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Electroencephalography (EEG) is the measurement of neuronal activity in different areas of the brain through the use of electrodes.
As EEG signal technology has matured over the years, it has been applied in various methods to EEG emotion recognition, most
significantly including the use of convolutional neural network (CNN). However, these methods are still not ideal, and shortcomings
have been found in the results of some models of EEG feature extraction and classification. In this study, two CNN models were
selected for the extraction and classification of preprocessed data, namely, common spatial patterns- (CSP-) CNN and wavelet
transform- (WT-) CNN. Using the CSP-CNN, we first used the common space model to reduce dimensionality and then applied the
CNN directly to extract and classify the features of the EEG; while, with the WT-CNN model, we used the wavelet transform to
extract EEG features, thereafter applying the CNN for classification. The EEG classification results of these two classification models
were subsequently analyzed and compared, with the average classification accuracy of the CSP-CNN model found to be 80.56%, and
the average classification accuracy of the WT-CNN model measured to 86.90%. Thus, the findings of this study show that the average

classification accuracy of the WT-CNN model was 6.34% higher than that of the CSP-CNN.

1. Introduction

An electroencephalogram (EEG) is a record of changes
registered on a human or animal scalp, which indicate the
electrophysiological activity of brain nerve cells on the ce-
rebral cortex or scalp surface [1]. An EEG captures the
spontaneous bioelectric activity of brain cell groups (also
known as brain waves) through electrodes and uses potential
as the vertical axis and time as the horizontal axis to display
the EEG in the form of a curve [2, 3].

The process of emotion recognition based on EEG
encompasses the following key steps: emotion induction,
EEG signal acquisition, EEG signal preprocessing, EEG
feature extraction, emotion pattern learning, and classi-
fication [4, 5]. Of these, feature extraction and classifi-
cation are of particular importance and are the focus of
this study.

Feature extraction selects certain feature signals to be
used as classification parameters to form characteristic
feature vectors [6]. It is a relatively mature technique in

machine learning and has developed to include time-domain
features, such as mean value, standard deviation, skewness,
peak amplitude, variance, skewness, and kurtosis of the EEG
signals and frequency-domain features, which transform the
time-domain signal into the frequency domain and then
extract relevant parameters for analysis. Common features
are extracted by Fourier transform, parameter model
methods (such as autoregressive (AR), moving average
model (MA), autoregressive-moving-average (ARMA), and
harmonic signal models). Extraction methods for time-
frequency domain features include short-time Fourier
transform (STFT) and wavelet transform, while those for
nonlinear dynamic characteristics include those based on
chaos theory methods, such as Lorenz scatter plot, maxi-
mum Lyapunov exponent, correlation dimension, and Hurst
exponent. Methods based on information theory include
permutation entropy, singular value decomposition entropy,
LZC complexity, approximate entropy, and sample entropy
[7, 8]. For the extraction of statistical features, statistical
methods commonly used in EEG analysis include
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probability random analysis, independent component
analysis, and principal component analysis, among others
(8].

With the rise of artificial intelligence, the convolutional
neural network (CNN) has been able to achieve increasingly
better results in image and speech, but they are still rarely
used in the feature extraction and classification of EEG.
Some scholars have tried to directly use the CNN with EEG;
however, the accuracy achieved by the two-class classifica-
tion is only about 50%, and classification effects remain
unsatisfactory. When Jie et al. [9] used the CNN alone to
image EEG signal classification, for example, their accuracy
rate was just 45%. In another study, in which EEG classi-
fication of addiction craving was based on the CNN [10], a
new matrix was formed for each electrode and then sent to
the convolutional neural network to detect craving for ad-
diction, and the accuracy was improved to approximately
70%. This accuracy is slightly higher than that of the clas-
sification effect with the mean value as the feature, but it does
not compare with the frequency domain feature, and this
method varies greatly among different subjects. Reference
[9] also tried to use common spatial patterns (CSP) for
dimensionality reduction, selecting standardized covariance
as a feature to classify the data of motor imagination, and the
accuracy rate reached 91.46% [11]. Furthermore, another
study, in which the wavelet transform- (WT-) CNN model
was proposed and applied to competitive sports thinking
data, the accuracy rate reached 88.1%, which is 8.2% higher
than traditional WT or support vector machine [12]. In this
study, the effect of the CNN on emotion classification is
explored by applying the WT-CNN model to the classifi-
cation of emotion recognition. Moreover, a new CSP-CNN
model is proposed, and a comparative analysis of these two
methods is performed.

