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In this study, multidimensional feature extraction is performed on the U-language recordings of the test takers, and these features
are evaluated separately, with five categories of features: pronunciation, fluency, vocabulary, grammar, and semantics. A deep
neural network model is constructed to model the feature values to obtain the final score. Based on the previous research, this
study uses a deep neural network training model instead of linear regression to improve the correlation between model score and
expert score. 'e method of using word frequency for semantic scoring is replaced by the LDA topic model for semantic analysis,
which eliminates the need for experts to manually label keywords before scoring and truly automates the critique. Also, this paper
introduces text cleaning after speech recognition and deep learning-based speech noise reduction technology in the scoring
model, which improves the accuracy of speech recognition and the overall accuracy of the scoring model. Also, innovative
applications and improvements are made to key technologies, and the latest technical solutions are integrated and improved. A
new open oral grading model is proposed and implemented, and innovations are made in the method of speech feature extraction
to improve the dimensionality of open oral grading.

1. Introduction

In recent years, computer-assisted teaching systems have
become one of the hot research topics in the fields of
computer science and education [1]. Particularly, in large-
scale language examinations, they have begun to gradually
replace teachers in marking and have become a major
change in the education sector, which we call Computer-
Assisted Language Learning (CALL) systems [2]. Many
computer-assisted assessment systems have been used on a
large scale in actual teaching and examinations, such as
English composition marking systems and computer
program marking systems [3]. Such systems are more
accurate in grading, and, most importantly, they save
human resources and improve efficiency [4]. However,
there are still many subjects and question types that are not
yet automated, and some subjects, such as oral English, can
only have part of their questions marked automatically [5].
'ere are many oral grading systems for reading and re-
citing, but there are few grading systems for open-ended

oral questions, such as quizzes, repetitions, and individual
responses. Ordinate and Speechwriter scoring systems are
recognized as typical examples of automated scoring;
however, they do not meet the need for open-ended
speaking questions [6]. In recent years, with the devel-
opment of speech recognition technology and the maturity
of essay marking systems, it is expected that technically
speaking the automatic marking of open-ended speaking
questions can be overcome and reaches a practical level [7].
'ere are many real-life scenarios in which it is necessary to
evaluate a speaker’s oral expression ability, such as Man-
darin exams, oral training, language teaching evaluations,
and radio presenter exams [8]. Currently, these scenarios
are still evaluated by manual scoring, such as averaging,
voting, or one-vote voting, which are too subjective, often
lack fairness, and do not give objective feedback to the
speaker [9]. 'e overall scoring is inefficient; for language
learners, there are many hidden problems with an oral
expression that are often not detected in time, thus affecting
the efficiency of language learning [10].
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Wason et al. designed an automatic speech evaluation
model based on the distribution of spectral density values in
the time domain and the perceptual domain, and the cor-
relation between the score of the improved automatic speech
evaluation model and the subjective manual score reached
0.824 [11]. Heb-Umbach et al. chose a simple deep learning
method to optimize the automatic speech evaluation model
for nonnative speakers of [12]. DNN model scores higher
correlations than the traditional speech model GMM, and
the superiority of the deep learning method is effectively
verified in this model [13]. In the 2018 Spoken CALL Shared
Task, the participants proposed a better method to build an
acoustic model using DNN-HMM and then designed a score
mappingmodule using specific rules and feature engineering
methods [14]. In the same year, Anastassia Loukina con-
ducted an automated scoring experiment using seven dif-
ferent regression models, including a random forest, GBDT,
and MLP [15]. 'rough experimental validation with dif-
ferent models, the authors found that, for the automatic
speech evaluation task, when the training corpus is large
enough, the results of training the models on different
training sets and testing them on a unified test set are almost
identical [16]. In the same year, Vishwakarma et al. proposed
a method for the automatic assessment of the fluency
module of spoken English by decomposing the low-rank
matrix of correlated penalty terms to remove the subjective
interfering factors from the data and improve the perfor-
mance of the machine scoring of the fluency assessment
module [17]. Massa implements an implicit semantic
analysis (LSA) system with the core idea of using student-
response to texts rather than generic texts from other sources
for constructing the LSAmodel, with some of the texts being
manually marked as input to the model [18]. 'e key issues
for the model are the appropriate selection of specific texts to
be manually marked and the overall measurement of mark-
up effects [19]. 'e quality of text mark-up is measured by
marking up the text until the effect reaches a threshold [20].
In terms of text selection, there are three options: random
selection, clustering, or selecting relatively similar text for
the tagged data. 'e advantage of Klein’s method is that the
text that needs to be manually tagged can be selected au-
tomatically with a minimum of effort. 'e weaknesses of the
method are evident in the evaluation of its efficiency, which
can only be achieved after the manual completion of the
complete annotation of student responses. Another problem
is that the parameters in the method are independent; the
semantic space dimension and the similarity threshold
parameter must be calculated simultaneously.

