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*e paper considers two-agent order acceptance scheduling problems with different scheduling criteria. Two agents have a set of
jobs to be processed by a single machine. *e processing time and due date of each job are known in advance. In the order
accepting scheduling problem, jobs are allowed to be rejected. *e objective of the problem is to maximize the net revenue while
keeping the weighted number of tardy jobs for the second agent within a predetermined value. A mixed-integer linear pro-
gramming (MILP) formulation is provided to obtain the optimal solution. *e problem is considered as an NP-hard problem.
*erefore, MILP can be used to solve small problem instances optimally. To solve the problem instances with realistic size,
heuristic and metaheuristic algorithms have been proposed. A heuristic method is used to determine and secure a quick solution
while the metaheuristic based on particle swarm optimization (PSO) is designed to obtain the near-optimal solution. A numerical
experiment is piloted and conducted on the benchmark instances that could be obtained from the literature. *e performances of
the proposed algorithms are tested through numerical experiments. *e proposed PSO can obtain the solution within 0.1% of the
optimal solution for problem instances up to 60 jobs.*e performance of the proposed PSO is found to be significantly better than
the performance of the heuristic.

1. Introduction

Order acceptance scheduling has been studied by re-
searchers for the last few decades. In many cases, the number
of orders accepted by a firm is not necessarily positively
related to its profit, especially, when the capacity is bounded.
Firms need to reject some of the orders to maximize their
profit when the associated costs for some of the orders
exceed their revenues. Accepting orders without a sensible
and logical consideration might have a directly propor-
tionate impact on the increase in workload. When the
workload is excessively heavy, compared to the capacity of

the firm, it might incur late deliveries of orders, therefore
decreasing the level of customer satisfaction or even losing
important customers. Hence, the study having order ac-
ceptance as its core focus has grabbed the attention of many
researchers.

In the field of scheduling, researchers considered order
acceptance in the last few decades. In the scheduling
problem, decision-makers need to decide which jobs to be
processed and what will be the sequence of the accepted jobs
(Li et al. [1]). *ere is a trade-off between the revenues and
penalty function while deciding acceptance or rejection of
the jobs. *ere are always some penalty functions available,
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related to the due dates, such as lateness and tardiness, which
are worth looking into, depending on the scenario re-
quirement. *e order acceptance scheduling problem aims
to maximize the profit gained by the revenues of accepted
orders minus the specific penalty function.

So far, many researchers have tried to apply the study to
the order acceptance problems, testing its usefulness in
multiagent settings. In the multiagent scheduling problem,
the jobs of two agents with conflicting objectives are pro-
cessed by common resources (Gajpal and Li [2]; Li et al. [3]).
*e objectives of the order acceptance scheduling problem
andmultiagent scheduling problem are similar. Both refer to
the construction of the settings for more explicitly specified
conditions. *e paper of Reisi-Nafchi and Moslehi [4] de-
picts a more practical application portraying the combi-
nation of the order acceptance with multiagent scheduling
problems. In their research, they formulated a mathematical
model for their problem and proposed a hybrid genetic
algorithm to solve this problem.

Inspired by the work of Reisi-Nafchi and Moslehi [4],
this paper extends their study, highlighting the following
three perspectives: (1) propose a new variant of the two-
agent order acceptance scheduling problem; (2) propose a
mathematical model for the new variant of the problem; and
(3) design algorithms that can be used to solve both versions
of the problem. *is paper focuses on two problems named
as lateness penalty problem (LPP) and the tardiness penalty
problem (TPP). *e LPP problem is proposed by Reisi-
Nafchi and Moslehi [4]; however, the TPP problem has been
introduced in this paper, for the very first time. Both
problems are the two-agent single machine order acceptance
scheduling problems but their objective functions are dif-
ferent. *e objective function of both problems considers
how to maximize the net revenue of the first agent, subject to
an upper bound on the weighted number of tardy jobs for
the second agent. *e net revenue is calculated as revenue
from the accepted jobs subtracted by the penalty function.
Penalty functions take the punishment by decreasing the
objective function value when job processes after their due
dates. *e penalty value of the LPP problem is the weighted
lateness of the first agent while the penalty value of the TPP
problem is the weighted tardiness of the first agent.

To solve these problems, one metaheuristic and one
heuristic algorithm have been introduced. A mathematical
model based on MILP formulation is developed to find the
optimal solution for the problem.*eMILP formulation can
solve only small size problem instances because the CPU
time for solving MILP formulation increases exponentially
with the size of the problem. To solve the problem instances
with realistic size, heuristic and metaheuristic algorithms
have been proposed.