The main research content of this study is, thus, the
application of a CNN in EEG emotion classification. After
the collection of the EEG data, it was preprocessed by re-
moving ocular and other artifacts and filtering. Thereafter, a
CNN was used directly to extract and classify the EEG data
after either dimensionality reduction or wavelet transfor-
mation. It should be noted that the CSP-CNN in this study is
different from that previously published as “Multi-class
motor imaging EEG signal classification based on CSP and
convolutional neural network algorithms” [11]. Moreover,
in the CNN-CSP model in this study, no feature extraction
work is performed between the CNN and CSP, such as the
identification of standardized covariance or energy. Both of
the two emotion recognition models presented in this study
were designed and developed by the authors.

2. Related Work

2.1. Cospace Mode and Wavelet Transform. A spatial filter is
highly suitable for the collection and processing of EEG
signals such as multidimensional signals and data. It can
simultaneously utilize the spatial correlation of EEG signals,
eliminate signal noise, and realize local cortical nerve ac-
tivity. Spatial-domain filtering effectively combines time-
domain and frequency-domain features, through which
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better processing results can be achieved [13, 14]. At present,
the commonly used spatial filtering techniques in EEG-BCI
research include common average reference (CAR), Laplace
transform, principal component analysis (PCA), indepen-
dent component analysis (ICA), and common spatial pat-
tern (CSP), the most widely used approach. The application
process of CSP is shown in Figure 1. This spatial filter
features an extraction algorithm for two classification tasks,
which can extract the spatial distribution components of
each category from multichannel brain-computer interface
data [15].

A more recently developed transform analysis method,
WT, inherited the concept of localization of STFT; how-
ever, at the same time, it provides a “time-frequency”
window that can change according to frequencies, and is,
thus, an ideal tool for signal time-frequency analysis and
processing [16].

2.2. Convolutional Neural Network. The CNN has been
widely used in the classification of speech and images and
has achieved good results. However, there are relatively few
studies on their application in EEG, with only minimal
reports on their recognition of emotions based on EEG, such
as [17], in which the CNN was introduced to EEG emotion
recognition, and its application was explored [17]. Since the
EEG signal is relatively weak and the extracted feature may
not be sufficiently clear for the classification of emotions, we
introduced a CNN to develop the feature vector of the EEG
signal. Secondary processing and classification are designed
to improve the accuracy and robustness of classification
[17, 18]. At the same time, we also used the CNN directly
after dimensionality reduction in order to improve the EEG
characteristics [19], after which the classification results were
evaluated.

3. Method

3.1. Feature Extraction Based on CSP. As mentioned, CSPis a
commonly used EEG dimensionality reduction method in
EEG feature extraction. Its basic principle is to, first, find a
space transformation matrix and then transform the EEG to
obtain a new matrix [20]. We represented the EEG signals
used for classification with a matrix E of N T, where N
represents the number of channels for collecting EEG, T
represents the number of samples per EEG signal, and T is
greater than or equal to N. The normalized covariance
matrix is

EET

: trace(EET)’ (V)
where T is the transpose operation, and trace indicates the
trace of the matrix during operation. R; and R, are used to
represent the spatial covariance matrix of positive and
negative emotions, respectively, which is obtained by cal-
culating the mean value of the covariance matrix [21].
Thereafter, the composite matrix of the two covariance
matrices can be expressed as
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FIGURE 1: Design and implementation of EEG-BCI based on spatial filtering.

R, =R, +R,. (2)
R, can be decomposed into

R, =UAUL. (3)
In the above formula, U, is the eigenvector of R, and 1,

is the diagonal matrix formed by the eigenvalues of R,. The
whitening matrix was calculated as follows

p=2"2yl. (4)
Thereafter, the calculated whitening matrix was used to

transform the average covariance matrix, using the following
formula:

S, = PR,P",

S, = PR, P, ®
S, and S, had the same feature vectors, namely,

S, = B,B’, ©

S, = BL,B".

