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Virus and information spreading dynamics widely exist in complex systems. However, systematic study still lacks for the
interacting spreading dynamics between the two types of dynamics. *is paper proposes a mathematical model on multiplex
networks, which considers the heterogeneous susceptibility and infectivity in two subnetworks. By using a heterogeneous mean-
field theory, we studied the dynamic process and outbreak threshold of the system. *rough extensive numerical simulations on
artificial networks, we find that the virus’s spreading dynamics can be suppressed by increasing the information spreading
probability, decreasing the protection power, or decreasing the susceptibility and infectivity.

1. Introduction

Coevolution spreading dynamics, ranging from cyberspace
security to epidemic contagions, widely exist in the natural
systems, in which there are at least two spreading dynamics
evolving and interacting simultaneously [1, 2]. For instance,
the virus’s information is always spreading on the social
network when a computer virus spreads on the Internet. *e
users whose computers are not infected by the virus will
install antivirus software and patches to protect their
computers from being infected by the virus [3–6]. In this
way, computer viruses can be prevented from spreading
widely. Another example is the spreading of the epidemic in
society. When a global pandemic was spreading, various
kinds of information about the pandemic, such as protecting
healthy individuals from infection, spreading on social
networks will suppress the pandemic [7–9].

Researchers from the field of computer science and
network science have developed some successful mathe-
matical models to model such coevolution spreading dy-
namics.*e state of the art in this field is reviewed in a recent
paper by Wang et al. [1]. Historically, Newman [10] studied

two viruses spreading on the same computer network in
succession, where the two viruses follow the susceptible-
infected-recovered model, and the second virus can only
infect the remaining susceptible nodes. Using a bond per-
colation theory, he revealed that a global outbreak of the
second virus is possible only if the susceptible nodes form a
large cluster of connections and the outbreak threshold of
the second virus is much higher than the threshold of the
first. Newman and Ferrario [11] further discussed a different
situation, i.e., the second virus can only spread on those
infected nodes by the first virus. *ey found that the second
virus’s outbreak size can be suppressed by decreasing the
spreading probability of the first virus. In reality, the
spreading dynamics are always simultaneous. Karrer and
Newman [12] proposed a model to include this factor and
studied the phase transition by using a competing perco-
lation theory.

*e two spreading dynamics always evolve on different
networks; that is to say, we should use multiplex or multilayer
networks to describe the network topology of the coevolution
spreading [13–18]. Previous studies have revealed that the
topology of multilayer networks markedly affect the dynamics,
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such as cascading failures [19–21], virus spreading [22, 23],
controllability [24], and synchronization [25–27]. For virus-
information spreading on multiplex networks, Granell and her
colleagues [8] used an unaware-aware-unaware-susceptible-
infected-susceptible (UAU-SIS) model. *ey revealed a met-
acritical critical point, above which the global virus will break
out by using a generalized Markovian approach. Based on the
research framework in Reference [8], researchers studied the
global information [8], network topology [28, 29], and different
interacting mechanisms [30, 31] on the virus spreading. Wang
et al. revealed the asymmetric interaction between the virus and
information spreading dynamics. *ey used a susceptible-in-
formed-recovered-susceptible-infected-recovered-vaccination
(SIR-SIRV) model. *ey found that the information can
suppress the virus spreading greatly, especially when there is a
positive correlation between layers.

Many real-world data analyses proved that the spreading
dynamics on the network are heterogeneous. *ere are three
aspects. On the one hand, the network topology is hetero-
geneous, e.g., heterogeneous degree distribution. Scholars
revealed that heterogeneous degree distribution could de-
crease the virus’s outbreak threshold spreading [32–34]. An
important result is that Pastor-Satorras and Vespignani [32]
used a heterogeneous mean-field theory to describe the
computer virus spreading on the Internet and revealed that
the existence of some hubs maymake the outbreak threshold
vanish. On the other hand, infectivity and susceptibility are
heterogeneous since different computers have distinct cir-
cumstances. Miller [35] revealed that the global virus is more
likely to break out for homogeneous infectivity when the
average transmissibility is fixed. In addition, he found that
the attack rate was highest when the susceptibility was
homogeneous and lowest when the variance was maximum.
Lastly, the virus and information always transmit through
different networks. Generally, the virus spreads on the
computer network and the information transmits on the
social network. *erefore, the virus-information dynamics
spreading on two-layered multiplex networks are more
realistic. Previous paragraphs have stated the state-of-the-art
progresses for virus-information spreading on multiplex
networks. To our best knowledge, systematic study still lacks
for the interacting spreading dynamics including the above
three aspects. In the paper, we first describe the mathe-
matical model in Section 2. In Section 3, we develop a
heterogeneous mean-field theory to describe the spreading
dynamics. In Section 4, we perform extensive numerical
simulations. Finally, we conclude the paper in Section 5.