*e scheduling problem considered in this paper could
be applied to the following scenario. A restaurant provides
service to two kinds of customers: (1) customers who dine in
the restaurant and (2) customers who order take-out ser-
vices. Jobs in this scheduling problem are the dishes to be
served to the customers. *e two types of customers are
treated as two agents. During the rush hours, the restaurant
could not accept all the orders. *us, it needs to reject some

of the orders based on the profitability of the orders. *e
objective of the restaurant is to maximize the net revenue
coming from all the orders while the weighted number of
tardy jobs from the take-out customers could not exceed the
upper bound. Also, the problem considered in this paper has
many practical applications in the manufacturing industry
as well as in the service industry. One of the applications that
fall under this paper’s criteria is the cloud-computing en-
vironment (Bhardwaj et al. [5]). In the cloud-computing
environment, the service provider accepts the order of
processing jobs from different users along with his own jobs.
*e service provider can be considered as an agent A and all
other users combined can be considered as an agent B. *e
objective of the cloud-computing service provider is to
maximize the net revenue from all the accepted jobs, while
the weighted number of tardy jobs from all other users is
kept within a predefined limit set by the management.

*e remainder of the paper is organized as follows.
Related work is reviewed in Section 2. A detailed description
of the problems and the problem formulation is presented in
Sections 3 and 4. *e proposed algorithms are described in
Section 5. Numerical results performed in Section 6 are used
for comparing the effectiveness of the proposed algorithms.
Eventually, Section 7 presents a summary of this paper.

2. Literature Review

Guerrero and Kern [6] are the pioneers in the study of order
acceptance problems. *ey pointed out the importance of
selecting a proper number of orders instead of accepting
orders without any sensible cogitation. Pourbabai [7] first
developed a mathematical model to help the manufacturers
select the orders among all the orders. Slotnick and Morton
[8] worked on an order acceptance problem in a single
machine environment, of which the objective is the revenues
minus weighted lateness penalties. *ey proposed an exact
algorithm (branch and bound) and two heuristics to solve
the problem. Ghosh [9] extended the work of Slotnick and
Morton [8] by providing the NP-hardness proof of the
problem. Also, they provided two pseudopolynomial algo-
rithms to solve the problem, along with a fully polynomial-
time approximation scheme. Lewis and Slotnick [10] worked
on a multiperiod order acceptance scheduling problem in
which decisions on order acceptance are made through
different periods. *ey assume that job rejection leads to the
loss of customers, and the profitability of decisions is
scrutinized and assessed over each period. *ey proposed a
dynamic programming algorithm and some heuristics to
solve the problem. Slotnick and Morton [11] considered
another order acceptance scheduling problem by replacing
the penalty function with weighted tardiness. Rom and
Slotnick [12] applied a genetic algorithm to solve the order
acceptance scheduling problem with tardiness revenues.

Many researchers added variants to the order acceptance
scheduling problem. Charnsirisakskul et al. [13] studied a
single machine order acceptance problem with job pre-
emption. Oǧuz et al. [14] considered sequence-dependent
setup times in their problem and arbitrarily assigned
deadlines to the orders. Zhong et al. [15] added the variant of
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machine availability to order acceptance scheduling prob-
lems, in which jobs could only be processed during specific
time intervals due to the availability of the machines. When
the workload is heavier than the capacity, manufacturers
should decide either to reject or to outsource some of the
orders. Xiao et al. [16] worked on an order acceptance
scheduling problem in a permutation flow shop environ-
ment. *ey formulated their problem into an integer-pro-
gramming problem and applied simulated annealing based
on partial optimization to solve the problem. Lei and Guo
[17] considered an order acceptance problem in a workshop
environment. *ey contrived, putting together this partic-
ular problem and blending it into a mixed-integer pro-
gramming problem, and applied the parallel neighborhood
search algorithm to it.

*ere are some studies on order acceptance scheduling
with bicriteria objectives. Lei and Guo [17] considered the
objective of maximizing total net revenue and minimization
of makespan simultaneously. Ou and Zhong [18] worked on
a bicriteria order acceptance scheduling problem, with upper
bounds on the number of the rejected job as well as the total
processing time of accepted jobs. Noroozi et al. [19] con-
sidered order accepting criteria in a third-party logistic
distribution system. *ey analyzed the trade-off among
accepted orders revenue, delivery cost, and tardiness penalty
in integrated production-distribution to maximize benefit.
Silva et al. [20] considered an order acceptance scheduling
problem with sequence-dependent setup time to maximize
profit. *ey solved the problem using the Lagrangian re-
laxation and column generation-based branch and bound
method. Sarvestani et al. [21] addressed an integrated order
acceptance, supplier selection, and scheduling problem to
maximize profit. *ey used genetic algorithm (GA) and
variable neighborhood search (VNS) to solve the problem. Li
and Ventura [22] considered a single-agent single machine
scheduling problem with order acceptance criteria to
maximum profit. *e profit function considers the revenue
minus the tardiness penalty. Recently, order acceptance
criteria are combined with different settings/environments
such as parallel machine setting (Wang and Ye [23]; Wu et.
al [24]; Palakiti et al. [25]); carbon reduction environment
(Chen et al. [26]); cluster supply chain environment (Li et al.
[27]); production system (Wang et al. [28]; Yavari et al.
[29]); and dynamic environment (Li et al. [30]; Melchiors
et al. [31]). *e increasing number of research articles in the
order accepting criteria under different settings shows the
importance and popularity of order acceptance scheduling
problems.

