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In this work, we introduce a new topological index called a general power sum-connectivity index and we discuss this graph
invariant for some classes of extremal graphs. &is index is defined by Yα(G) � 􏽐uv∈E(G)(d(u)d(u) + d(v)d(v))α, where d(u) and
d(v) represent the degree of vertices u and v, respectively, and α≥ 1. A connected graph G is called a k-generalized quasi-tree if
there exists a subset Vk ⊂ V(G) of cardinality k such that the graph G − Vk is a tree but for any subset Vk− 1 ⊂ V(G) of cardinality
k − 1, the graph G − Vk− 1 is not a tree. In this work, we find a sharp lower and some sharp upper bounds for this new sum-
connectivity index.

1. Introduction

In this article, all the graphs are considered as simple,
connected, finite, and undirected. Let us denote a graph by
G � (V(G), E(G)), where V(G) and E(G) represent the sets
of vertices and edges, respectively. Degree of vertex u is the
number of adjacent vertices to u and is denoted by d(u), and
the set of vertices adjacent to the vertex u is denoted by
N(u). &e length of a shortest path between two vertices, say
u and v, is termed as the distance between these vertices and
is denoted by d(u, v). &e maximum distance from vertex u

to any other vertex is known as the eccentricity of the vertex
u and is denoted by ε(u) and defined as
ε(u) � maxv∈V(G)d(u, v). &e diameter of a graph G is
maxu∈V(G) � maxu,v∈V(G), and its notation is diam(G); fur-
ther, see [1–3].

Let Kn be a complete graph of order n. &e complete
bipartite graph K1,n− 1, which is also denoted as Sn, represents
a star of order n, while Pn is the path of order n and size n − 1.
A double star of order a + b is denoted by Sa,b. &e graph Sa,b

is a tree which consists of two adjacent vertices say u and v,
such that u is adjacent to b − 1 pendent vertices and v is
adjacent to a − 1 pendent vertices. Alternatively, the double
star Sa,b can be obtained by joining the centers of two stars
Sa+1 and Sb+1. If for a tree T the diameter of T is 2, then T is a
star graph, and if the diameter of T is 3, then T is a double
star. For two graphs G and H whose vertex sets are disjoint,
G + H denotes its join graph having the vertex set V(G +

H) � V(G)∪V(H) and E(G + H) � E(G)∪E(H)∪
uv: u ∈ V(G), v ∈ V(H){ } is its edge set.

If there exists a vertex v in a graph G such that the graph
G − V is a tree, then the graph G is called a quasi-tree and the
vertex v is called a quasi-vertex. Obviously, every tree is a
quasi-tree, as by deletion of any vertex in a tree, the resulting
graph is again a tree. Furthermore, a k-generalized quasi-tree
is a graph in which there exists a subset Vk ⊂ V(G) with
cardinality k such that the graph G − Vk is a tree but for any
subset Vk− 1 ⊂ V(G) with cardinality k − 1, the graph G −

Vk− 1 is not a tree. &e vertices in the set Vk are called
k-quasi-vertices or quasi-vertices. We need at least k + 2
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vertices for sketching k-generalized quasi-tree. Any tree is a
quasi-tree which is trivial. Let the class of k-generalized
quasi-trees of order n be denoted by Tk(n).

In this modern world, the network structure plays the
basic role in the field of chemistry, technology, and com-
munication. Every network is distinguished by means of
numerical quantity under some parameter. Such roles are
called topological indices. A numerical quantity that is in-
variant under graph automorphisms is termed as the to-
pological index. &ere are many topological indices such as
degree-based, distance-based, and counting-related topo-
logical indices. In all the said indices, degree-based topo-
logical indices are one of the basic indices and play the key
role in chemistry and chemical graph theory. &e mostly
studied topological indices are the atom-bond (ABC) con-
nectivity index, the harmonic (H) index, the Zagreb index,
and various others; further we refer to [4–10].