In this paper, we study audio processing, speech rec-
ognition, automatic essay marking, and deep learning
techniques to design and implement a multifeatured intel-
ligent automatic marking model based on the data generated
from the language training system of Beijing University of
Posts and Telecommunications. 'e model is designed to
solve the problem of automatic marking of open-ended oral
English questions and to reduce teachers’ marking pressure.
In this paper, a series of methods will be used to improve the
accuracy of the model at various stages of scoring. Before
extracting features from speech files, it is necessary to reduce

the noise and cut silent fragments of speech to improve the
accuracy of speech recognition. In this paper, a malefactor is
a malefactor of existing noise reduction techniques, com-
bining traditional noise reduction algorithms with deep
learning. It applies to speech noise reduction for automatic
grading of speaking language. Also, this paper will use an
open, freely available speech recognition engine for speech
transcription. 'e recognition rate of current speech rec-
ognition technology does not reach 100%. Furthermore,
grammar and vocabulary errors in the recognized text due to
pronunciation problems or fluency problems should be
excluded when grading the grammar and vocabulary of
students’ oral answers. 'erefore, to score the grammar and
vocabulary of the speech-recognized text more accurately, it
is necessary to clean the recognized text to a certain extent to
maximize the actual expression of the students.'emethods
used in this paper are spelling correction, removal of on-
omatopoeia, and removal of consecutive repetitions. In this
paper, algorithms that implement these functions are in-
vestigated to improve scoring accuracy.

2. Multifeature Fusion Speaking Test
Detection Algorithm

2.1. Improved Multifeature Fusion Algorithm. 'e produc-
tion of human speech is a complex process that the body can
execute. It first receives signals from the brain, then extracts
gas from the lungs to vibrate the vocal cords, and then allows
the laryngeal muscles to express themselves. 'e charac-
teristics of each person’s vocal tract result in a different
speech signal, and this information is used to distinguish
between speakers. We characterize these differences by the
acoustic characteristics of speech. 'erefore, it is important
to select the acoustic features appropriately in a speaker
recognition system. If the selected acoustic features do not
adequately characterize the speaker, even a deep learning
algorithm cannot achieve a good performance [21]. It has
been shown that when the test speech is long enough, the
amount of information and discrimination of a single
acoustic feature is sufficient to complete the speaker rec-
ognition task. 'e MFCC feature parameters have been
applied to more than 90% of current speaker recognition
systems. However, in short speech speaker recognition,
when only the MFCC feature parameters are used for
modeling, the speaker’s personality information cannot be
fully expressed, which makes it difficult to obtain good
recognition results. But increased studies have shown that
the brain cannot efficiently digest information from many
different sources at the same time. As the human resources
manual explains, this method involves assigning a certain
time of day to focus on a specific task. You can even put your
schedule on your calendar to let other employees know that
you are busy. Before you work, this is the key to eliminate all
distractions, so you can concentrate on the work in front of
you. You can also schedule time blocks to match the natural
changes in your energy levels throughout the day. Con-
sidering that different features can express the speaker’s
personality information from different perspectives, multi-
feature fusion can represent more personality information
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about the speaker, which is feasible in testing short speech
conditions. However, the simplest method of multifeature
fusion is to directly connectmultiple acoustic features extracted
from each frame of the speech signal into a large vector of high-
dimensional features, which are not desirable in practice. Since
different features are not orthogonal to each other, the direct
connection will affect each other, and the direct connection of
different features is a high-dimensional spatial vector; in-
creasing the dimensionalitymeans increasing the complexity of
the system. Also, there is a certain amount of repetition be-
tween feature components, which generates redundant in-
formation.'erefore, the high-dimensional space vector can be
mapped to the low-dimensional space by a dimensionality
reduction algorithm, and the parts that are more distin-
guishable between speakers can be selected [22].