*e article by Reisi-Nafchi and Moslehi [4] is the closely
related model considered in this paper. *ey integrated the
two-agent scheduling situation into the order acceptance
scheduling problem to maximize the net revenues from the
first agent, subject to an upper bound of a weighted number of
tardy jobs from the second agent. *e net revenue is con-
sidered as a revenue of accepted orders with a penalty of total
weighted lateness of accepted jobs. *ey provided an integer-
programming formulation and hybrid genetic algorithm to

solve the problem. *is paper extends the work of Reisi-
Nafchi and Moslehi [4] by introducing a new variant of the
order acceptance criteria in the “two agents scheduling”
setting.*e literature review also stipulates the common trend
of using metaheuristics to solve the scheduling problem. *is
observation has motivated us to develop and incorporate a
metaheuristic algorithm to solve our problem.

3. Problem Definition and Notations

*is paper considers a single machine scheduling problem
with two agents, namely, agent A and agent B. Each of the
agents has a job set nx to be processed in a single machine.
*e processing time pi, weight wi, due date Di , and revenue
Ri associated with the job i are known. All the jobs are
available at time zero (i.e., the release time is zero). A single
machine processes all the jobs and at a time only one job is
processed. Once a machine has started processing a job, it
will continue running on that job until the job is completed.
*e problem seeks to determine the sequence of jobs σ. For a
given sequence σ, the complete time Ci(σ) of accepted job i
can be calculated by the summation of processing time of all
the jobs (including job i) sequenced before job i. *e lateness
value Li of the job is defined as a difference between
completion time and due date (i.e., Li � Ci(σ) − Di). *e
lateness value is positive if the job is completed after its due
date. On the other hand, the lateness value is negative if the
job is completed before the due date. Slotnick and Morton
[8] introduced the lateness penalty to capture the penalty
and reward in one function. Finishing a job late incurs a
penalty in terms of loss of goodwill while finishing the job
early incurs an appreciation from the customer. However, in
many situations, only late completion incurs a penalty and
the early completion does not bring any appreciation. *is
situation is captured in a tardiness value which only mea-
sures the delay in the completion time of a job (i.e.,
Ti � Max 0, Ci(σ) − Di ). *e existing literature studies the
order acceptance scheduling problem in which lateness
penalizes revenue obtained from the accepted jobs. *is
paper introduces a new order acceptance scheduling
problem variant in which tardiness penalizes revenue re-
ceived from the accepted jobs. *e summary of notations
used in this paper is summarized as follows:

(i) X: set of agents X� {A, B}
(ii) nx: the number of jobs for agent x ∈ X

(iii) n: total number of jobs, n � nA + nB

(iv) N: set of all n jobs, N � 1, 2, . . . , n{ }

(v) NA: set of A jobs, consisting of nA jobs,
NA � 1, 2, . . . , nA 

(vi) NB: set of B jobs, consisting of nB jobs,
NB � nA + 1, nA + 2, . . . , n 

(vii) pi: the processing time of job i
(viii) Ri: revenue of job i
(ix) wi: weight of job i
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(x) Di: due date of job i
(xi) σ: ordered set of jobs already scheduled
(xii) Ci(σ): completion time of accepted job i

under sequence σ.
(xiii) fx(σ): objective function of agent x ∈ X

under sequence σ.
(xiv) Yi: binary decision variable taking value 1 if

job i is accepted
(xv) Ui: binary decision variable taking value 1 if

job i is tardy
(xvi) Zij: binary decision variable taking value 1 if

job i precedes job j

(xvii) Ti: decision variable representing tardiness of
the job i

(xviii) Li: decision variable representing lateness of
the job i

(xix) (xx) Q: the upper bound, a constant
numberbigM: a large number

*is paper showcases an attempt to maximize the net
revenue subject to an upper bound of agent B. We consider
two versions of the order acceptance two-agent scheduling
problems, the LPP problem and the TPP problem. *e
objective of the LPP problem is to maximize the net revenue
from all the accepted orders subtracted by the total weighted
lateness from the accepted jobs of agent A, subject to an
upper bound of the total weighted number of tardy jobs from
agent B. In the scheduling terminology, this problem can be
represented as 1|OA, i∈NB

wiUiYi ≤Q|i∈NRiYi − i∈NA

wiLiYi. *e term OA is used for order acceptance. *e
objective of the TPP problem is to maximize the net revenue
from all the accepted orders subtracted by the total weighted
tardiness from the accepted jobs of agent A, subject to an
upper bound of the total weighted number of tardy jobs from
agent B. *is problem can be represented as 1|OA, i∈NB

wiUiYi ≤Q|i∈NRiYi − i∈NA
wiTiYi.