2. Model Descriptions

In this section, we propose the virus-information coevolu-
tion spreading model on computer-social network M. We
first introduce the computer-social network and then
present the virus-information spreading model.

2.1. Computer-Social Network. We denote the two subnet-
works as L1 and L2, respectively. *e computer virus spreads
on subnetwork L1, and the information spreads on sub-
network L2. In subnetwork L1 (L2), nodes represent the

computers (users), and the edges stand for the relationships
among computers (users). To build the two-layered complex
networks, we use the following steps: (i) assigning the
subnetwork sizes N1 � N2 � N; (ii) building subnetworks
L1 and L2 by using the uncorrelated configuration model
[36] (the degree distributions of subnetworks L1 and L2 are
P1(k1) and P2(k2), respectively); and (iii) randomly
matching nodes in two subnetworks. Specifically, we build
an interlayer connection e for node i1 and i2, which means
that the user i2 uses computer i1. By using the above
methods, there are node inter- and intradegree correlations.
As shown in Figure 1, we illustrate the computer-social
network.

Mathematically, the computer-social network M can be

represented by a adjacency matrix U �
A

1
A
12

A
21

A
2􏼠 􏼡, where

A1 and A2, respectively, stand for the adjacency matrixes of
subnetworks L1 and L2. An element Ax

ij � 1 of subnetwork
x ∈ 1, 2{ } means that nodes ix and jx are connected. *e
matrixes A12 and A21 are the adjacency matrixes of interlayer
network, where A12

i1i2
� 1 means that node i1 uses computer i2.

Note that A12
i1i2

� A21
i2i1

for any values of i1 and i2. *e average
degrees of the two subnetworks can be denoted as 〈k1〉 �

􏽐i,jA
1
ij � 􏽐k1

k1P1(k1) and 〈k2〉 � 􏽐i,jA
2
ij � 􏽐k2

k 2P2(k2),
respectively.

2.2. Virus-Information Spreading Model. We here adopt a
susceptible-infected-recovered (SIR) model to describe the
virus spreading on subnetwork L1. A node in the susceptible
state means that it does not get infected by the computer
virus. An infected node represents that it is infected by the
virus and can transmit it to one of its neighbors. A node in
the recovered state means that it has recovered and does not
change its state.

For the information spread on subnetwork L2, we
consider using the irreversible susceptible-informed-re-
covered (SIR) model [37]. A susceptible node means that it
does not obtain information about the virus. An informed
node indicates that it knows information about the virus and
is willing to share it with its neighbors. A node in the re-
covered state means that it loses interest in the information
and will not transmit it to its neighbors. In this paper, we
denote the virus-information coevolution spreading as a
SIR-SIR model.

*e virus-information coevolution spreading dynamic
evolves as follows. Initially, we randomly select a node i1 in
subnetwork L1, that is to say, the computer virus infects node
i1. *e corresponding node i2, i.e., the user of computer i1, is
also set to be the infected state, since the user can release the
information of his infection to his neighbors. At every time
step t, each infected node v1 in subnetwork L1 tries to
transmit the computer virus to one of its neighbors u1, since
every infected node usually communicates with one
neighbor at a short time interval. In reality, the infection
transmission depends on the “source” and “target” nodes
[35]. *at is to say, the infectivity and susceptibility of the
system are distinct for different nodes. To include this factor,
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we assume that nodes’ infectivity and susceptibility depend
on the degree of nodes. More specifically, the infectivity of
node v1 with degree k1 is

ω1
k1

� 1 − 1 − α1( 􏼁
k1 , (1)

where α1 is the unit infectivity for a node with degree 1.
Similarly, the susceptibility of node u1 with degree k1′ is

ϖ1k1′ � 1 − 1 − α1′( 􏼁
k1′, (2)

where α1′ is the unit susceptibility for node with degree 1.
Varying the values of α1 and α1′, we get different infectivities
and susceptibilities of the system. If node u1 is susceptible,
two different situations should be considered. (i) If the user
u2 of computer u1 is in the susceptible state, the computer u1
infects the virus with probability λ1. Meanwhile, node u2
obtains the information. Otherwise, u2 is in the infected or
recovered state, and nothing happens. (ii) If the user u2 has
already obtained the information before, the computer u1 is
infected by the virus with probability qλ1, where 0≤ q≤ 1.
We here use the parameter q to describe the degree of
protection when a user knows the virus’s spreading. *e
smaller the value of q, the stronger the protection against
computer viruses. Every infected node recovers with
probability c1.

