt(f1, f2, M), then π(x) ∉ ptπφ(f1, f2, M)

(x) If x ∉ nt(f1, f2, M), then π(x) ∉ ntπφ(f1, f2, M)

(xi) If x ∉ t(f1, f2, M), then π(x) ∉ tπφ(f1, f2, M)

Proof. We only prove (i), (v), (vi), and (xi). *e other cases
can be proved similarly.

To prove (i), let x⋐pp(f1, f2, M) and πφ(f1, f2,

M) � (g1, g2,φ(M)). *en, there exists a parameter
a ∈M⊆A such that x ∈ f(a). *erefore, there is a parameter
b ∈ φ(M)⊆B such that a ∈ φ− 1(b). Obviously, a ∈ φ− 1

(b)∩M, so that it follows from Definition 13 that
π(x) ∈ g1(b) � π(∪ λ∈φ−1(b)∩Mf1(λ)). *us, π(x)⋐pp
(g1, g2,φ(M)) � πφ(f1, f2, M), as required.

To prove (v), let x⋐nt(f1, f2, M) and πφ(f1, f2,

M) � (g1, g2,φ(M)). *en, x ∈ f2(¬a) for each
¬a ∈¬M⊆¬A. *erefore, for each parameter ¬b ∈ φ′(¬M)

� ¬φ(M)⊆¬B, there is ¬a ∈ φ′− 1
(¬b) � ¬φ− 1(b). Obvi-

ously, ¬a ∈¬φ− 1(b)∩¬M, so that it follows from Definition
13 that for each ¬b ∈¬φ(M) we have π(x) ∈ g2(¬b) �

π(∪ ¬λ∈¬(φ−1(b)∩M)f2(¬λ)). *us, π(x)⋐nt(g1, g2,φ(M)) �

πφ(f1, f2, M), as required.
To prove (vi), let x⋐pp(f, g, M) and πφ(f1, f2,

M) � (g1, g2,φ(M)). *en, there exists a parameter
a ∈M⊆A such that x ∉ f1(a). *erefore, there is a pa-
rameter b ∈ φ(M)⊆B such that a ∈ φ− 1(b). Since φ is in-
jective, a � φ− 1(b). *is means that a{ } � φ− 1(b)∩M.
*erefore, π(x) ∈ g1(b) � π(∪ λ∈φ−1(b)∩Mf1(λ)) � π
(f1(a)). *erefore, π(x)⋐pp(g1, g2,φ(M)) � πφ
(f1, f2, M), as required.

To prove (xi), let x ∉ t(f1, f2, M) and
πφ(f1, f2, M) � (g1, g2,φ(M)). *en, x ∉ f1(a) for all
a ∈M⊆A and x ∉ f2(¬a) for all ¬a ∈¬M⊆¬A. *erefore,
for each parameter b ∈ φ(M)⊆B, there is a ∈M such that
a ∈ φ− 1(b), and for each parameter ¬b ∈¬φ(M)⊆¬B, there
is ¬a ∈¬M such that ¬a ∈¬φ− 1(b). *us, we obtain
π(x) ∉ g1(b) � π(∪ λ∈φ−1(b)∩Mf1(λ)) � π(f1(a)) for each
b ∈ φ(M) and π(x) ∉ g2(¬b) � π(∪ ¬λ∈¬(φ−1(b)∩M)

f2(¬λ)) � π(f2(¬a)) for each ¬b ∈¬φ(M). Hence,
π(x) ∉ t(g1, g2,φ(M)) � πφ(f1, f2, M), as required. □

Proposition 14. Let πφ: WC(XA)⟶WC(YB) be a soft
mapping and let (h1, h2, N) be a bipolar soft set in WC(YB).
If φ is surjective, then we have the following results:

(i) If y⋐pp(h1, h2, N), then x⋐ppπ−1
φ (h1, h2, N) for each

x ∈ π− 1(y)

(ii) If y⋐np(h1, h2, N), then x⋐npπ−1
φ (h1, h2, N) for each

x ∈ π− 1(y)

(iii) If y⋐p(h1, h2, N), then x⋐pπ−1
φ (h1, h2, N) for each

x ∈ π− 1(y)