*e computational complexity of the LPP problem is
proved to be NP-hard by Reisi-Nafchi and Moslehi [4]. *ey
showed that the LPP problem is a special case
1|i∈NB

wiUi ≤Q|i∈NA
wiLi; therefore, the LPP problem is

also an NP-hard problem. *e TPP problem reduces to
1|i∈NB

wiTi when Q is set to infinite. Since 1|i∈NB
wiTi is

NP-hard, the TPP problem is also an NP-hard problem.

4. Problem Formulation

Reisi-Nafchi and Moslehi [4] formulated the LPP problem
into an integer-programming mathematical model. Based
on their formulation, we have brought forward an evolved
version of the paper, which is developed as an integer-
programming model for the TPP problem.

When formulating the mathematical model for the TPP
problem, a new binary variable Zij is introduced, which
denotes the relative position between jobs i and j. *e binary
variable Zij takes the value of 1 if job i precedes job j,
otherwise zero. It is significant to note here that the pre-
cedence here is not the immediate precedence (i.e., Zij takes

the value of 1; this does not mean that job i and job j are
adjacent to each other). Using the above notations, the TPP
problem can be formulated as follows:

Max 
i∈N

RiYi − 
i∈NA

wiTi, (1)

subject toYi + Yj ≤ 1 + Zij + Zji, i, j ∈ N, i< j, (2)

Yi + Yj ≥ 2 Zij + Zji , i, j ∈ N, i< j, (3)

Zik + Zkj + Zjk ≤ 2, i, j, k ∈ N, i≠ j, j≠ k, i≠ k, (4)

Ti ≥ 
j∈N

pjZji + piYi − Di, i ∈ NA, (5)

Ti ≥ 0, i ∈ NA, (6)


j∈N

pjZji + piYi ≤DiYi + BigM × Ui, i ∈ NB, (7)


j∈NB

wjUj ≤Q, (8)

Ui ∈ 0, 1{ }, i ∈ NB, (9)

Yi ∈ 0, 1{ }, i ∈ N, (10)

Zij ∈ 0, 1{ }, i, j ∈ N. (11)

Equation (1) represents the objective function of the
TPP problem, which is the total revenue of all the accepted
orders penalized by the weighted tardiness of agent A
orders. Constraints (2)–(4) determines the relative posi-
tions of jobs. Constraint (2) requires that a job i must
precede another job j if both jobs are accepted. Constraint
(3) sets the value of Zij or Zji to zero when job i or j is
rejected, preventing the situation that Zij and Zji both are
equal to zero. Constraint (4) ensures that there are no job
loops in the sequence. Job loop represents a situation in
which job i precedes job j, job j precedes job k, and job k

precedes job i, which is logically wrong. Constraints (5)
and (6) determine the tardiness value for job i. Constraint
(7) determines the value of Ui. Constraint (8) ensures that
the upper bound of the weighted number of tardy jobs
from agent B is not exceeding. Constraints (9)–(11) impose
the binary values for binary decision variables Ui, Yi, and
Zij.

Some of the optimal solution property of the LPP
problem also holds true for TPP problem. *e TPP problem
satisfies the following three lemmas for which proof can be
found in the work of Reisi-Nafchi and Moslehi [4].

Lemma 1. *ere exists an optimal sequence, in which the
agent B tardy accepted orders are sequenced arbitrarily at the
end of the sequence.
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Lemma 2. *ere exists an optimal sequence, in which the
global arrangement of the agent B nontardy accepted orders
follows the earliest due date (EDD) order and they are placed
at the last possible positions before their due dates.

Lemma 3. *ere exists an optimal sequence, in which the
adjacent orders of agent A follow the weighted shortest
processing time (WSPT) order.

5. Proposed Algorithms

In this section, algorithms including a heuristic and PSO are
the proposed approaches to resolve the LPP and TPP
problems.

5.1. Heuristic Algorithm. *e proposed heuristic is based on
the WSPT and EDD rule. In the WSPT rule, jobs are se-
quenced in nondecreasing order of the pi/wi ratio. In the
EDD rule, jobs are sequenced in nondecreasing order of
their due dates Di. *e WSPT rule minimizes the total
weighted completion time while the EDD rule minimizes the
total tardiness objective for a single machine and a single-
agent setting.

*e heuristic first creates partial schedules σA and σB for
A and B types of jobs according to WSPT and EDD rules,
respectively. *e sequence σA is modified by removing
unprofitable jobs. *e sequence σB is divided into two
subsequences σE

B and σL
B for an early and late set of the jobs.

*e final sequence σ is created by first sequencing σA , then
σE

B , and finally σL
B. If the resultant sequence σ is infeasible,

then the jobs from the sequence σ are removed one by one to
make the solution feasible. *e pseudocode of the proposed
heuristic algorithm is presented as follows (Algorithm 1).