*e information about the virus spread on the sub-
network L2 is as follows. At each time step t, every informed
node v2 transmits the information to one of its neighbor u2
in subnetwork L2 depending on the infectivity of v2 and the
susceptibility of u2. *e infectivity of v2 with degree k2 is

ω2
k2

� 1 − 1 − α2( 􏼁
k2 , (3)

where α2 is the unit infectivity. *e susceptibility of u2 with
degree k2′ is

ϖ2k2′ � 1 − 1 − α2′( 􏼁
k2′, (4)

where α2′ is the unit susceptibility. *e infection probability
is λ2. Finally, every informed node loses interest in trans-
mitting the information with probability c2. *e spreading

ends when there are no nodes in the infected or informed
state. In Table 1, we present the definitions of parameters and
abbreviations.

3. Heterogeneous Mean-Field Theory

In this section, we develop a heterogeneous mean-field
approach to describe the evolution of the virus-information
spreading dynamics. In theory, we assume that nodes with
same degrees have the same infection probability in sta-
tistical [32, 33, 38, 39]. In other words, the probability of
nodes with the degree k is the same as each other.

We use the following parameters to describe the co-
evolution process. Denote s1k1

(t), ρ1k1(t), and r1k1
(t) as the

probability that a node with degree k1 is in the susceptible,
infected, and recovered states at time t in subnetwork L1,
respectively. Similarly, we denote s2k2

(t), ρ2k2(t), and r2k2
(t) as

the probability of node with degree k2 in the susceptible,
informed, and recovered states at time t in subnetwork L2,
respectively. Considering the degree distributions of sub-
networks L1 and L2, we know the fraction of nodes in each
state. For instance, the fraction of nodes in the susceptible
state at time t is S1(t) � 􏽐k1

P1(k1)s
1
k1

(t). In the final state,
i.e., t⟶∞, the fraction of nodes in the susceptible state is
S1(∞) ≡ S1.

Now we derive the expressions of the probability of
nodes in each state. We know that s1k1

(t) decreases with time
t when nodes are infected by the virus. A susceptible
computer u1 with degree k1 infected by the virus has two
situations. (1) *e corresponding node (i.e., the user) u2 of
node u1 is in the susceptible state. In this situation, the
infection transmitted to node u1 should fulfill two necessary
conditions.

(i) An infected neighbor v1 of node u1 contacts node u1.
In uncorrelated complex networks, the probability of
node u1 connecting to an infected neighbor v1 with
degree is k1′ is ((k1′ − 1)/􏽐k1

k1P1(k1)), where k1′ is the
degree of node v1. Considering the degree distribution
of subnetwork L1, the average probability that a node
connects to an infected neighbor through an edge is

Θ1(t) �
1
〈k1〉

􏽘

k1′

ω1
k1′

k1′ − 1( 􏼁P1 k1′( 􏼁ρ1k1′(t). (5)

(ii) *e infection is transmitted successfully with
probability λ1. According to the description of the
model, for a node u1 in the susceptible state, its cor-
responding node must also be in the susceptible state.
However, the opposite situation does not always exist.
Combining conditions (i) and (ii), we know situation
(1) happens with probability λ1k1ϖ1k1s

1
k1

(t)Θ1(t). Sit-
uation (2) indicates that node u2 of node u1 is in the
informed state. Using a similar discussion with situa-
tion (1), we obtain the probability of situation (2) as
follows: qλ1k1ϖ1k1s

1
k1

(t)Θ1(t)[􏽐k2
P2(k2)λ2k2ϖ2k2Θ2(t)],

where 􏽐k2
P2(k2)λ2k2ϖ2k2Θ2(t) is the probability that

the corresponding node u2 of u1 is informed by
neighbors in subnetwork L2 at time t. Θ2(t) will be
defined later. *e rate equation of s1k1