According to the human ear’s auditory perception
mechanism, the human ear perceives speech signals at
different frequencies with different perceptual abilities.
When the frequency of the speech signal is less than 1 kHz,
the frequency and perceptual characteristics of the speech
signal are linear; when the frequency is higher than 1 kHz,
the frequency and perceptual characteristics of the speech
signal are logarithmic. 'e higher the frequency of the
speech signals, the less perceptible it is to the human ear.'e
relationship between the actual frequency f and Mel’s fre-
quency can be expressed by

Mel(f) � 259778g 1 +
f

700
 

2

. (1)

Figure 1 shows the extraction flow of MFCC feature
parameters.

'e input speech signal s(n) is preprocessed to generate
the time domain signal x(n) (length of the signal sequence
N� 256), and then each frame of the speech signal is pro-
cessed by Fast Fourier Transform or Discrete Fourier
Transform to obtain the speech linear spectrum X(k), which
can be expressed as

X(k) � 
M

i�0
x(n)e

− j(2λ/M)Mel(f)
, (0≤ n, k≤M). (2)

'e linear spectrum X(k) is input into the Mel filter bank
and filtered to generate the Mel spectrum, and then its low
energy is taken to generate the corresponding log spectrum S(m).

'e Mel filter set is a set of triangular band-pass filtersHm,
where M represents the number of filters, usually 20∼28. 'e
transfer function of the bandpass filter can be expressed as

Hm(k) �

0, (kpf(m − 2)),

k − f(m − 2)

f(m) + f(m − 1)
, (f(m − 2)≤ k≤f(m)),

k + f(m − 2)

f(m) − f(m − 1)
, (f(m)≤ k≤f(m + 1)),

1, (kff(m − 2)).
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(3)

'e reason for taking the logarithm of the Mel energy
spectrum is to promote the performance of the speaker
recognition system. 'e transfer function from the linear
spectrum of speech X(k) to the logarithmic spectrum S(m) is
as follows:

S(m) � log 
M

k�0
|X(k)|

2⎛⎝ ⎞⎠Hm(k). (4)

'e nth dimensional edge components C(n) of the
MFCC edge parameters are expressed by converting the
logarithmic spectrum S(m) to the MFCC edge parameters
using the discrete cosine transform (DCT) as follows:

C(n) � 
M

k�0
|X(k)|

2⎛⎝ ⎞⎠Hm(k)cos
n(m + 2/3)

M
. (5)

'e time-domain impulse response function of the
Gammatone filter is an analogy function that needs to be
discredited to facilitate computer processing, and the Lap-
lace transform of (5) is

Gi(s) �
3
4

(m − 1)!

(s + b − jw)
m +

(m + 1)!

(s − b + jw)
m . (6)

'is is then converted to the Z domain of the Z
transform and finally inverted to obtain the discrete impulse
response of the Gammatone filter with the following
expression:

Z �
1

2λw
 Z(z)Z

n− 1dz. (7)

'e input speech signal and output speech signal are
converted to obtain the output of a Gammatone filter.

As shown in Figure 2, an important advantage of cyclic
neural networks is that they have a memory function for
historical information, making them well suited for mod-
eling temporal sequencing problems. However, as the length
of the time series increases, the number of hidden layers
increases as well [23]. In the training process of the network,
when calculating the gradient, the weighting parameters
recur in the reverse propagation direction layer by layer,
leading to a geometric increase or decay of the gradient,
which results in a gradient explosion or gradient disap-
pearance. In addition to improving the accuracy of speech
recognition, it can also increase the rate of speech recog-
nition. Gradient disappearance can make it difficult to train
long-time span with RNNs because the data and eigenvalues
that first entered into the RNN model are replaced by the
eigenvalues of the data entered later. Traditional models
have difficulty in learning the data features and depen-
dencies in a time series if the time between input and as-
sociated output is too long. First, we perform noise
reduction on the audio file and then input the reduced audio
file into the pronunciation scoring module and the speech
recognition module to output the pronunciation score and
the text after speech recognition, respectively. 'e text is
then cleaned and fed into the fluency scoring module,
grammar-vocabulary scoring module, and semantic scoring