In the above two formulae, A, and A, satisfy
Ay + A, = I. That is, the largest eigenvalue S, corresponds
to the smallest eigenvalue S,. The eigenvalues A, were
sorted from large to small, and the eigenvector B was also

sorted accordingly to get B**™. The whitened matrix was
used to obtain the optimal separation covariance matrix
[20, 21], with the first m rows and the last m rows of the
transformation matrix B*°'™* used to form a new matrix,
B*™. The projection matrix for transforming the original
signal is

F=(B")'P. (7)

The transformed matrix is

Z = FE. (8)

In this study, the data collected after the CSP had re-
duced the dimensionality of the EEG was changed from the
feature value to form the feature vector, as follows:

B Var(Zp)
P Y var(2) ¥

3.2. Feature Extraction Based on Wavelet Transform (WT).
As WT has been widely introduced in numerous reference
literatures, this study will only briefly explain the principle of
this approach. Every WT has a “mother” wavelet and a
“father” wavelet [22], or “parent” wavelet, also termed the
“scaling function.” Suppose y(t) is a square-integrable
function, which is y(t) € L?(¢). If the Fourier transform



v (t) satisfies the condition (10), then y () can be used as the
mother wavelet.

dw< + oo. (10)
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All of the wavelet series of WT can be obtained by
translation scaling of the parent wavelet and mother wavelet.
The scaling factor is an integer power of 2, and the mag-
nitude of the translation is related to the scaling factor
[22, 23]. The wavelet series are orthonormal, which means
that they are not only pairwise orthogonal but also must be
normalized. The wavelet series can be expressed as

0=—v(—") (an
w‘z,b - \/al// a .

The expansion formula of the complete wavelet trans-
form is

+00 +00

fO=Yaet-k+ Y Ydw(@t-k). (12

k=-00 j=0

In the above formula, ¢ (x) is the parent wavelet and
v (x) is the mother wavelet; therefore, ¢ and d can be cal-
culated by selecting the appropriate parent wavelet and
mother wavelet, respectively. The approximate formula for
wavelet expansion is

ORI NG (13)
ko j

WT is performed on the signal, which is then decom-
posed into a sequence of wavelet bases and scale functions.
The solution formula is

1

« ft=D
WTf (a, b) = % J; (t)l// f<a>dt, a> 0, (14)

where f(t) € L*(R). According to the Nyquist sampling
theorem, when the sampling frequency fs.max is greater than
twice the highest frequency fmax in the signal
(fs.max > 2fmax), the digital signal after sampling can
completely retain the information contained in the original
signal. The collection frequency of electricity, for example, is
250 HZ, so the highest frequency of information retained in
the original signal is 125 HZ. In this study, we performed a
five-scale WT on the downsampled data (as shown in Fig-
ure 2), with each layer decomposing the low-frequency
band.

3.3. Feature Classification Based on the CNN. In the base
layer of the volume, the size of the filter, that is, the size of the
convolution kernel, is usually a 3 * 3 or 5 * 5 square matrix.
We used w, ,, to represent the weight of the filter, b to
indicate the bias term of the filter, and f to activate the
function. The output of the filter was as follows:

g=f<ZZax,yxwx,y+b>- (15)
x y
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The above formula was used for the forward propagation
process of the roll base structure to move from the upper left
corner of the current layer of the neural network to the lower
right corner through the filter. Each corresponding unit
matrix was calculated in the moving process [24]. A pooling
layer is often added between the volume base layers, which
can effectively reduce both the matrix size and the pa-
rameters in the subsequent volume base pooling layer and
the fully connected layer. This study uses the maximum
pooling layer, the formula for which is

g =Max(a, ). (16)

Each node of the fully connected layer is connected to all
the nodes of the previous layer and is used to integrate the
features extracted from the front and to act as a “classifier” in
the entire network [25]. In this study, the dropout layer was
added after the fully connected layer. The addition of the
dropout layer not only reduces error in the training model
each time and accelerates the training speed but also ef-
fectively prevents the occurrence of overfitting. The last layer
of the CNN is the Softmax layer. Its function is to turn the
original output result of the neural network into a proba-
bility distribution, thus contributing to normalization. As-
suming that the output of the original neural network is
V> Var Vaoroeee , ¥, the output after Softmax regression
processing is

el
noyj’
Y€

In addition, cross-entropy verification, a method used to
describe the distance between two probability distributions,
was applied in this study. Given two probability distributions
as p and g, the formula for expressing the cross-entropy of p

by g is

Softmax (y); = y: = (17)