(t) is

Computer-social network

L2

L1

Figure 1: Illustration of computer-social networks. Subnetwork L1
represents the computer network, and subnetwork L2 stands for the
social network.
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ds
1
k1

(t)

dt
� −λ1k1ϖ

1
k1
Θ1(t) s

1
k1

(t) + q 􏽘
k2

P2 k2( 􏼁λ2k2ϖ
2
k2
Θ2(t)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(6)

*e evolution of ρ1k1(t) is

dρ1k1(t)

dt
�λ1k1ϖ

1
k1
Θ1(t) s

1
k1

(t) + q 􏽘
k2

P2 k2( 􏼁λ2k2ϖ
2
k2
Θ2(t)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− c1ρ
1
k1

(t),

(7)

where c1ρ1k1(t) is the fraction of nodes recovered at time t.
Finally, the evolution of r1k1

(t) is

dr
1
k1

(t)

dt
� c1ρ

1
k1

(t). (8)

According to equations (6)–(8), we obtain the evolution
of computer virus spreading on subnetwork L1.

Now, we study the rate equations of the information about
the virus spreading on social network L2. *ere are two
different situations for the reduction of s2k2

(t). For the first
situation, the susceptible node u2 with degree k2 is infected by

its informed neighbor v2. *e infection probability is
λ2k2ϖ2k2s

2
k2

(t)Θ2(t), where Θ2(t) denotes the probability of
an edge connecting to an informed neighbor in subnetwork
L2. *e expression of Θ2(t) can be expressed as

Θ2(t) �
1
〈k2〉

􏽘

k2′

ω2
k2′

k2′ − 1( 􏼁P2 k2′( 􏼁ρ2k2′(t). (9)

*e second situation of node u2 obtaining the infor-
mation is that the corresponding node u1 of u2 is infected by
the computer virus through an edge of u1 with probability
λ1k1ϖ1k1s

2
k2

(t)Θ1(t). Since u2 and u1 are randomly coupled,
the averaged infection probability of u1 is
λ1〈k1〉〈ϖ1k1〉s2k2

(t)Θ1(t), where 〈ϖ1k1〉 � 􏽐k1
P1(k1)ϖ1k1 .

Combining the two situations, we obtain the rate equation of
s2k2(t) as

ds
2
k2

(t)

dt
� −s

2
k2

(t) λ2k2ϖ
2
k2
Θ2(t) + λ1〈k1〉〈ϖ

1
k1
〉Θ1(t)􏽨 􏽩.

(10)

With the similar discussion about the virus spreading on
subnetwork L1, we have

Table 1: Definitions of parameters and abbreviations.

Parameter Definition
N1 Subnetwork size of computer network L1
N2 Subnetwork size of social network L2
P1(k1) Degree distribution of computer network L1
P2(k2) Degree distribution of social network L2
〈k1〉 Average degree of computer network L1
〈k2〉 Average degree of social network L2

ω1
k1

Infectivity of node v1 with degree k1 in subnetwork L1

ω2
k2

Infectivity of node v2 with degree k2 in subnetwork L2

ϖ1
k1′

Susceptibility of u1 with degree k1′ in subnetwork L1

ϖ2
k2′

Susceptibility of u2 with degree k2′ in subnetwork L2

α1 Unit infectivity in subnetwork L1
α2 Unit infectivity in subnetwork L2
α1′ Unit susceptibility in subnetwork L1
α2′ Unit susceptibility in subnetwork L2
q Protection power
λ1 Computer virus transmission probability
λ2 Information transmission probability
c1 Computer virus recovery probability
c2 Information recovery probability
s1k1

(t) Probability of node with degree k1 in the susceptible state at time t in subnetwork L1

ρ1k1(t) Probability of node with degree k1 in the infected state at time t in subnetwork L1

r1k1
(t) Probability of node with degree k1 in the recovered state at time t in subnetwork L1

s2k2
(t) Probability of node with degree k2 in the susceptible state at time t in subnetwork L2

ρ2k2(t) Probability of node with degree k2 in the infected state at time t in subnetwork L2

r2k2
(t) Probability of node with degree k2 in the recovered state at time t in subnetwork L2
Θ1(t) Average probability that a node connects to an infected neighbor through an edge in subnetwork L1
Θ2(t) Average probability that a node connects to an informed neighbor through an edge in subnetwork L2
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dρ2k2(t)

dt
� s

2
k2

(t) λ2k2ϖ
2
k2
Θ2(t) + λ1〈k1〉〈ϖ

1
k1
〉Θ1(t)􏽨 􏽩 − c2ρ

1
k2

(t),

(11)

dr
2
k2

(t)

dt
� c2ρ

2
k2

(t).