Complexity 3



module to obtain the fluency score, grammar score, vocabulary
score, and the semantic score, respectively. Next, these five
values were normalized and used to train our scoring model.
Once the scoring model is trained, we can use the model with
the feature extraction module to score the students’ spoken
language. 'e design of these speech noise reduction, speech
recognition, text cleaning, and feature extraction modules will
be presented separately.'e speaker recognition system can be
roughly divided into two parts: feature extraction and pattern
recognition: how to mix different types of information, how to
extract it, introduce high-level speech signal analysis, and re-
search on enhancing the robustness of voiceprint recognition
and reducing the amount of calculation.

Since the text-related feature scoring in this paper relies
on the accuracy of the text, the accuracy of speech recog-
nition becomes one of the most important indicators before
text scoring. Currently, due to the development of artificial
intelligence and speech recognition technology, the accuracy
of speech recognition has been greatly improved, and there
are many open and free speech recognition platforms
available on the market for our use. 'e recognition effect of
using these speech recognition platforms is often better than
using open-source tools to train our speech recognition
models, as the size of the corpus available for training speech
recognition models in the laboratory is much smaller than
that of the commercial speech recognition corpus. 'e ac-
curacy of the speech recognition engine is directly pro-
portional to the size of the corpus used for training.
'erefore, this paper investigates the major free speech
recognition engines on the market, compares their ease of
use, recognition speed, and recognition accuracy, and selects
themost suitable one for this study, which is used as the basis
for test scoring.

2.2. Spoken English Pronunciation System Design. Fourier
analysis of a sound signal can be used to see how the short-
time frequency of the sound signal changes over time.
Research on the frequency spectrum of sound signals began
long before the development of digital signal processing
(DSP) technology. Some scholars have used a spectrometer
to record and analyze the short-time frequency spectrum of
sound signals. A spectrometer is a device that inputs the
electrical signal of a voice signal into a set of corresponding
filters and, after the output of each filter, records it on paper
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in the order of the frequency of the sound signal. 'e in-
tensity of the sound signal frequency can be determined by
observing the grayscale of the track on the recording paper.
If the grayscale on the recording paper is deep, the signal
frequency is strong, and if it is shallow, the signal frequency
is weak. We rotate the recording paper at a constant speed,
which is equivalent to recording the frequency value of the
sound signal at a different time on the recording paper.
When calculating the gradient, the weight parameters
recurse layer by layer in the reverse propagation direction,
and the gradient gradually becomes smaller. By operating in
the above way periodically, we can get a graph of the sound
signal recorded by the speech spectrometer, which is the
speech spectrum of the sound signal [24]. 'e sound
spectrum is a three-dimensional spectrum, which shows the
change of the frequency of the sound signal with time. 'e
horizontal coordinate of the sound spectrum is about the
change of time, and the vertical coordinate is the axis of the
change of the frequency spectrum with time. 'e frequency
of the sound signal at any onemoment can be represented by
the shades of color at the same moment’s position on the
sound spectrum. Because the spectrogram reflects both the
time domain waveform and the spectral characteristics of the
sound signal on the spectrogram, the spectrogram shows a
large amount of information about the characteristics of the
sound signal, and we can represent the sound signal by the
information contained on the spectrogram [25].

Given these characteristics of the sound spectrogram, we
convert the sound signal into a sound spectrogram by
processing the collected engineering equipment noise signal,
extract the corresponding sound signal features according to
the information contained in the sound spectrogram to
represent more features of the sound signal, convert the one-
dimensional sound signal into an image, and apply the
digital image processing technology to the sound signal
feature extraction. Get more features for sound signal vi-
sualization, as shown in Figure 3.