H(p,q) =-) p(x)log q(x). (18)

Error backpropagation is based on the principle of
gradient descent, in which it is only necessary to update in
the direction of the negative gradient. Suppose J is the cost

function, then the iterative process of each w; ;, b;; is
W w o]
ij = Wij I
w;;
(19)
1 1 0]
bij =bj—a

i,]

among which « is the learning rate, and (a]/wf»’j) and
(o] /bﬁ.) j) and are the partial derivatives of the error.

4. Experiment

4.1. Selection and Design of Stimulus Materials. A total of 210
images were used for the stimulus file, of which 105 were
intended to induce positive emotions and the other 105
intended to induce negative emotions. The experiment
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FIGURE 2: Schematic diagram of wavelet decomposition.

Instruction

Fixation point
800ms

Active training
84 photos

Picture 3000 ms

Actively tested
21 photos

End

Black screen
3000ms

Feedback

Negative training
84 photos

Negative test 21
photos

FiGure 3: Flow chart of stimulus file.

process is illustrated in Figure 3. At the outset of the ex-
periment, subjects were requested to read the instructions on
the screen carefully in order to fully understand the ex-
periment process and details. Once the experiment had been
completed, the EEG data samples, comprising the training
set of positive and negative emotions, were mixed for the
model training, and the EEG data samples of the positive and
negative emotion test set were mixed for classification.

4.2. Selection of Mother Wavelet. There are many types of
mother wavelets, and therefore, it is essential to select one
that is most suitable for the effective extraction of EEG
features. The engineering realization of the WT in this study
was completed by Matlab. Matlab can complete 15 kinds of
female wavelets based on Haar, Daubechies, Biorthogonal,
Coiflet, Symlet, Morlet, Mexican hat, Meyer, Gaus,
Demeyer, ReverseBior, Cgau Cmor, Fbsp, and Shan,
amongst others. At present, there is no unified standard for
the selection of wavelet bases, and it is based mainly on the
accuracy of classification. In an emotion classification

experiment, one of many such experiments previously
conducted in our laboratory, the Symlets 8 wavelet (sym8),
was found most effective in reducing the original signal, and
based on “Video Stimulus EEG Signal Feature Research”
[10], its comparative effects were better than other mother
wavelets. Therefore, sym8 was selected as the mother wavelet
in this assay.

4.3. Acquisition and Preprocessing of EEG Signals. Six stu-
dents from the Minzu University of China were chosen to be
the subjects for the EEG collection. The subjects were aged
between 22 and 26, all of them right-handed, healthy, with
good sleeping patterns and no brain damage or the history of
mental illness. Preprocessing is performed mainly to remove
any noise components in the EEG signal and to provide a
guarantee for the analysis of the EEG signal characteristics
and extraction of the emotional characteristics of the signal.
In this study, preprocessing was performed using Scan 4.5
software to remove obstructive artifacts and for digital
filtering.
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FiGUre 4: CNN in the CSP-CNN model.

4.4. Training. Two classification models, the WT-CNN and
CSP-CNN, were used in this assay to analyze the pre-
processed brain. Electric data were used for emotion rec-
ognition; whereafter, the classification results were
compared and analyzed. The individual differences of an
EEG are obvious; therefore, all EEG classifications in study
were based on single-person EEG classification.

4.4.1. CSP-CNN. The CSP-CNN was used directly in this
study to perform feature extraction on the EEG data after
dimensionality reduction. That is to say, the CNN was used
to directly perform convolution operations on a 16 % 750
matrix. After continuous improvement, the CNN model was
established, as shown in Figure 4.

This model consists of two volume base layers, two
pooling layers, a fully connected layer, a dropout layer, and a
Softmax layer. The size of the two base layer convolution
kernels in the network is 3 # 3, the first base layer has 16
convolution kernels, and the second base layer has 32
convolution kernels. The size of the first pooling layer filter is
2 % 5, while the size of the second pooling layer filter is 4 * 5,
and both pooling layers are the largest pooling layer.