On the basis of the previously defined indices, we in-
troduce a new sum-connectivity index called a general
power sum-connectivity index defined such that

Yα(G) � 􏽘
uv∈E(G)

d(u)
d(u)

+ d(v)
d(v)

􏼐 􏼑
α
, α≥ 1. (1)

2. Main Work

&is section is devoted to the main results which we proved
for the new introduced sum-connectivity index for some
classes of extremal graphs.&e following are the main results
in this regard.

Lemma 1. For any two vertices u and v ∈ V(G), where
uv ∉ E(G), then

Yα(G)<Yα(G + uv). (2)

Theorem 1. 2e general power sum-connectivity index
Yα(G) is minimum for a graph G if G � Pn, for n≥ 4 and
α≥ 1.

Proof. Let G be the graph of order n. To prove that Yα(G) is
minimum for G � Pn, where n≥ 4, we consider two
cases. □

Case 1. When n � 4, in this case, the graph is isomorphic
either to a path P4 or to a star S4, see Figure 1.

In this case, we have

Yα P4( 􏼁 � 2 · 5α + 8α, (3)

and similarly,

Yα S4( 􏼁 � 3 · (28)
α
. (4)

It is obvious that Yα(P4)<Yα(S4). Equality holds if
α � 0. &is can be easily analyzed through the following plot
illustrated on Figure 2.

Case 2. When n≥ 5, in this case, suppose on contrary that
Ya(Pn) is not minimum. &en, there exists a graph other

than Pn in which at least one vertex, say y, has degree greater
than 2, i.e., such that dG(y)≥ 3. We have to discuss the
following subcases .

Subcase B1: when y is adjacent to two leaves. A graph
for this case is shown in Figure 3.
Here, we have

Yα(G) � 5α +(n − 5) · 8α +(31)
α

+ 2 · (28)
α
, (5)

and for Pn, we have

Yα Pn( 􏼁 � 2 · 5α +(n − 3) · 8α. (6)

From (5) and (6), this is obvious that Yα(G)>Yα(Pn)

which can be determined through the following plots
illustrated on Figure 4 for various values of n.
&is is a contradiction to the minimality of Yα(G).
Hence, in this case, Yα(Pn) is minimal.
Subcase B2: when y is adjacent to only one leaf. In this
case, the graph is illustrated in Figure 5.
Here, Yα(G) is given below:

Yα(G) � 1 + 22􏼐 􏼑
α

+ 22 + 33􏼐 􏼑
α

+ 22 + 33􏼐 􏼑
α

+ 1 + 33􏼐 􏼑
α

+ 22 + 22􏼐 􏼑
α

+ 22 + 22􏼐 􏼑
α

+ · · · + 1 + 22􏼐 􏼑
α

� 2 · 5α + 2 · (31)
α

+(n − 6) · 8α + 28α.

(7)

Obviously, from (6) and (7), we have Yα(G)>Yα(Pn)

which can be observed through the following plots, see
Figure 6, for various values of n, which is a contra-
diction to the minimality of Yα(G).

Figure 1: A path P4 and a star S4.
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Figure 2: Plot for Yα(P4) and Yα(S4).
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Lemma 2. Let G ∈ Tk(n), where Tk(n) is the class of
k-generalized quasi-trees. If Yα(G) is maximum and w is a
quasi-vertex of G, then dG(w) � n − 1.

Proof. Consider that G is a k-generalized quasi-tree from
Tk(n), where Yα(G) is maximum for G and let w be a quasi-
vertex of G. We show that dG(w) � n − 1. On contrary,
suppose that Yα(G) is maximum for G and dG(w)< n − 1.
&en, there is a vertex f which is not adjacent to w. &en, by
means of Lemma 1, we have

Yα(G)<Yα(G + wf), (8)

which is a contradiction to the maximality of Yα(G). Hence,
we are forced to accept that dG(w) � n − 1.

Roughly speaking that, for α≥ 1, we define the following
function:

F z1, z2, z3, . . . , zj􏼐 􏼑 � z
α·z1
1 + z

α·z2
2 + z

α·z3
3 + · · · + z

α·zj

j ,

(9)

which is defined for (z1, z2, z3, . . . , zj) ∈ Hj,q, where Hj,q is
a set containing vectors (z1, z2, z3, . . . , zj) having coordi-
nates from positive integers and satisfying the following:

z1 ≥ z2 ≥ z3 ≥ · · · ≥ zj ≥ 1,

q � 􏽘

j

i�1
zi.