Multitask learning (MTL) refers to the combination of
several single tasks that are relevant to each other, and the
information of multiple single-taskmodels is shared for joint
learning. 'e model can learn information from multiple
tasks at the same time, and, by influencing the information
between these multiple tasks, the model’s generalization
capability can be improved, thus improving the model’s
performance. Speaking score is related to fluency and
pronunciation. Listening score is related to vocabulary,
spelling, grammar, and text. Writing scores are related to
grammar, spelling, vocabulary, and text writing. Reading
scores are related to grammar, spelling, vocabulary, and text
writing. Unlike most simple single-task learning, multi-
tasking can be used to improve model performance in a
variety of situations. 'e specific application of multitask
learning in real-life scenarios is usually achieved through the
sharing of hidden layers in the network structure, which can
be of two types according to the differences in the sharing of
hidden layers in the network structure: (1) hard sharing of
parameters, which means that all network structures are
shared among all tasks, and each task only retains its output
layer. To a large extent, it avoids overfitting and improves the

generalization ability of the model; (2) soft (soft) sharing of
parameters means that each task has its separate model, and
the degree of sharing is not as high as that of hard sharing,
and the models only interact with each other through
regularization terms.

In a real speech evaluation scenario, the scorer often only
listens to a segment of the speaker’s speech, and the reference
for multiple scoring modules is the same speech data, which
can also be said to be the basis for scoring each module on a
shared basis, which is fully consistent with the hard-share
approach. As shown in Figure 3, the overall framework of
the parametric hard-share implementation of multitask
learning is shown. In front of the network structure is the
network sharing layer, and behind the sharing layer is the
task-specific layer, from task 1 to task n. 'e model can learn
multiple tasks simultaneously. 'e more tasks the model
learns at the same time, the more correlations the model
must consider, and the more difficult it is for the model to
learn. 'erefore, the risk of overfitting the model is greatly
reduced by learning multiple tasks with hard shared
parameters.

2.3. Error Detection Indicator Design. Speech data used in
automatic speech assessment modeling are often recorded in
real-life scenarios using recording devices. 'e data col-
lection process is not standardized enough, and there are
many contingencies. 'e acquired speech data usually
contains a lot of noise, such as the sound of the recording
device’s electric current, buzzing background noise, largely
silent segments in the audio where no one speaks, and the
surrounding noise interference. 'ese noises are not useful
for the automatic speech evaluation model and may even
greatly reduce the performance of the model. 'erefore, in
this paper, we need noise-reduced speech data to improve
the speech quality and provide a reliable guarantee for the
performance of subsequent models. 'is is a critical step in
data preprocessing. When analyzing specific audio data, it is
often found that there is a slight noise at the beginning and
end of the audio, as well as many irrelevant low-volume parts
in the middle of sentences, which occupy even longer du-
ration than the active audio. 'erefore, to prevent this noise
from interfering, it is necessary to eliminate the irrelevant
parts at the beginning and end of the audio and in the
middle, which requires audio activity detection techniques.
'e detailed flow of audio activity detection processing is
shown in Figure 4.

'e speech recognition task involves the conversion
between speechmodalities and text modalities; therefore, the
overall conversion process is complex and difficult to study.
'e training process is done offline and mainly involves data
collection, acoustic model training, and language model
training. 'e specific training process of speech recognition
includes four main modules: speech feature extraction,
acoustic model building, the language model building,
dictionary, and coding [26]. Compared with the most widely
used LSTM model in the industry, the DFSMN model has
faster training speed and higher recognition accuracy. Using
the new DFSMN model of smart audio or smart home
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equipment, compared with the previous generation tech-
nology, the deep learning training speed is 3 times, and the
speech recognition speed is 2 times. In Figure 4, the specific
process of speech recognition is shown in detail, with the
upper process being the training process and the lower
process being the recognition process. 'e specific recog-
nition process of speech recognition is carried out online,
insulting speech data, then carrying out data preprocessing
and feature extraction operations on the speech data, using
the acoustic model and language model trained earlier,

decoding the processed speech features and searching the
results, and outputting text content. 'e specific process of
speech recognition is (1) to do a series of processing on the
audio data, including activity detection, noise reduction, and
avoiding irrelevant audio interference. 'en, the audio data
is subjected to operations such as framing and windowing;
finally, common features such as MFCC and LPCC are
extracted from the audio, and the audio is converted into a
feature matrix; (2) to establish an acoustic model, the input
of this module is the extracted speech feature matrix, and the
output is phoneme information. In recent years, the com-
monly used acoustic models are deep learning models, such
as DNN and LSTM; (3) also, it establishes a language model,
obtains a large number of text content for training, and
learns the contextual information at the next level; (4) it
establishes a dictionary corresponding to the phonemes and
text and decodes the text, using the previously trained
language model, the output phonemes of the acoustic model,
and the text corresponding to each other. 'e text is then
decoded to output continuous text content.