In Table 1, it can be seen that, although the sample
dimension was very large since the main parameters of the
pooling layer were 12,484, the addition of the pooling layer
effectively reduced the number of training parameters and
sped up the operation and training of the network. More-
over, this model was able to keep the value of cross-entropy
to mostly below 0.01 after training within 40,000 steps. The
smaller value of the loss function indicates that the con-
volutional neural network became more convergent after
training. To ensure that the training of the network had
reached a stable state, in this model, we used 50,000 steps to
mark the final result of the classification. The accuracy of the
emotion recognition of the six subjects after the training and
classification of this model is presented in Table 2.

The CNN was employed to directly extract and classify
the data of the public space model after dimensionality

TaBLE 1: Main parameters of the CNN model used to classify data
after CSP dimensionality reduction.

Layer Output Parameter
Conv2d_1 (16, 16, 750) 160
MaxPool_1 (16, 8, 150) 0
Conv2d_2 (32, 8, 150) 4640
MaxPool 2 (32, 2, 30) 0
Dense_1 (4) 7684
Sum 12484

TaBLE 2: Classification accuracy of the CSP-CNN model.

Subject Accuracy
aw 78.57
Ll 90.48
Ne 85.71
xcl 80.95
xtc 76.19
dst 71.43

reduction, achieving an average accuracy rate of 80.56%.
This result shows that a CSP-CNN can be used to effectively
extract features from EEG data.

4.4.2. WT-CNN. When building a CNN model, its structure is
determined by a variety of parameters. It is necessary to select
the appropriate number of layers and to determine the number
and size of each layer of the convolution kernel. After constant
debugging, the WT-CNN model shown in Figure 5 was
established for the classification of wavelet entropy features.
This model is comprised of two volume base layers, a
tully connected layer, a dropout layer, and a Softmax layer.
No pooling layer was used for dimensionality reduction, in
order to optimize information retention and classification
accuracy. The parameters of each layer of the WT-CNN
model are shown in Table 3, in which it is evident that, while



Complexity 7
Input
Size
Conv2-16 _ Conv2-32
3x3
64 x5
Dropout — FC
Output
Softmax Feature
vector

FiGure 5: CNN in the WT-CNN model.

TaBLE 3: Main parameters of the WT-CNN model.

Layer Output Parameter
Conv2d_1 (16, 64, 5) 160
Conv2d_2 (32, 64, 5) 4640
Dense_1 (4) 40964
Sum 45764

there is no pooling layer, the main training parameters are
fewer than 50,000 due to the small training samples, the
small number of convolution kernels, and minimal pa-
rameters in the fully connected layer. Therefore, the single-
step training speed of this model is relatively fast, with
training generally completed within 100,000 steps, and the
value of the loss function remains below 0.02.

A smaller loss function value indicates that a network is
more convergent after training. In order to ensure that the
network in this WT-CNN model remained stable after
training, 110,000 steps were completed, and the classification
result at that point was selected as final. The classification
results of the WT-CNN model on the six groups of indi-
vidual EEG data are shown in Table 4.

The average accuracy of the WT-CNN model was
86.90%. At this stage, a wavelet transform was used for
feature extraction. A support vector machine is a more
mature method based on EEG emotion recognition. The
WT-CNN model’s slight improvement in the classification
indicates that it is a feasible approach for EEG-based
emotion recognition.

Table 5 presents a comparison of the classification
results of the two classification models, CSP-CNN and
WT-CNN, in which it is evident that a CNN can be used
for emotion feature classification, as the classification
results were relatively accurate. Furthermore, of the two
emotion recognition models, WT was found to be an
excellent method for extracting emotional features, and
the classification effect achieved by the WT-CNN model
was also best.

TaBLE 4: WT-CNN model classification results.

Subject Accuracy (%)
aw 80.95
1l 92.86
e 97.62
xcl 73.81
xtc 85.71
dst 90.48

TaBLE 5: Comparison of CSP-CNN and WT-CNN classification
results.

Model Average accuracy (%) Variance of accuracy
CSP-CNN 80.56 0.00462963
WT-CNN 86.90 0.00742630

5. Conclusion

The study presents research and comparative analysis of the
application of two CNN models in EEG-based emotion
classification of processed samples.