*e computational complexity of the proposed algo-
rithm can be described as follows. *e initial solution
generation has four separate subprocesses: (1) sequence of A
jobs with complexity O(n2

1); (2) sequence of B jobs with
complexity O(n2

2); (3) split of the sequence of B jobs with
complexity O(n2); and (4) resequencing of late B jobs with
complexity O(n2

2). *us, the overall complexity of the initial
solution process is O(n2

1) + O(n2
2) + O(n2) + O(n2

2) �

O(n2
1) + O(n2

2). *e feasibility phase requires the maximum
removal of n jobs and after each removal, it requires ob-
jective function calculation which can be performed in O(n)

time. *us, the feasibility phase can be performed in O(n2)

time. *erefore, the overall complexity of the heuristic al-
gorithm is O(n2

1) + O(n2
2) + O(n2) � O(n2).

5.2. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a metaheuristic technique for solving NP-
hard problems. PSO is derived from the social behavior of
fish and birds. In this algorithm, individual solutions are
updated by the other members of the group. Although PSO
applies to many scheduling problems, there are some

challenges while applying it to solve a specific problem. *e
main challenge for this algorithm is to design a solution
representation mechanism [32, 33] for the particular
problem. In other words, this refers to the mechanism,
which establishes the rules to interpret the data of particles
into an actual schedule. Additional efforts are required to
make it pertinent to the order acceptance scheduling
problems because two subproblems are residing within it.
While the first subproblem determines the set of accepted
jobs, the objective of the second subproblem is to find the
sequence for the accepted jobs. *erefore, a PSO algorithm
containing parallel parameters of position values and ve-
locities has been proposed. It is difficult for the classical PSO
with only one group of parameters to solve the problems in
this paper; two groups of position values and velocities are
embedded in the algorithm. *e first group focuses on the
selection of accepted jobs, and the second group focuses on
finding the sequence of the accepted jobs. Each particle in
PSO has n dimensions representing n jobs. Let X1

j and X2
j

represent the position value vector related to the order
acceptance decision making and the job sequencing, re-
spectively. *e following are the notations that we have
employed to describe the proposed PSO algorithm:

(i) m: number of particles
(ii) k: iterations index
(iii) K: maximum number of iterations
(iv) x1

ij: position value of i th particle in j th di-
mension for order acceptance criteria

(v) X1
i : position vector of i th particle for order

acceptance criteria
(vi) v1ij: velocity value of i th particle in j th di-

mension for order acceptance criteria
(vii) V1

i : velocity vector of i th particle for order
acceptance criteria

(viii) x2
ij: position value of i th particle in j th di-

mension for job sequencing criteria
(ix) X2

i : position vector of i th particle for job
sequencing criteria

(x) v2ij: velocity value of i th particle in j th di-
mension for job sequencing criteria

(xi) V2
i : velocity vector of i th particle for job

sequencing criteria
(xii) (xiii) pbij: personal best position value of i th

particle in j th dimension for job sequencing
criteriagbj: global best position value in j th

dimension for job sequencing criteria
(xiv) SPBi : personal best solution vector for i th

particle
(xv) SG: global best solution
(xvi) w: inertia weight

Complexity 5



(xvii) c1, c2: social cognitive numbers

*e pseudocode of the proposed PSO algorithm is as
follows (Algorithm 2).

5.2.1. Parameter Initialization. At the beginning, parame-
ters are generated using the following equations:

x
1
ij � X

1
min + X

1
max − X

1
min  × U(0, 1),

v
1
ij � V

1
min + V

1
max − V

1
min  × U(0, 1),

x
2
ij � X

2
min + X

2
max − X

2
min  × U(0, 1),

v
2
ij � V

2
min + V

2
max − V

2
min  × U(0, 1),

(12)

where X1
max, V1

max, X2
max, V2

max are equal to 4;
X1

min, V1
min, X2

min, V2
min are equal to − 4. U(0, 1) is a random

number within the range of [0, 1]. *erefore, all these pa-
rameters remain within the range of [− 4, 4] and the same is
maintained throughout the algorithm.

5.2.2. Sequence Generator. As mentioned above, the se-
quence generating process in the proposed PSO consists of
two steps. *e first step is to decide and govern the accepted
jobs and the second step decides the sequence of the ac-
cepted jobs. Job j in particle i is accepted when x1

ij is greater
than 0; otherwise, it is rejected. Jobs are sequenced according
to the minimum position value (MPV) rule, which specifies
that the jobs are ordered in nondecreasing order of their
position values x2

ij.

5.2.3. Updating Parameters. Parameters are updated at the
end of each iteration. Before updating the parameter, the
personal best solution S

pb
i and the personal best position

value pbij for each particle are updated. If the new solution σi

is found to be better than S
pb
i , then the personal best solution

S
pb
i is replaced by the current solution σiand the personal
best position value pbij is replaced by the position value x2

ij.
Similarly, the global best solution and the global best po-
sition values are updated. Two different ways are applied for
updating job sequencing and order accepting criteria. *e
order acceptance parameters as updated as follows:

v
1
ij � w × v

1
ij + c1 × r1 × z1 + c2 × r2 × z2,

x
1
ij � x

1
ij + v

1
ij.