'e texture, color, shape, and other features of an image
are the basic properties that characterize the essential
features of an image. 'ese features are very important for
describing and identifying the properties of an image, and
different textures on an image reflect different properties of
the image and the visual experience brought to people by
this texture is different. Given the structural and textural
differences among the visualized images of noise signals
from engineering instruments, this paper presents a sta-
tistically based texture feature for visualizing sound signals.
'e visualized sound signal is usually a colored RGB image,
which is first converted to a grayscale image before its
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image is processed. 'ere are many ways to process the
grayscale, including maximum-based, mean-based, and
weighted-average-based methods. In this paper, a weighted
average algorithm for the RGB components is used, as
shown in Table 1.

'e horizontal axis is the time axis and the vertical axis is
the waveform length. 'e figure shows that the 10-second
original audio contains many useless audio clips and the
audio activity detection algorithm detects three active in-
tervals in the original audio. Ultimately, all the detected
activity audio fragments are stitched together to generate the
new audio, which is only 4 seconds long. 'is processed 4-
second audio is almost noise-free and the audio quality is
greatly improved.'e audio activity detection algorithm can
detect the area of active audio from the original audio more
accurately, which is convenient for subsequent operations
such as slicing and splicing. At present, audio activity de-
tection technology has been an essential part of the speech
task, and audio activity detection technology is also con-
stantly developing; this paper is simply by the signal to noise
ratio value tomake a cut-point judgment, but also, according
to the actual situation, the use of other eigenvalues to cut
points can also be based on machine learning or deep
learning audio activity detection model to cut points, and so
on (improves the accuracy of audio activity detection and
obtains higher quality audio data). By preprocessing the
audio activity detection algorithm, the audio quality is
greatly improved, which paves the way for the subsequent
performance improvement of the model.

To a certain extent, Prosody rhythm features can indi-
rectly reflect whether the speaker’s speech speed is too fast or
too slow, whether the intonation is too high or too low, and
whether there are intonation and stops. 'erefore, we
extracted three speech features: fundamental frequency,
loudness, and pitch and merged them into a rhythmic
feature to complement the features of speech. 'e funda-
mental frequency, also known as the fundamental tone
frequency, reflects the frequency between two adjacent
openings and closings of the sound gate and can truly de-
scribe and characterize the mechanism of sound production.
'e fundamental frequency is extracted using the auto-
correlation method, and the most important parameter in
the fundamental frequency extraction process is the fre-
quency range of the band-pass filter (maximum funda-
mental frequency value and minimum fundamental
frequency value, which are set to 52 and 620, resp.), and the
window function is a Gaussian function; the loudness fea-
ture is often used to reflect the subjective feelings of human
beings about the strength or weakness of the speech signal.
When the frequency value of the speech signal is fixed, the
stronger the sound intensity value, the greater the loudness
value; loudness is also related to frequency. In this paper,
when extracting the loudness feature, the sound intensity
level is used to indirectly represent the loudness feature, and
the unit of the sound intensity level is our common deci-
bel dB. 'e loudness feature is related to the sound intensity
level and frequency of speech; therefore, it can be indirectly
extracted by the fundamental frequency and the sound
intensity level; the pitch is very similar to loudness and is also

a reflection of the human subjective feelings towards the
speech signal. Pitch characteristics can be very useful for
both rhythmic and emotional assessments of a speaker.
'erefore, the pitch can also be calculated indirectly from
frequency values, roughly logarithmically. 'e darker the
color, the stronger the signal frequency, so that different
frequencies can be expressed in different colors.

For the manual scoring component, each voice was
evaluated on three dimensions: fluency, rhythm, and
emotional performance. Fluency is a measure of the fluency
of the speaker, which is crucial to the speaker’s oral ex-
pression; rhythm is a measure of the speaker’s pitch and
rhythm, which are a higher-level assessment of the speaker’s
expression. Manual scoring of the dataset was generated by
scoring the audio from the audio database by two experts in
the field. Considering the subjective influence of manual
scoring, we discussed the characteristics of the three eval-
uation modules with the experts and developed a set of
standardized scoring criteria before the experts performed
the scoring. For themanual scoring, a 5-point scale was used,
with 5 being the highest and 1 the lowest. 'e average of the
scores of the two experts was used as the final manual score.