As the results of previously used methods for feature
classification, such standardized variance among others, are
generally not sufficiently accurate, and because CNNs are
widely used in image feature extraction, it was hypothesized that
this approach could be used to achieve more effective outcomes.
First, a CSP-CNN model was established in which the CNN
extracts and classifies the data after the dimensionality reduction
of a cospace model. The average classification accuracy of the
CSP-CNN model was 80.56%, and its classification effect was
good. In addition, because wavelet transform is known to be an
excellent method for extracting emotional features, we estab-
lished the WT-CNN model. Its average classification accuracy
was 86.90%, realizing an improvement of 6.34% compared with
the results of the CSP-CNN model. These experiments, thus,
showed the feasibility of using wavelet entropy as an effective
method for feature extraction.



Analytical comparison of the two approaches shows that the
WT-CNN achieves better results than the CSP-CNN for the
following reasons: first, wavelet variance is an effective feature
quantity based on multiresolution analysis. It can characterize
the signal characteristics of different scales, and it does not
directly process a large number of wavelet coefficients, but
instead mines the data to obtain coimplemented information.
Furthermore, wavelet variance has the characteristics of clarity,
simple calculation and is not sensitive to noise. Finally, the
wavelet transform can greatly reduce or even remove corre-
lations between the different extracted features by selecting the
appropriate filter, thereby reducing the difficulty and speed of
calculations and improving accuracy.

In the following research, we can try to (1) study the
application of the convolutional neural network in multitype
emotion recognition, (2) use the convolutional neural
network in emotion recognition of large sample EEG data,
and (3) investigate whether EEG contains emotional features
or look for the timepoint when emotional features appear.
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The EEG data used to support the findings of this study are
supplied by the National Nature Science Foundation of China
under license and so cannot be made freely available. The data
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. Al-Nafjan, A. Al-Wabil, and M. Hosny, “Classification of
human emotions from electroencephalogram (EEG) signal
using deep neural network,” International Journal of Ad-
vanced Computer Science and Applications, vol. 8, no. 9, 2017.

[2] V. Lafuente, J. M. Gorriz, J. Ramirez, E. Gonzalez, and

E. Gonzalez, “P300 brainwave extraction from EEG signals: an

unsupervised approach,” Expert Systems with Applications,

vol. 74, pp. 1-10, 2017.

S. SimKok and L. Z. You, “Fast fourier analysis and EEG

classification brainwave controlled wheelchair,” in Proceed-

ings Of 2016 2nd International Conference on Control Science
and Systems Engineering (ICCSSE), pp. 20-23, Singapore, July

2016.

[4] Z. Wen, R. Xu, and J. Du, “A novel convolutional neural net-

works for emotion recognition based on EEG signal,” in Pro-

ceedings of the 2017 International Conference On Security, Pattern

Analysis, And Cybernetics (Spac), pp. 672-677, Guangzhou,

China, December 2017.

S. Alhagry, F. Aly Aly, and R. A. El-Khoribi, “Emotion rec-

ognition based on EEG using LSTM recurrent neural net-

work,” International Journal of Advanced Computer Science

and Applications, vol. 8, no. 9, pp. 355-358, 2017.

[6] J. Wang and Y. Li, “Multi-step ahead wind speed prediction
based on optimal feature extraction, long short term memory
neural network and error correction strategy,” Applied En-
ergy, vol. 230, pp. 429-443, 2018.

[7] G. Chen, W. Xie, T. D. Bui, and A. Krzyzak, “Automatic
epileptic seizure detection in EEG using nonsubsampled

[3

[5

[8

(9]

(10]

(11]

[12

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

Complexity

wavelet-fourier features,” Journal of Medical and Biological
Engineering, vol. 37, no. 1, pp. 123-131, 2017.

L. Yuan and J. Cao, “Patients’ EEG data analysis via spec-
trogram image with a convolution neural network,” Intelligent
Decision Technologies 2017, vol. 72, pp. 13-21, 2018.

X. Jie, R. Cao, and L. Li, “Emotion recognition based on the
sample entropy of EEG,” Bio-medical Materials and Engi-
neering, vol. 24, no. 1, pp. 1185-1192, 2014.