(10)

Further, for 1≤ i< k≤ j and zk ≥ 2, we replace the
components of (z1, z2, . . . , zj) by (z1, z2, . . . , zi +

1, . . . , zk − 1, . . . , zj), rearranging the replaced components
in decreasing order as

z
∗
1 , z
∗
2 , z
∗
3 , . . . , z

∗
j􏼐 􏼑. (11)

Let (z∗1 , z∗2 , z∗3 , . . . , z∗j ) � z∗; then, obviously z∗ ∈ Hj,q.
Let this transformation be denoted by A1. Next, we have

F z
∗

( 􏼁 − F z1( 􏼁 � zi + 1( 􏼁
α· zi+1( ) + zk − 1( 􏼁

α· zk− 1( ) − z
α·zi

i − z
α·zk

k
.

(12)

We define another function:

ψ(z) � z
α·z

− (1 + z)
α·(1+z)

. (13)

&is function is a strictly decreasing function for z> 0
and α≥ 1. &us, if i< k, then zi ≥ zk which implies that

y

Figure 3: A graph G with a vertex y adjacent to two leaves.
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Figure 4: Plot for Yα(G) and Yα(Pn) for various values of n.
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zk − 1< zi, and thus, ψ(zk − 1)>ψ(zi). &is is due the de-
creasing function. We can also obtain that

zk − 1( 􏼁
α· zk− 1( ) − z

α·zk

k > z
α·zi

i − 1 + zi( 􏼁
α· 1+zi( ),

zk − 1( 􏼁
α· zk− 1( ) + 1 + zi( 􏼁

α· 1+zi( ) > z
α·zi

i + z
α·zk

k .

(14)

We obtained that F(z∗) − F(z1, z2, . . . , zj)> 0. We can
easily deduce the following result. □

Lemma 3. If there is an 2≤ k≤ j having xk ≥ 2, then
F(z1, z2, . . . , zj) is strictly decreasing on Hj,q having α≥ 1.

In other words, we observe that the function is strictly
increased if we push one unity to the left in the degree sequence
and arrange this new sequence in decreasing order using the
A1 transformation.

Theorem 2. Let T be a tree in Tn, whereTn is the class of trees
of order n. 2en, Yα(T) is maximum if T is the star graph Sn.

Proof. Let T ∈ Tn, such that Yα(T) is maximum.We need to
prove that T � Sn. For this proof, suppose on contrary that
Yα(T) is maximum and T is neither a star Sn nor a double
star. &en, there is a vertex in T, say t, which is adjacent to
two vertices x and y, such that dT(x) � a, dT(y) � b, and
dT(t) � c, where a and b≥ 2. Without loss of generality, let
a≥ b, see Figure 7.

Furthermore, for the neighbors of x and y, we have
N(x) − t � x1, x2, . . . , xa− 1􏼈 􏼉 and N(y) − t � y1,􏼈

y2, . . . , yb− 1}. We can construct another tree T∗ from T in
such a way that we delete the edges yy1, yy2, . . . , yyb− 1 and
we insert new edges xy1, xy2, . . . , xyb− 1 as in [11]. Now, we
have the following:

Yα T
∗

( 􏼁 � 􏽘
a− 1

i�1
(a + b − 1)

a+b− 1
+ dT∗ xi( 􏼁

dT∗ xi( )􏼒 􏼓
α

+ 􏽘

b− 1

i�1
(a + b − 1)

a+b− 1
+ dT∗ yi( 􏼁

dT∗ yi( )􏼒 􏼓
α

+ (a + b − 1)
a+b− 1

+ c
c

􏼐 􏼑
α

+ c
c

+ 1( 􏼁
α
.

(15)

Similarly, for T, we have

Yα(T) � 􏽘
a− 1

i�1
a + dT xi( 􏼁

dT xi( )􏼒 􏼓
α

+ 􏽘
b− 1

i�1
b + dT yi( 􏼁

dT yi( )􏼒 􏼓
α

+ a
a

+ c
c

( 􏼁
α

+ c
c

+ b
b

􏼐 􏼑
α
.