(12)

With the above equations, we know the fraction of nodes
in each state at subnetworks L1 and L2.

In the following, we study the global outbreak conditions
of the computer virus and information spreading. For global
information outbreak condition, we can linearize equations
(7) and (11) around the initial conditions, i.e., s1k1

≈ 1,
s2k2
≈ 1. We know that s1k1

� 1, s2k2
� 1, ρ1k1 � 0, and ρ2k2 � 0

are trivial solutions. Denote a vector ρ→ � (ρ1
→

, ρ2
→

)T, where
ρ1
→

� (ρ1k1�1, . . . , ρ1k1,max
), ρ2

→
� ρ2k2�1, . . . , ρ2k2,max

, and k1
1,max and

k2
2,max represent the maximal degrees of subnetworks L1 and

L2, respectively. We perform a Taylor expansion for equa-
tions (7) and (11) at s1k1

� 1, s2k2
� 1, ρ1k1 � 0, and ρ2k2 � 0 and

neglect the high order of ρ→. We have

d ρ→

dt
� J ρ→, (13)

where J is the Jacobian matrix. *e expression of J is

J �

zρ11
zρ11

zρ11
zρ12

. . .
zρ11

zρ11,max

zρ11
zρ21

zρ11
zρ22

. . .
zρ11

zρ22,max

zρ12
zρ11

zρ12
zρ12

. . .
zρ12

zρ11,max

zρ12
zρ21

zρ12
zρ22

. . .
zρ12

zρ22,max

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

zρ11,max

zρ11

zρ11,max

zρ12
. . .

zρ11,max

zρ11,max

zρ11,max

zρ21

zρ11,max

zρ22
. . .

zρ11,max

zρ22,max

zρ21
zρ11

zρ21
zρ12

. . .
zρ21

zρ11,max

zρ21
zρ21

zρ21
zρ22

. . .
zρ21

zρ22,max

zρ22
zρ11

zρ22
zρ12

. . .
zρ22

zρ11,max

zρ22
zρ21

zρ22
zρ22

. . .
zρ22

zρ22,max

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

zρ21,max

zρ11

zρ21,max

zρ12
. . .

zρ21,max

zρ11,max

zρ21,max

zρ21

zρ21,max

zρ22
. . .

zρ21,max

zρ22,max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

*e Jacobian matrix J can be further expressed as block
matrix as

J �
C
1

D
2

D
1

C
2

⎛⎝ ⎞⎠, (15)

where dimensions of C1, C2, D1, and D2 are k1,max × k1,max,
k2,max × k2,max, k2,max × k1,max, and k1,max × k2,max, respec-
tively. When the global information on subnetwork L2
breaks out, the largest eigenvalue of J is larger than zero. *e
global information outbreak condition is

Λ1(J) � 0, (16)

where Λ1(J) is the largest eigenvalue of J. For the virus
outbreak condition, we cannot solve it directly. When the
network is extensive, we can use the competing percolation
theory [40]. *at is to say, we can process the information
spreading on subnetwork L2 first and then the virus
spreading on subnetwork L1.

4. Simulation Results

In this section, we perform numerical simulations to study the
virus-information spreading dynamics on computer-social
network. To build the computer-social network, we use the
uncorrelated configuration model [36]. We set the degree
distributions of subnetworks L1 and L2 as P1(k1)∼k− χ1 and
P2(k2)∼k− χ2 , respectively, where χ1 and χ2, respectively,
represent the degree exponents. *ere is no inter- and intra-
layer degree-degree correlations. In numerical simulations, we
set the average degrees of the two subnetworks as
〈k1〉 � 〈k2〉 � 8, the network sizes as N1 � N2 � 104, and the
degree exponent as χ1 � χ2 � 3.0. We set α1 � α1′ and α2 � α2′.
Initially, we randomly select 5 seeds in subnetwork L1. All
results presented in this paper are averaged over at least 2000
times.