J. Liao, Q. Zhong, Y. Zhu, and D. Cai, “Multimodal physi-
ological signal emotion recognition based on convolutional
recurrent neural network,” IOP Conference Series: Materials
Science and Engineering, vol. 782, 2020.

N. Wu, Research on Emotion Classification Based on EEG
Signal, M. S. dissertation, Minzu University of China, Beijing,
China, 2013.

B. Zhang, H. Jiang, and L. Dong, “Classification of EEG signal
by WT-CNN model in emotion recognition system,” in
Proceedings of the IEEE 16th International Conference on
Cognitive Informatics and Cognitive Computing (ICCI+CC),
New York, NY, USA, July 2017.

A. Ghoshroy, W. Adams, X. Zhang, and D. O Giiney, “En-
hanced superlens imaging with loss-compensating hyperbolic
near-field spatial filter,” Optics Letters, vol. 43, no. 8,
pp. 1810-1813, 2018.

Y. Park and W. Chung, “Optimal channel selection using
correlation coefficient for CSP based EEG classification,”
Institute of Electrical and Electronics Engineers Access, vol. 8,
pp. 111514-111521, 2020.

L. Yi, Y. Huang, X. Zheng, and J. Cheng, “Seismic time-
frequency analysis based on entropy-optimized Paul wavelet
transform,” Institute of Electrical and Electronics Engineers
Geoscience and Remote Sensing Letters, vol. 17, no. 2,
pp. 342-346, 2020.

R. Tibor Schirrmeister, L. Gemein, K. Eggensperger, F. Hutter,
and T. Ball, “Deep learning with convolutional neural net-
works for EEG decoding and visualization,” Human Brain
Mapping, vol. 38, pp. 5391-5420, 2017.

T. Song, W. Zheng, P. Song, and Z. Cui, “EEG emotion
recognition using dynamical graph convolutional neural
networks,” Institute of Electrical and Electronics Engineers
Transactions on Affective Computing, vol. 11, no. 3, pp. 532—
541, 2020.

U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and
H. Adeli, “Deep convolutional neural network for the
automated detection and diagnosis of seizure using EEG
signals,” Computers in Biology and Medicine, vol. 100,
pp. 270-278, 2018.

P. J. GarcA-a-Laencina, G. RodrA-guez-Bermudez, and
J. Roca-Dorda, “Exploring dimensionality reduction of EEG
features in motor imagery task classification,” Expert Systems
with Applications, vol. 41, no. 11, pp. 5285-5295, 2014.

J. Olias, R. Martin-Clemente, M. A. Sarmiento-Vega, and
S. Cruces, “EEG signal processing in MI-BCI applications
with improved covariance matrix estimators,” Institute of
Electrical and Electronics Engineers Transactions on Neural
Systems and Rehabilitation Engineering, vol. 27, no. 5,
pp. 895-904, 2019.

M. Mohammad and A. Trounev, “Implicit Riesz wavelets
based-method for solving singular fractional integro-differ-
ential equations with applications to hematopoietic stem cell
modeling,” Chaos, Solitons ¢ Fractals, vol. 138, p. 109991,
2020.

A. Bhattacharyya, L. Singh, and R. B. Pachori, “Fourier-Bessel
series expansion based empirical wavelet transform for



Complexity

(23]

[24]

[25]

analysis of non-stationary signals,” Digital Signal Processing,
vol. 78, pp. 185-196, 2018.

V. J. Lawhern, A. J Solon, N. R. Waytowich, S. M. Gordon,
C. P. Hung, and B. J. Lance, “EEGNet: a compact convolu-
tional neural network for EEG-based brain-computer inter-
faces,” Journal of Neural Engineering, vol. 15, no. 5,
pp. 1741-2552, 2018.

C. Ieracitano, N. Mammone, A. Bramanti, A. Hussain, and
F. C. Morabito, “A Convolutional Neural Network approach
for classification of dementia stages based on 2D-spectral
representation of EEG recordings,” Neurocomputing, vol. 323,
pp. 96-107, 2019.

W. Zaperty, T. Kozacki, and M. Kujawinska, “Multi-SLM
color holographic 3D display based on RGB spatial filter,”
Journal of Display Technology, vol. 12, no. 12, pp. 1724-1731,
2016.