(16)

y

Figure 5: A graph G with a vertex y adjacent to one leaf.
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Figure 6: Plot for Yα(G) and Yα(Pn) for various values of n.
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Next, we get the following:

Yα T
∗

( 􏼁 − Yα(T)> (a + b − 1)
a+b− 1

+ c
c

􏼐 􏼑
α

+ c
c

+ 1( 􏼁
α

− a
a

+ c
c

( 􏼁
α

− c
c

+ b
b

􏼐 􏼑
α
> 0.

(17)

As a consequence of Lemma 3, for j � 2 and z1 � aa + cc,
z2 � cc + bb, q � aa + bb + 2 · cc, and applying the transfor-
mation A1 several times, we get a contradiction to the
maximality of Yα(T). Now, we show that, for a and b≥ 2 and
a + b � n, we have the following:

Yα Sn( 􏼁>Yα Sa,b􏼐 􏼑. (18)

For Sn and Sa,b, we obtain

Yα Sn( 􏼁 � (n − 1) (n − 1)
n− 1

+ 1􏼐 􏼑
α
,

Yα Sa,b􏼐 􏼑 � (a − 1) (a − 1)
a− 1

+ 1􏼐 􏼑
α

+(b − 1) (b − 1)
b− 1

+ 1􏼐 􏼑
α

+ a
a

+ b
b

􏼐 􏼑
α
.

(19)

&eir difference holds

Yα Sn( 􏼁 − Yα Sa,b􏼐 􏼑 � (n − 1) (n − 1)
n− 1

+ 1􏼐 􏼑
α

− (a − 1) (a − 1)
a− 1

+ 1􏼐 􏼑
α

− (b − 1) (b − 1)
b− 1

+ 1􏼐 􏼑
α

− a
a

+ b
b

􏼐 􏼑
α
> 0.

(20)

&e reason of the above last inequality can be easily
determined as n − 1> a and n − 1> b which implies that
(n − 1)n− 1 > (a − 1)a− 1 and (n − 1)n− 1 > (b − 1)b− 1. &is
further implies that (n − 1)n− 1 + 1> (a − 1)a− 1 + 1 and
(n − 1)n− 1 + 1> (b − 1)b− 1 + 1 where α≥ 1. Hence,
Yα(Sn)>Yα(Sa,b). &is completes the proof.

In a graphG, if the weight of every vertex is fixed, let such
weight be r≥ 1; then, we define

Yα,r(G) � 􏽘
uv∈E(G)

d(u)
d(u)

+ d(v)
d(v)

+ 2r􏼐 􏼑
α
. (21)
□

Theorem 3. For any α≥ 1 and r≥ 1, the unique tree of order
n having maximum value of Yα,r(G) is Sn.

Proof. On contrary base, let T be a tree having maximum
value of Yα,r(G), where T is neither a star nor a double star
say Sa,b. &en, diam(T) is greater or equal to 4.&en, there is

a vertex in T, say t, that is adjacent to two vertices say x and
y, such that dT(x) � a, dT(y) � b, and dT(t) � c without
loss of generality let a and b≥ 2. Such a tree is shown in
Figure 7 while considering that every vertex has the fixed
weight. Furthermore, for x and y, we can have that N(x) −

t � x1, x2, . . . , xa− 1􏼈 􏼉 and N(y) − t � y1, y2, . . . , yb− 1􏼈 􏼉. We
can easily construct another tree T∗ from T by eliminating
the edges yy1, yy2, . . . , yyb− 1 and adding new edges
xy1, xy2, . . . , xyb− 1; for this, we refer [11]. For our proof, we
proceed as follows:

Yα,r T
∗

( 􏼁 � 􏽘
a− 1

i�1
(a + b − 1)

a+b− 1
+ dT∗ xi( 􏼁

dT∗ xi( ) + 2r􏼒 􏼓
α

+ 􏽘
b− 1

i�1
(a + b − 1)

a+b− 1
+ dT∗ yi( 􏼁

dT∗ yi( ) + 2r􏼒 􏼓
α

+ (a + b − 1)
a+b− 1

+ c
c

+ 2r􏼐 􏼑
α

+ c
c

+ 1 + 2r( 􏼁
α
.