(iv) If y∈pt(h1, h2, N), then x∈ptπ−1
φ (h1, h2, N) for each

x ∈ π− 1(y)

(v) If y∈nt(h1, h2, N), then x∈ntπ−1
φ (h1, h2, N) for each

x ∈ π− 1(y)

(vi) If y⋐pp(h1, h2, N) such that π is injective, then
π− 1(y)⋐ppπ−1

φ (h1, h2, N)

(vii) If y⋐np(h1, h2, N) such that π is injective, then
π− 1(y)⋐npπ−1

φ (h1, h2, N)

(viii) If y⋐p(h1, h2, N) such that π is injective, then
π− 1(y)⋐pπ−1

φ (h1, h2, N)

(ix) If y ∉ pt(h1, h2, N) such that π is injective, then
π− 1(y) ∉ ptπ−1

φ (h1, h2, N)

(x) If y ∉ nt(h1, h2, N) such that π is injective, then
π− 1(y) ∉ ntπ−1

φ (h1, h2, N)

(xi) If y ∉ t(h1, h2, N) such that π is injective, then
π− 1(y) ∉ tπ−1

φ (h1, h2, N)

Proof. We only prove (i) and (x). *e other cases can be
proved similarly.

To prove (i), let y⋐pp(h1, h2, N) and
π−1
φ (h1, h2, N) � (l1, l2,φ− 1(N)). *en, there exists a pa-

rameter b ∈ N⊆B such that y ∈ h(b). Since φ is surjective,
there is a parameter a ∈ φ− 1(N)⊆A such that φ(a) � b. It
follows from Definition 16 that l1( a ) � π− 1

( h1(φ( a ) ) � π− 1( h1( b ) ). Now, for each x ∈ π− 1(y), we
obtain x⋐pp(l1, l2,φ− 1(N)) � π−1

φ (h1, h2, N), as required.
To prove (x), let y ∉ nt(h1, h2, N) and

π−1
φ (h1, h2, N) � (l1, l2,φ− 1(N)). *en, y ∉ h2(¬b) for all
¬b ∈¬N⊆¬B. Since φ is surjective, there exists a parameter
¬a ∈¬φ− 1(N)⊆¬A such that ¬φ(a) � ¬b. It follows from
Definition 16 that l2(¬a ) � π− 1 ( h2(¬φ( a ) ) � π− 1

( h2(¬b ) ). Since π is injective, π− 1(y) ∉ nt(l1, l2,φ− 1

(N)) � π−1
φ (h1, h2, N), as required. □

4. Application of Bipolar Soft Sets

In this section, we apply the idea of bipolar soft sets to
initiate an application of optimal choices. We provide an
example to demonstrate how we make optimal choices.
*en, we construct an algorithm of this method.

Example 6. Suppose that a car sales company has a set of
cars X with a set of parameters E. Let
X � ci: i � 1, 2, . . . , 20􏼈 􏼉 be a set of twenty cars and A �

ai: i � 1, 2, . . . , 11􏼈 􏼉 be a set of eleven parameters, where
ai(i � 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) stand for “expensive,”
“cheap,” “modern,” “sport,” “red color,” “white color,”
“Japanese industry,” “German industry,” “in good repair,”
“in bad repair,” and “low fuel consumption,” respectively.

It should be noted that ¬a1 does not mean “cheap” and
¬a2 does not mean “expensive.”
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Now, suppose that a car sales company classifies these
cars with respect to the set of parameters using a notion of a
bipolar soft set (f, g, A) as follows:

f a1( 􏼁 � ci : i � 4, 7, 8, . . . , 12􏼈 􏼉, g ¬a1( 􏼁 � ci: i � 14, 15, . . . , 18􏼈 􏼉,

f a2( 􏼁 � ci : i � 5, 10, 14, 15, 18􏼈 􏼉, g ¬a2( 􏼁 � ci: i � 7, 8, 9, 11, 12, 19􏼈 􏼉,

f a3( 􏼁 � ci : i � 1, 2, 3, 6, 8, 10, 19, 20􏼈 􏼉, g ¬a3( 􏼁 � ci: i � 9, 13, 16, 17􏼈 􏼉,