3. Results and Analysis

3.1. Principal Component Results Analysis. 'ere may be
redundant information between the feature components of a
feature vector, which affects both the computational cost of
the computer and the recognition performance of the
speaker recognition system. Principal Component Analysis
(PCA) uses the decomposition of feature bases into or-
thogonal transformation matrices to convert the original
feature vector into a low-dimensional noncorrelated and
orthogonal linear feature vector. 'is new low-dimensional
feature vector is determined by the variance of the projection
and is ordered from largest to smallest. 'e first principal
component corresponds to the direction with the largest
variance and so on, and the last components correspond to
the direction with the smallest variance. Figure 5 shows the
distribution of the two principal components of a set of
random data.

In the GMM-UBM-based speaker recognition system,
the choice of the degree of blending has a great impact on
recognition performance. 'is is because the accuracy of the
speaker feature distribution model is directly related to the

Table 1: Parameter settings during audio activity detection
processing.

Parameter Parameter value Parameter description

Top 1457 Signal to noise ratio between
audio

Ref 5487 How to select reference audio
clips

Frame length 1478 S/N ratio calculation window
length

Hop length 2587 Window shift for SNR
calculation

Min length 5678 Shortest fragment length

Complexity 7



blending degree, so this experiment mainly tests the system
performance by different blending degrees. 'e 13-
dimensional MFCC feature parameters and their first-order
and second-order differences are used to assemble the 39-
dimensional feature parameters. Figure 5 shows the
performance of the GMM-UBM interpreter recognition
system with different degrees of blending, based on the EER
system evaluation. From the comparative observation, the
higher degree of blending has better recognition perfor-
mance than the lower degree of blending. As the blending
degree increases, the EER of the system decreases, but the
rate of change of EER decreases gradually, which indicates
that the Gaussian mixture model has reached the best fit. If
the blending is too low, the Gaussian blending model pa-
rameters are too simple, and the model distribution does not
adequately characterize the speaker parameters of the
trained speech, resulting in underfitting. 'e voice data
needs to be cleaned before data preprocessing and feature
extraction operations. On the contrary, if the mixture is too
high, the Gaussian mixture model parameters are too
complex, which leads to overfitting and weakening of the
generalization ability of the model. 'erefore, for the
training of the GMM-UBM model, the choice of blending
degree is crucial. 'e experimental results show that when
the mixing degree is 1024, the performance of the speaker
recognition system has reached saturation and increasing
the mixing degree will only increase the complexity of the
computational system, which will drastically reduce the
recognition performance of the system.

Based on the above theories, the speaker recognition
model can have an impact on the performance of the rec-
ognition system. In this experiment, the performance of the
two baseline models has been experimentally evaluated
under the condition of testing short speech, as shown in
Figure 6.

As shown in Figure 6, the performance of the speaker
recognition system is greatly affected by the test speech
length. When the speech length is less than 2 s, the per-
formance of two speech recognition systems drops dra-
matically. When comparing two different models with the
same speech length, since the GMM-UBM model cannot

suppress the interference of channel variation on speaker
recognition, and the extracted feature parameters cannot
fully fit the speaker feature distribution when the test speech
length is less than 10 s, the I-Vector-based speaker recog-
nition model does not strictly distinguish between speaker
variation information and channel variation information,
and the I-Vector-based speaker recognition model does not
distinguish the speaker variation information from the
channel variation information. 'e I-Vector model
translates the high-dimensional feature space into a low-
dimensional vector for study, which reduces both time and
space complexity; thus, the I-Vector-based speaker recog-
nition system has better robustness in testing short speech
conditions.

'e contextual harmony weight value α and the error
detection thresholds β1 and β2 are experimentally deter-
mined.'e above context values and below context values of
the wrong words are simulated, and the context distribution
of the wrong words is shown in Figure 7.

'e smaller the context value of the wrong word, the
smaller the contextual harmony value, which plays a greater
role in determining the wrong point of identification. 'e
greater weight of the following contexts is used to calculate
the contextual harmony for error checking, which deter-
mines the value of α in the range [0, 0.5].