(22)

On similar way for T, we have

Yα,r(T) � 􏽘
a− 1

i�1
a

a
+ dT xi( 􏼁

dT xi( ) + 2r􏼒 􏼓
α

+ 􏽘
b− 1

i�1
b

b
+ dT yi( 􏼁

dT yi( ) + 2r􏼒 􏼓
α

+ a
a

+ c
c

+ 2r( 􏼁
α

+ c
c

+ b
b

+ 2r􏼐 􏼑
α
.

(23)

As in &eorem 2, we can easily show that there is a
contradiction to the maximality of Yα,r(G), where G � T.
Also, the following holds:

Yα,r Sn( 􏼁 − Yα,r Sa,b􏼐 􏼑 � (n − 1) (n − 1)
n− 1

+ 1 + 2r􏼐 􏼑
α

− (a − 1) (a − 1)
a− 1

+ 1 + 2r􏼐 􏼑
α

− (b − 1) (b − 1)
b− 1

+ 1 + 2r􏼐 􏼑
α

− a
a

+ b
b

+ 2r􏼐 􏼑
α
> 0.

(24)

&e last inequality can easily be determined as n − 1> a

and n − 1> b which implies that (n − 1)n− 1 > (a − 1)a− 1,
(n − 1)n− 1 > (b − 1)b− 1. &is further implies that
(n − 1)n− 1 + 1 + 2r> (a − 1)a− 1 + 1 + 2r and (n − 1)n− 1 +

1 + 2r> (b − 1)b− 1 + 1 + 2r, where α≥ 1. Hence,
Yα,r(Sn)>Yα,r(Sa,b). □

Theorem 4. For k≥ 1, let G ∈ Tk(n). If Yα(G) is minimum
and w be a quasi-vertex of G, then d(w) � 2.

Proof. Let G ∈ Tk(n) such that Yα(G) is minimum.We have
to show that d(w) � 2 where w is quasi-vertex. On contrary
base, suppose that d(w) � 1. In this case, w cannot be quasi-
vertex because w will be pendent vertex and w will make no
difference in the formation of quasi-tree. On the contrary, let
d(w)≥ 2, and this shows that w is adjacent to more than two

x t y

Figure 7: A tree T.
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vertices in G. &erefore, for elimination of any edge
w d ∈ E(G), we have Yα(G)>Yα(G − w d) where
Yα(G − w d) ∈ Tk(n). &is is contradiction to the mini-
mality of Yα(G). &is contradiction is due to our wrong
supposition that d(w)≥ 2. Hence, in both cases, there is
contradiction due to which we are forced to accept that
d(w) � 2.

Theorem 5. Let G ∈ Tk(n), where k≥ 1 and n≥ 5. α≥ 1
holds

Yα(G)≤ 2α− 1
k(k + 1)(n − 1)

α·(n− 1)

+(k + 1)(n − k − 1) (n − 1)
(n− 1)

+(k + 1)
(k+1)

􏼐 􏼑
α
,

(25)

where the equality is satisfied if and only if G � Kk + Sn− k.

Proof. Let G ∈ Tk(n) and α≥ 1 be such that Yα(G) is
maximum as possible. Let the set of quasi-vertex be
represented by Vk ⊂ V(G). By means of Lemmas 1 and 2,
we have G � Kk + Tn− k, where Tn− k is a tree of order n − k.
We have to prove that Tn− k � Sn− k. For this, we have, from
[4],

Yα(G) � Yα Kk + Tn− k( 􏼁 � 􏽘

uv∈E Kk( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

+ 􏽘

u∈V Kk( )v∈V Tn− k( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

+ 􏽘

uv∈E Tn− k( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α
.

(26)

We calculate each sum separately:

􏽘

uv∈E Kk( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

� 2α− 1
k(k − 1) · (n − 1)

α·(n− 1)
.