We first study the virus and information spreading sizes,
respectively, denoted as R1 � 1 − S1 and R2 � 1 − S2, versus
virus transmission probability λ1 as shown in Figure 2. We find
that R1 increases with α1 � α2, i.e., the virus is more likely to
spread when the infectivity and susceptibility are large. Specif-
ically, we note that the virus cannot spread for any values of λ1
when α1 � α2 are small, e.g., α1 � α2 � 0.0 and 0.2. When α1 �

α2 are large enough, enlarging their values cannot promote the
virus spreading. When comparing the effects of information
spreading on virus spreading, i.e., increasing λ2, the virus
spreading can be suppressed, as shown in Figures 2(a)–2(d).
*at is to say, to contain the virus spreading, we can transmit
more information about the virus on the social network. For the
information spreading on subnetwork L2, i.e., the social net-
work, we find that R2 increases with λ1, λ2, and α1 � α2, since
the users have more chances to obtain the information.

In Figure 3, we further investigate the effects of protection
power q on the virus-information spreading for different values
of α1 � α2 and λ2. Generally speaking, we find similar results
with that discussed in Figure 2. When the protection power is
large, we find that the virus spreading size is relatively smaller,
i.e., R1(q � 0.8)≥R1(q � 0.5), since the susceptible nodes are
less likely to be infected by neighbors.We also note thatR2(q �
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Figure 2: Virus spreading size R1 and information spreading sizeR2 versus computer virus transmission probability λ1 with q � 0.5.R1 versus λ1
with (a) λ2 � 0.2, (b) λ2 � 0.4, (c) λ2 � 0.6, and (d) λ2 � 0.8. R2 versus λ1 with (e) λ2 � 0.2, (f) λ2 � 0.4, (g) λ2 � 0.6, and (h) λ2 � 0.8. Other
parameters are set to be c1 � c2 � 0.2 and λ2 � 0.8.
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Figure 3: Continued.
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0.8)≥R2(q � 0.5) since the promotion of virus spreading on
information spreading is decreased.

In Figure 4, we study the effects of susceptibility and in-
fectivity in detail. We find that R1 decreases with the increase of
susceptibility and infectivity of L2. *at is to say, the virus
spreading can be suppressed by increasing the susceptibility and
infectivity. We can explain the results as follows. Increasing

susceptibility and infectivity, the information will be widely
spread on social network (see Figures 4(e)–4(g)), and more
susceptible nodes in subnetwork L1 will takemeasures to protect
themselves frombeing infected. As a result,R1 decreaseswithα2.

Finally, we studied the virus-information spreading as a
function of α2 when the protection power is lower with q � 0.8
in Figure 5.We reveal similar phenomena as shown in Figure 4.
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Figure 3: Virus spreading size R1 and information spreading sizeR2 versus computer virus transmission probability λ1 with q � 0.8.R1 versus λ1
with (a) λ2 � 0.2, (b) λ2 � 0.4, (c) λ2 � 0.6, and (d) λ2 � 0.8. R2 versus λ1 with (e) λ2 � 0.2, (f) λ2 � 0.4, (g) λ2 � 0.6, and (h) λ2 � 0.8. Other
parameters are set to be c1 � c2 � 0.2 and λ2 � 0.8.
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Figure 4: Virus spreading sizeR1 and information spreading sizeR2 versus computer virus transmission probability λ1 with q � 0.5.R1 versus α2
with (a) λ1 � 0.2, (b) λ1 � 0.4, (c) λ1 � 0.6, and (d) λ1 � 0.8. R2 versus α2 with (e) λ1 � 0.2, (f) λ1 � 0.4, (g) λ1 � 0.6, and (h) λ1 � 0.8. Other
parameters are set to be c1 � c2 � 0.2 and λ2 � 0.5.
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We note that R1(q � 0.5)≥R1(q � 0.8) and
R2(q � 0.5)≥R2(q � 0.8) since the protection power is
decreased.

5. Discussion

In this paper, we studied the virus-information spreading
dynamics on computer-social multiplex networks. We
first proposed a mathematical model to describe the co-
evolution spreading dynamics. In this model, we assumed
that nodes’ susceptibility and infectivity are heteroge-
neous and positively correlated with the node’s degree. To
describe the spreading dynamics, we adopt a generalized
heterogeneous mean-field approach. Using extensive
numerical simulations, we revealed that the virus
spreading dynamics can be significantly suppressed by
promoting the information spreading on the computer
network or decreasing the susceptibility and infectivity of
nodes. Our results provide some insight into containing
the virus spreading.
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