3.2. Oral English Pronunciation System Performance Results
Analysis. First, we segment the speech by the speaker’s
pause and sound intensity. We use by dub a bath processing
library to detect the sound intensity of the target sound at a
certain moment, to segment the bath more accurately. We
repeatedly adjusted the duration of silence and the sound
intensity that was judged to be silent and finally set the
parameters for judging the cut point at a sound intensity of
less than −60 dB and a duration of more than 100ms and
added a cut point as long as the voice met this condition at
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some point in time and after cutting to ensure the consis-
tency of the speech fragment, which is convenient for
subsequent comparison with the template voice. We add a
silent region of 1 s before and after each speech segment, as
shown in Figure 8.

After noise reduction, speech recognition is performed.
'e word error rate of the text has been significantly re-
duced.'is shows that audio quality has a great influence on
the speech recognition system, particularly, for some very
low quality, high quality, and low-cost products. 'e RNN
noise reduction can effectively compensate for the noise in
the examination room and background noise of the re-
cording device, which can greatly improve the robustness of
the whole multifeature intelligent grading model. As men-
tioned above, this paper conducted a text cleaning experi-
ment to compare the vocabulary and grammar scores of the
automatic marking system before and after text cleaning, as
shown in Figure 9.

As can be seen in Figure 9, both the vocabulary score
and the grammar score improved after the text cleaning,
but the improvement in the vocabulary score was more
pronounced because after we corrected the text, there were
no more misspelled words in the text, so the vocabulary
score went up considerably. For grammar scores, our text
cleaning did not change the grammatical structure of the
original text, so grammar scores increased only slightly.
Figure 10 shows the word error rate of our text before and
after text cleaning of 100 manually transcribed utterances,
as well as the average word and grammar score before and
after cleaning and the comparison between the mean lexical
and grammatical score before and after the cleaning.
Laplacian Gaussian operator is a kind of second-order
derivative operator, which will produce a steep zero
crossing at the edge. Laplacian operator is isotropic and can
sharpen boundaries and lines in any direction without
direction sex. 'is is the biggest advantage that distin-
guishes Laplacian operator from other algorithms.

'e boost classification model has better accuracy,
precision, recall, and F-value score than the support vector
machine and decision tree models. Finally, the experiments
are conducted using the boost classification model in which
the model has better accuracy, precision, recall, and F-value
score than the support vector machine and decision tree
models. 'e accuracy rate reflects the percentage of cases
that are predicted to be positive by the model and the
percentage of cases that are predicted to be positive by the
original sample. In this paper, the sample size of the test set
in which the model identifies the similarity between the
reference answer score text and the student-response text is
82.68%, indicating that the model has good accuracy in
predicting the similarity between the reference answer and
the student response. 'e recall rate reflects the fact that the
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model correctly identified only 60% of similar references and
student-response text pairs, indicating that the model is not
very good at identifying manually marked text. 'is may be
due to a possible bias in the score of the manually marked
reference answers. 'e F-value is a weighted summed av-
erage of recall and accuracy, which reflects a combination of
accuracy and recall.

4. Conclusion

When the test and training speech lengths are sufficient,
speaker recognition can achieve a good recognition result.
In everyday life, the length of the speaker’s test speech
tends to be short. Currently, to make speech recognition
technology more user-friendly, researchers have started to
focus on short speech speaker recognition. 'is paper
focuses on the detailed analysis and research on feature
extraction and model selection for short speech speaker
recognition, mainly using a variety of features as input
features of the acoustic model and experimental simu-
lation through the built short speech speaker recognition
system, and finally verifying the effectiveness of the im-
proved short speech speaker recognition algorithm. 'e
selection of the matching model has a direct impact on the
performance of the speaker recognition system. 'e
feature parameters extracted from the speaker’s speech
signal can be used for speaker identification only when the
corresponding speaker model is constructed. Since the
GMM-UBM model cannot suppress the interference of
channel variation on speaker recognition and the length of
the test speech is less than 10 s, the extracted feature
parameters do not fully fit the speaker feature distribu-
tion, and the I-Vector-based speaker recognition model
does not strictly distinguish between speaker variation
information and channel variation information. 'e
I-Vector model also reduces the computational com-
plexity to some extent by transforming the high-

dimensional feature space into a low-dimensional vector
for study. Experiments demonstrate that the I-Vector-
based speaker recognition system has better robustness in
testing short speech conditions.
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