(13)

Parameters of z1 and z2 are variables representing the
status of job j. Variable z1 takes the value of 1 when job j in i
th particle is accepted in personal best solution; otherwise, it
takes the value of − 1. Likewise, the value of the variable z2 is
determined by whether the job is accepted in the global best
solution or not. Parameters of c1 and c2 are the social co-
efficients quantifying the extent to which an individual relies
on its experiment (i.e., to its own personal best or to the
global best). Inertia w is the resistance of any physical object
to any change in the state of motion. It controls the velocity
and direction of all the particles. Variables of r1 and r2 are
random numbers within the range of [0, 1]. In this paper, we

set c1 � 0.9, c2 � 0.9, w � 0.9. *e job sequencing parame-
ters are updated as follows:

v
2
ij � w × v

2
ij + c1 × r1 × pbij − x

2
ij  + c2 × r2 × gbij − x

2
ij ,

x
2
ij � x

2
ij + v

2
ij.

(14)

5.2.4. Local Search. *ere are two types of local search
schemes proposed to improve the solution of each particle.
*ese two local search schemes are named as an accepted job
insertion local search (AJILS) and a rejected job insertion local
search (RJILS). *e AJILS tries to improve the solution by
repositioning the accepted jobs to a different position. At
first, the job is removed from its original position, and then it
was reinserted in all the other positions. *e best-inserted
position is selected for the insertion of the job and the re-
sultant solution is used for further evaluation. All the ac-
cepted jobs are selected one by one for possible solution
improvement. *e RJILS attempts to insert the rejected jobs
into the solution. *e rejected jobs are inserted in the best
feasible position if it improves the objective function value.
All the rejected jobs are singled out one by one for possible
solution improvement.

5.2.5. Normalization of Parameters. *e absolute values of
parameters tend to be very large after many iterations,
enabling the solutions to get stuck in the local optimum.
*us, the parameters are normalized after each iteration.*e
parameters exceeding the upper limit are forced to take a
value of 4, and the parameters that are less than the lower
limit are forced to take the value of − 4.

5.2.6. Computational Complexity of the PSO. *e three main
components of the PSO algorithm are (1) sequence gener-
ation step, (2) local search method, and (3) parameter
updating step. In the sequence generation step, determining
the set of accepted and rejected jobs can be performed in
O(n) time while the sequencing operation can be performed
in O(n2) time. *us, the overall complexity of the sequence
generation step is O(n2). *e local search uses the two
schemes with the complexity of (n2) for each scheme. *us,
the overall complexity of the local search scheme is O(n2).
*e parameter updating can be performed in O(n) time.
*us, the complexity of one iteration of PSO is
O(n2) + O(n2) + O(n) � O(n2). *e PSO performs K iter-
ations, which brings the overall complexity of the PSO to be
O(Kn2).

6. Numerical Results

*is section evaluates the performance of the proposed
algorithms, assessing their effectiveness and application
utility on two problems. Numerical analysis is provided
based on the solution and CPU time of the proposed al-
gorithms. *e proposed algorithms are coded in the C++
programming language. *e numerical experiments are
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performed in a computer environment with AMD Opteron
2.3GHz with 16GB of RAM on Unix OS. *e linear-pro-
gramming-based mathematical model proposed for the TPP
problem is solved by AMPL software with CPLEX solver, in
the computer system of iMac desktop with 3.3GHz 8GB
RAM.

*ere are three sections in this section. *e first section
explains the settings of the instances used in this paper. *e
second section aims to test the robustness of proposed al-
gorithms by comparing them with the existing solution of
Reisi-Nafchi and Moslehi [4]. *e third section evaluates the
proposed algorithms on the TPP problem. *e following are
notations used to report and evaluate the numerical results:

(i) CPLEX: value of objective function generated by the
mathematical model

(ii) ABS: absolute value of objective function generated
by algorithms

(iii) ABSbest: ABS value generated by the algorithm with
the best performance

(iv) APD: absolute percentage of deviation,
APD � ((ABS − CPLEX)/CPLEX∗ 100%)

(v) RPD: relative percentage of deviation,
RPD � ((ABS − ABSbest)/ABSbest ∗ 100%)

(vi) CPU: running time of the proposed algorithm

Additionally, Avg, Min, and Max are used for repre-
senting average, minimal, maximal values of corresponding
results, respectively. We also performed a paired t-test to
compare the performance of the proposed algorithms at the
95% significance level. In the paired t-test, the population
mean of the two methods is compared. Let μD � μ1 − μ2
denote the true average difference between the average
solution values of the comparing algorithms. Here, μ1 and μ2
denote the population mean of the comparing algorithms,
respectively. *e null hypothesis is given by H0: μD � 0,
which states that there is no difference between the average
solution value of the algorithms. *e alternative hypothesis
is given by H1: μD > 0 stating that the average solution of the
first algorithm is greater than the average solution of the
second algorithm.