(27)

Similarly, the middle sum in (26) can be obtained as

􏽘

u∈V Kk( )
v∈V Tn− k( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

� k 􏽘

v∈V Tn− k( )

(n − 1)
n− 1

+ dTn− k
(v) + k􏼐 􏼑

dTn− k
(v)+k

􏼒 􏼓
α
.

(28)

Using&eorem 2, the sum in (28) attains its maximum if
Tn− k � Sn− k. For this, the above last sum becomes

􏽘

u∈V Kk( )v∈V Sn− k( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

� k(n − k − 1) (n − 1)
(n− 1)

+(k + 1)
(k+1)

􏼐 􏼑
α

+ 2αk(n − 1)
α(n− 1)

.

(29)

Similarly, the last sum in (26) is calculated as follows:

􏽘

uv∈E Tn− k( )

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

� 􏽘

uv∈E Tn− k( )

dTn− k
(u) + k􏼐 􏼑

dTn− k(u)+k􏼐 􏼑
􏼠

+ dTn− k
(v) + k􏼐 􏼑

dTn− k
(v)+k􏼐 􏼑

􏼡

α

.

(30)

Bymeans of&eorem 2, the above last sumwill obtain its
maximum if Tn− k � Sn− k. For this, we have the following:

􏽘

uv∈E Sn− k( )

dSn− k
(u) + k􏼐 􏼑

dSn− k(u)+k􏼐 􏼑
+ dSn− k

(v) + k􏼐 􏼑
dSn− k

(v)+k􏼐 􏼑
􏼠 􏼡

α

� (n − k − 1) (1 + k)
(1+k)

+(n − 1)
(n− 1)

􏼐 􏼑
α
.

(31)

Combining (27), (29), and (31), we have Tn− k � Sn− k, and
consequently, for G � Kk + Sn− k, we get the following:

Yα(G) � 2α− 1
k(k + 1)(n − 1)

α·(n− 1)

+(k + 1)(n − k − 1) (n − 1)
(n− 1)

+(k + 1)
(k+1)

􏼐 􏼑
α
.

(32)

Theorem 6. Let G ∈ Tk(n) and α≥ 1.

(i) If k � 1 and n≥ 3, then Yα(G)≥ n · 8α. 2e equality
Yα(G) � n · 8α holds if and only if G � Cn, where Cn

is a cycle of order n.
(ii) If k � 2 and n � 4, then Yα(G)≥ 54α + 4 · 31α. If k �

2 and n≥ 5, then Yα(G)≥ 6 · 31α + (n − 5) · 8α.
Furthermore, the equality holds if and only if G

consists of two cycles of length three having a common
edge for n � 4 or two cycles with a common path
having length at least two for n≥ 5 or two cycles joined
by a path of length at least two for n≥ 7.

Proof. Suppose that G ∈ Tk(n), where Yα(G) is as small as
possible. Let the set of quasi-vertices be Vk; then, by the
definition of a k-generalized quasi-tree, G − Vk is a tree
having order n − k. By &eorem 5, we have d(s) � 2 for all
s ∈ Vk. Furthermore, for every vertex s in Vk, s is adjacent to
two vertices of V − Vk. From this discussion, we deduce that
G is a connected graph with n + k − 1 edges. It means that G

has internal k-cycles. First of all, we have to show that G has
no pendent vertex. For this, suppose on contrary base that G

has a pendent vertex x. Let there be another vertex z where
there is a path between x and z, and let also z belong to a
cycle, say C, in G. Let this path be x, v, . . . , z. We denote the
vertices adjacent to v different from x by x1, x2, . . . , xt, and
let their degrees be d(xi) � di, 1≤ i≤ t. &en, we have
dG(v) � t + 1. Obviously, t≥ 1 and at least one degree di ≥ 2.
We can define a new k-cyclic graph having order n, by
deleting the edge between x and v and then arranging x

between two consecutive vertices, say g and h, on the cycleC.