f a4( 􏼁 � ci : i � 4, 9, 15, 16, 17􏼈 􏼉, g ¬a4( 􏼁 � ci: i � 8, 10, 11, 12, 13, 20􏼈 􏼉,

f a5( 􏼁 � ci : i � 1, 2, . . . , 7􏼈 􏼉, g ¬a5( 􏼁 � ci: i � 8, 9, . . . , 20􏼈 􏼉,

f a6( 􏼁 � ci : i � 1, 4, 8, 12, 13, . . . , 16, 20􏼈 􏼉, g ¬a6( 􏼁 � ci: i � 2, . . . , 7, 9, 10, 11, 17, 18, 19􏼈 􏼉,

f a7( 􏼁 � ci : i � 1, 2, . . . , 7, 14, 16􏼈 􏼉, g ¬a7( 􏼁 � ci: i � 8, 9, . . . , 13, 15, 17, 18, 19, 20􏼈 􏼉,

f a8( 􏼁 � ci : i � 4, 8, 10, 13, 15, 18, 19, 20􏼈 􏼉, g ¬a8( 􏼁 � ci: i � 1, 2, 3, 5, 6, 7, 9, 11, 12, 14, 16, 17􏼈 􏼉,

f a9( 􏼁 � ci : i � 1, 4, 5, 8, 15, 16, . . . , 20􏼈 􏼉, g ¬a9( 􏼁 � ci: i � 9, 11, 12, 14􏼈 􏼉,

f a10( 􏼁 � ci : i � 9, 11, 12􏼈 􏼉, g ¬a10( 􏼁 � ci: i � 1, 5, 8, 15, 16, . . . , 20􏼈 􏼉,

f a11( 􏼁 � ci : i � 1, 3, 5, 8, 11, . . . , 17􏼈 􏼉, g ¬a11( 􏼁 � ci: i � 4, 6, 7, 18􏼈 􏼉.

(27)

Now, suppose thatMr. Redhwan wants to choose a car with
respect to a set of parameters E � ai: i � 2, 3, 6, 8, 9, 11􏼈 􏼉⊆A.
To help him, we will construct two tables, one of them with
respect to a map f: E⟶ 2X (see Table 1) and the other with
respect to a map g: ¬E⟶ 2X (see Table 2). *en we de-
termine the value of (ck, f(ai)) and (ck, g(¬ai)) by the fol-
lowing two roles:

( ck, f( ai ) ) �
1, ck ∈ f( ai ),

0, ck ∉ f( ai ),
􏼨

( ck, g(¬ai ) ) �
−1, ck ∈ g(¬ai ),

0, ck ∉ g(¬ai ).
􏼨

(28)

Since f(ai)∩g(¬ai) � ∅ for each ai ∈ E, we can
combine Tables 1 and 2 in Table 3. Note that the value of
(ck, (f(ai), g(¬ai))) is given by the following two roles:

( ck, ( f( ai ), g(¬ai ) ) ) �

1, ck ∈ f( ai ),

−1, ck ∈ g(¬ai ),

0, ck ∉ f( ai )∪g(¬ai ).

⎧⎪⎪⎨

⎪⎪⎩

(29)

One can note from Table 3 that car no. 15 is the optimal
car for Mr. Redhwan. Cars no. 8 and no. 20 are the second
optimal cars for Mr. Redhwan.

In the following, we present an algorithm for deter-
mining the wining students.

Step 1. Determine a set of parameters A and the uni-
versal set X.
Step 2. Define a map f which associates each parameter
of A with its corresponding subset of 2X.
Step 3. Define a map g which associates each parameter
of ¬A with its corresponding subset of 2X.

Step 4. Determine the favorite set of parameters E⊆A

of Mr. X.
Step 5. Construct a bipolar soft set (f, g, E).
Step 6. Initiate a table which represents a bipolar soft set
(f, g, E) (see Table 3).
Step 7. Input the value of (ck, (f(ai), g(¬ai))) as given
by the following two roles:

(ck, ( f( ai ), g(¬ai ) ) ) �

1, ck ∈ ( f( ai ) ),

−1, ck ∈ g(¬ai ),

0, ck ∉ f( ai )∪g(¬ai ).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(30)

Step 8. Count the values of each arrow by the rule
Sumk � 􏽐

m
i�1(ck, (f(ai), g(¬ai))).