6.1. InstanceSetting. In this paper, instances generated in the
study of Reisi-Nafchi and Moslehi [4] are recognized as the
benchmark instances. Different algorithms are evaluated
and appraised based on their performance on these
benchmark instances. *e setting of the benchmark in-
stances is as follows.

Processing times and weights are generated randomly
from a uniform distribution within the interval of [1, 10].
When generating due dates, two additional parameters are

(1) /∗ Initial Solution ∗/
(2) Create a sequence σA for A jobs according to the WSPT rule
(3) for k� 1 to n1 do
(4) Select job i � σA(k)

(5) if Ri <wi × (Ci(σ) − Di) then
(6) Remove job i from sequence σA

(7) end if
(8) end for
(9) Create a sequence σB for B jobs according to the EDD rule
(10) Create null sequences σE

B � ϕ  and σL
B � ϕ 

(11) for k� 1 to n2 do
(12) Select job i � σB(k)

(13) if Ci(σA) + pi < � Di then
(14) append job i in sequence σE

B

(15) else
(16) append job i in sequence σL

B

(17) end if
(18) end for
(19) Update σL

B by arranging jobs in nondecreasing order of Ri/wi ratio
(20) Create initial sequence σ � σA ∪ σE

B ∪ σL
B 

(21) /∗ Feasibility phase ∗/
(22) U(σ)⟵fB(σ) //Calculate the weighted number of tardy jobs for σ
(23) for k� 1 to n do
(24) if U(σ)≤Q then
(25) break k loop
(26) end if
(27) σ⟵Update sequence by removing first job
(28) U(σ)⟵fB(σ) //Calculate the weighted number of tardy jobs for σ
(29) end for
(30) return solution σ

ALGORITHM 1: Heuristic algorithm.
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introduced: tardiness factor τ and the range factor r. Due
dates are generated randomly within the range of
[TPT∗(1 − τ − (r/2)), TPT∗(1 − τ − (r/2))], in which the
TPT denotes the sum of processing times from all the jobs.
*e revenues are generated from a uniform distribution
within the interval of [1, 2∗pi]; upper bound Q is generated
within the range of [0, 

n
i�n1+1 wi]. *e instances are sorted

into eight groups according to the parameter setting, the
sizes of instances ranging from 20 to 150. In the first four
groups, n1 � 2n2; in the remaining groups, 2n1 � n2. Pa-
rameter of τ takes the value of 0.3 in the groups of G01, G02,
G05, and G06, and it takes the value of 0.7 in the groups of
G03, G04, G07, and G08. *e parameter of r takes the value
of 0.2 in groups of G01, G03, G05, and G07. In the
benchmark instances, there are 1280 instances in total and
20 instances for each parameter setting. *e numerical
analysis is primarily focused on the average results, which
could be obtained from a varied set of results in different
parameter settings.

6.2. Numerical Analysis for the LPP Problem. As mentioned
above, the performance of PSO and heuristic is compared
and weighed against the results in Reisi-Nafchi and Moslehi
[4]. *e numerical results of GA and CPLEX solution in
Reisi-Nafchi and Moslehi [4] are obtained from the authors.
In small instances, the performance of these algorithms
along with the GA algorithm is compared with the CPLEX
solution, while in large instances, the illustrations include
the performance of PSO, heuristic, and GA being compared
with each other. It is noteworthy that the CPU time of the
heuristic is not shown in the corresponding tables since the
proposed heuristic algorithm itself could solve all of the
instances within 0.1 seconds.

Table 1 displays the computational results of integer-
programming formulation. According to the results, it could
be seen that the existing mathematical model could solve
problem instances with up to 60 jobs. It could also be seen
that the CPU time of G03 and G07 is significantly longer
than other groups, when τ � 0.3 and r � 0.6. *e maximum
CPU time in these groups exceeds 1000 seconds, indicating

that it is more difficult for the system to search for the
optimal solutions in these groups. *e results further in-
dicate that the CPU time of the CPLEX solver increases
exponentially and thus the larger problem instances cannot
be solved using the CPLEX solver. *erefore, heuristic and
metaheuristic algorithms are used to solve bigger problem
instances.

Table 2 reports the APD values of the three algorithms
for the LPP problem. As shown in the table, the PSO al-
gorithm performs best in small instances in terms of the
solution quality. *e solutions of PSO are only 0.01 percent
away from the CPLEX solutions. Besides, the maximal APD
of PSO is lower than 0.1%, which is lower than other al-
gorithms. On the other hand, though the heuristic deviates
furthest from CPLEX solutions, the average APD of the
heuristic is lower than 1.5%. *is observation also indicates
the effectiveness of the heuristic algorithm in solving the
small problem instances.