6 Complexity



Let dG(g) � a and dG(h) � b; clearly, a and b≥ 2. &en, in
the new graph, say G∗, the degree of v is t, dG∗

(g) � a,
dG∗

(h) � b, and dG∗
(xi) � di for every 1≤ i≤ t. We can write

the difference of Yα(G) − Yα(G∗) as

Yα(G) − Yα G∗( 􏼁 � 􏽘
uv∈E(G)

dG(u)
dG(u)

+ dG(v)
dG(v)

􏼐 􏼑
α

− 􏽘

ef∈E G∗( )

dG∗
(e)

dG∗(e)
+ dG∗

(f)
dG∗(f)

􏼐 􏼑
α

� 􏽘
t

i�1
(t + 1)

(t+1)
+ d

di

i􏼐 􏼑
α

− t
t

+ d
di

i􏼐 􏼑
α

􏼔 􏼕

+ (t + 1)
(t+1)

+ 1􏼐 􏼑
α

+ a
a

+ b
b

􏼐 􏼑
α

− a
a

+ 22􏼐 􏼑
α

− b
b

+ 22􏼐 􏼑
α
.

(33)

For t≥ 2, we have the following:

􏽘

t

i�1
(t + 1)

(t+1)
+ d

di

i􏼐 􏼑
α

− t
t

+ d
di

i􏼐 􏼑
α

􏼔 􏼕> 0. (34)

Also, ((t + 1)(t+1) + 1)α ≥ 28α; by using Lemma 3, we
have (((t + 1)(t+1) + 1)α+ (aa + bb))α − (aa + 22)α −

(bb + 22)α > 0, which shows that Yα(G) − Yα(G∗)> 0. &is is
a contradiction to the minimality of G, that is, G∗ is another
k-cyclic graph having Yα(G∗) smaller than that of Yα(G).

Now, for t � 1, it implies that v is a pendent vertex of
G∗; by doing the same process for v instead of x, we will

observe that there is a pendent vertex v that is adjacent to
z on cycle C; then, d(z)≥ 3 in this case. We will again get
a contradiction, and this contradiction is due to our
wrong supposition; hence, we are forced to accept that
d(s)≠ 1.

Next, we have to suppose that, for all s ∈ V(G), d(s)≥ 2 .

Figure 8: A graph for the degree sequence d∗ and L � 1.

Figure 9: A graph for the degree sequence d∗ and L � 2.

Figure 10: Graph for degree sequence d∗∗.
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Figure 11: Plot for A − B, and it shows that A>B.
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Figure 12: Plot for C − A, and it shows that C>A.
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(i) &en, for k � 1, this implies that G is a connected
graph having one cycle and n edges. Obviously,
G � Cn; thus, each vertex of G has degree 2, and then,

Yα(G) � n · 8α. (35)

Otherwise, Yα(G) will be greater than that of n.8α.
(ii) For k � 2, it shows that G is a 2-cyclic graph and has

n + 1 edges. Now, the sum of degrees of G is given in
the following:

􏽘
v∈G

d(v) � 2 + 2n. (36)

Let us denote these degree sequences by d∗ or d∗∗,
that is,

d
∗
(G) � [3, 3, 2, 2, . . . , 2], (37)

or

d
∗∗

(G) � [4, 2, 2, . . . , 2]. (38)

If the degree sequence of G is d∗, then

(a) &e graph G contains a common path of length
L≥ 1, or

(b) &e graph G has two cycles joined by a path of
length L≥ 1

In these cases, if L � 1, then such graph is shown in
Figure 8.
For this, we have

Yα(G) � 54α + 4 · 31α +(n − 4) · 8α � A. (39)

If L � 2, then we have a graph illustrated in Figure 9.
For this graph, we obtain

Yα(G) � 6 · 31α +(n − 5) · 8α � B. (40)

If degree sequence of G is d∗∗, then in this case G has
two cycles having a vertex in common, as shown in
Figure 10.
For this graph, we get

Yα(G) � 4 · 260α +(n − 3) · 8α � C. (41)

From A, B, and C, we have A>B which is equivalent
to 8α + 54α > 2 · 31α and is obvious which can be
easily determined through Figure 11. Now, C>A

which implies that C − A is positive. &is can be seen
in Figure 12. □
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