Step 9. Find the decision, denoted by d, for which
S � max Sumk: k � 1, 2, . . . , s􏼈 􏼉, where s � |X|.
Step 10.*en, d is the optimal choice car. If d has more
than one value, then any one of them could be chosen
by Mr. Redhwan satisfying his option.

On the other hand, some of the parameters are of less
significance than the other ones so they must be graded with
lesser priority. For this reason, we suggest weights
wi ∈ ( 0, 1 ] on the parameters according to the desire of
customers.

In this case, we modify the previous algorithm to be
convenient for weighted selection.

Step 1. Determine a set of parameters A and the uni-
versal set X.
Step 2. Define a map f which associates each parameter
of A with its corresponding subset of 2X.
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Step 3. Define a map g which associates each parameter
of ¬A with its corresponding subset of 2X.
Step 4. Determine the favorite set of parameters E⊆A of
Mr. X.
Step 5. Determine the weight wa of each parameter of
the favorite set of parameters.
Step 6. Construct a bipolar soft set (f, g, E).
Step 7. Initiate a table which represents a bipolar soft set
(f, g, E) (see Table 3).

Step 8. Input the value of (ck, (f(ai), g(¬ai))) as given
by the following two roles:

ck, f ai( 􏼁, g ¬ai( 􏼁( 􏼁( 􏼁 �

wai
, ck ∈ ( f( ai ),

−wai
, ck ∈ g(¬ai ),

0, ck ∉ f( ai )∪g(¬ai ).

⎧⎪⎪⎨

⎪⎪⎩

(31)

Step 9. Count the values of each arrow by the rule
Sumk � 􏽐

m
i�1(ck, (f(ai), g(¬ai))). See Table 4.

Table 1: *e positive components f of bipolar soft sets (f, g, E) of each car.

Cars
f(ai)

a2 a3 a6 a8 a9 a11

c1 0 1 1 0 1 1
c2 0 1 0 0 0 0
c3 0 1 0 0 0 1
c4 1 0 1 1 1 0
c5 1 0 0 0 1 1
c6 0 1 0 0 0 0
c7 0 0 0 0 0 0
c8 0 1 1 1 1 1
c9 0 0 0 0 0 0
c10 1 1 0 1 0 0
c11 0 0 0 0 0 1
c12 0 0 1 0 0 1
c13 0 0 1 1 0 1
c14 1 0 1 0 0 1
c15 1 0 1 1 1 1
c16 0 0 1 0 1 1
c17 0 0 0 0 1 1
c18 1 0 0 1 1 0
c19 0 1 0 1 1 0
c20 0 1 1 1 1 0

Table 2: *e negative components g of bipolar soft sets (f, g, E) of each car.

Cars
g(¬ai)

¬a2 ¬a3 ¬a6 ¬a8 ¬a9 ¬a11

c1 0 0 0 −1 0 0
c2 0 0 −1 −1 0 0
c3 0 0 −1 −1 0 0
c4 0 0 0 0 0 −1
c5 0 0 −1 −1 0 0
c6 0 0 −1 −1 0 −1
c7 −1 0 −1 −1 0 −1
c8 −1 0 0 0 0 0
c9 −1 −1 −1 −1 −1 0
c10 0 0 −1 0 0 0
c11 −1 0 −1 −1 −1 0
c12 −1 0 0 −1 −1 0
c13 0 −1 0 0 0 0
c14 0 0 0 −1 −1 0
c15 0 0 0 0 0 0
c16 0 −1 0 −1 0 0
c17 0 −1 −1 −1 0 0
c18 0 0 −1 0 0 −1
c19 −1 0 −1 0 0 0
c20 0 0 0 0 0 0
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Step 10. Find the decision, denoted by d, for which
S � max Sumk: k � 1, 2, . . . , s􏼈 􏼉, where s � |X|.
Step 11. *en, d is the optimal choice car. If d has more
than one value, then any one of them could be chosen
by Mr. Redhwan satisfying his option.

With respect to our example, suppose that the weights
10%, 40%, 10%, 10%, 20%, and 10% are, respectively, cor-
responding to a2, a3, a6, a8, a9, and a11. *en, we update
Table 3 to be as shown in Table 4.

Now, one can note fromTable 4 that cars no. 8 and no. 20
are the optimal cars for Mr. Redhwan. *erefore, any one of
them could be chosen by Mr. Redhwan satisfying his option.

5. Conclusion

*is study has introduced five types of belong relations and
six types of nonbelong relations between a bipolar soft set
and an ordinary point.*ese relations can be considered as a
primary indicator of membership and nonmembership

Table 4: Weight values of all components of the favorite bipolar soft sets (f, g, E).

Cars
(f, g), wai

(a2,¬a2), 10% (a3,¬a3), 40% (a6,¬a6), 10% (a8,¬a8), 10% (a9,¬a9), 20% (a11,¬a11), 10% Sum

c1 0 0.4 0.1 −0.1 0.2 0.1 0.7
c2 0 0.4 −0.1 −0.1 0 0 −0.2
c3 0 0.4 −0.1 −0.1 0 0.1 0.3
c4 0.1 0 0.1 0.1 0.2 −0.1 0.4
c5 0.1 0 −0.1 −0.1 0.2 0.1 0.2
c6 0 0.4 −0.1 −0.1 0 −0.1 0.1
c7 −0.1 0 −0.1 −0.1 0 −0.1 −0.4
c8 −0.1 0.4 0.1 0.1 0.2 0.1 0.8
c9 −0.1 −0.4 −0.1 −0.1 −0.2 0 −0.9
c10 0.1 0.4 −0.1 0.1 0 0 0.5
c11 −0.1 0 −0.1 −0.1 −0.2 0.1 −0.4
c12 −0.1 0 0.1 −0.1 −0.2 0.1 −0.2
c13 0 −0.4 0.1 0.1 0 0.1 −0.1
c14 0.1 0 0.1 −0.1 −0.2 0.1 −0.2
c15 0.1 0 0.1 0.1 0.2 0.1 0.6
c16 0 −0.4 0.1 −0.1 0.2 0.1 −0.1
c17 0 −0.4 −0.1 −0.1 0.2 0.1 −0.3
c18 0.1 0 −0.1 0.1 0.2 −0.1 0.2
c19 −0.1 0.4 −0.1 0.1 0.2 0 0.5
c20 0 0.4 0.1 0.1 0.2 0 0.8

Table 3: Values of all components of the favorite bipolar soft sets (f, g, E).

Cars
(f(a), g(¬a))

(a2,¬a2) (a3,¬a3) (a6,¬a6) (a8,¬a8) (a9,¬a9) (a11,¬a11) Sum

c1 0 1 1 −1 1 1 3
c2 0 1 −1 −1 0 0 −1
c3 0 1 −1 −1 0 1 0
c4 1 0 1 1 1 −1 3
c5 1 0 −1 −1 1 1 1
c6 0 1 −1 −1 0 −1 −2
c7 −1 0 −1 −1 0 −1 −4
c8 −1 1 1 1 1 1 4
c9 −1 −1 −1 −1 −1 0 −5
c10 1 1 −1 1 0 0 2
c11 −1 0 −1 −1 −1 1 −3
c12 −1 0 1 −1 −1 1 −1
c13 0 −1 1 1 0 1 2
c14 1 0 1 −1 −1 1 1
c15 1 0 1 1 1 1 5
c16 0 −1 1 −1 1 1 1
c17 0 −1 −1 −1 1 1 −1
c18 1 0 −1 1 1 −1 1
c19 −1 1 −1 1 1 0 1
c20 0 1 1 1 1 0 4
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degree of an element. *en, the concept of soft mappings
between two classes of bipolar soft sets has been defined, and
the sufficient conditions to preserve these relations between
an ordinary point and its image and preimage have been
studied. Finally, we have applied the idea of bipolar soft sets
to present an application of choosing the best products
according to the favorite set of parameters. We have given an
algorithm of the application and provided explanatory
example.

In the upcoming work, we shall exploit these relations to
initiate different types of soft separation axioms and com-
pact spaces on bipolar soft topological spaces. In addition,
we shall try to model some natural phenomena using bipolar
soft sets.
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