*e paired t-test between heuristic and GA found the p

value to be 0.00105. Since the p value is less than α (i.e.,
0.00105< 0.05), the null hypothesis is rejected. *e rejection
of the null hypothesis state that the average value perfor-
mance of the GA is statistically better than the performance
of the heuristic algorithm at the 95% significance level.
Similarly, the paired t-test between heuristic and PSO found
the p value to be 0.0024, which indicates the better per-
formance of PSO over heuristic on average solution value.
*e paired t-test between and GA found the p value to be
0.1955. *is analysis indicates that on average results of GA
and PSO are not significantly different statistically. However,
the average RPD of PSO is slightly better than the average
RPD of GA.

Table 3 shows the results of numerical experiments for
the LPP problem. From Table 3, it could be seen that the PSO
also outperforms the algorithms of GA and heuristic for the
large instances. *e RPD of PSO is lower than those of other
algorithms with only a few exceptions. *e average RPD of
PSO in all groups is only 0.05, indicating the robustness of
PSO for solving the LPP problem. Nonetheless, observation
from the perspective of CPU time somehow provides a
different picture. *e average CPU time of PSO is 183.54

(1) Initialization
(2) Set k� 0, m� 50, c1 � 0.8, c2 � 0.8, w � 0.9
(3) Initialize X1

i , V1
i , X2

i , V2
i

(4) Main phase
(5) do while (k ≤ K)
(6) k� k + 1
(7) for i= 1 to m do
(8) σi← Generate sequence (X1

i , . . . , X1
m, X2

i , . . . , X2
m)

(9) σi← Local search(σi)
(10) Update SG and SPBi , ∀i � 1, . . . , m

(11) Update X1
i , X2

i , V1
i , V2

i , ∀i � 1, . . . , m

(12) end for
(13) end do
(14) return solution SG

ALGORITHM 2: PSO algorithm.
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seconds, which is longer than the CPU time of GA.*e CPU
time of both metaheuristics increases significantly as the size
of instances increases. *us, when the size of problem in-
stances becomes larger than the upper bound of 150, the
performance of the heuristic algorithm might be more
prominent and noteworthy, which is projected through its
efficiency. Besides, it is noteworthy to point out that the
average value and the maximal value of RPD for the heuristic
algorithm are 1.21 percent and 4.61 percent, respectively,
which also justify the use of heuristic for solving bigger
problem instances.

*e paired t-test among different algorithms for large
problem instances shows a similar indication as to the small
problem instances. *e PSO and GA are statistically better
than the heuristic algorithm. *e performances of GA and
PSO are not significantly different statistically. However, the
average RPD of 0.05 for PSO is better than the average RPD
of 0.28 for GA. Based on the discussion above, it could be
concluded that both PSO and heuristic could provide reli-
able solutions. PSO provides better solutions than heuristic

and competitive solutions as the GA algorithm, while the
heuristic could solve the problem in a shorter CPU time.

6.3. Numerical Analysis for TPP Problem. Table 4 conveys
the CPU time for the mathematical model of the TPP
problem. *e TPP problem maximizes the net revenue of
agent A, subject to an upper bound of the total weighted
number of tardy jobs from agent B. As shown in the table,
the mathematical model formulation provided in this
paper manifests how it could only solve instances with the
size limit of 20 jobs, which might be owing to the com-
putational complexity of the problem scenario. In addi-
tion to that, the CPU time consumed for the mathematical
model is longer than other settings when the tardiness
factor takes a value of 0.3 instead of 0.7. In G05, the
average CPU time to get the CPLEX solutions is 2089.13
seconds. For one of the instances belonging to this group,
it takes more than ten hours (38991.2 seconds) to find the
solution.

Table 5 displays the results of PSO and the heuristic
algorithm for the small instances. As shown in the table,
PSO outperforms the heuristic in all groups in terms of the
objective function value. It deviates from the CPLEX
solutions only by 0.11 percent. Contrarily, the solution
quality of the heuristic algorithm is not as good as PSO;
the average of the APD values from the five groups (G03,
G04, G06, G07, and G08) exceeds 10 percent. Although it
appears that the heuristic in this paper does not perform
well for the TPP problem, it is noteworthy to mention that
the heuristic could still be used as a good comparison for
PSO due to its efficiency. *e paired t-test between
heuristic and PSO for small problem instances found the p
value to be 0.00338. *e analysis indicates that the average
performance of the PSO is statistically better than the
average performance of the heuristic algorithm at the 95%
significance level.

*e numerical results of PSO and heuristic in the TPP
problem are presented in Table 6 to showcase larger
problem instances. *e results indicate that the PSO still
shows its superiority over the heuristic. It could be con-
cluded that the PSO can provide a better solution for the
problem considered in this paper. *e heuristic can gen-
erate a solution in a shorter time with an acceptable per-
centage deviation. *e paired t-test between heuristic and
PSO for large problem instances found the p value to be
2.3 × 10− 9 . *e analysis strongly suggests that the average
performance of the PSO is statistically better than the
average performance of the heuristic algorithm at the 95%
significance level.

*e numerical analysis performed for LPP and TPP
problem indicates the superior performance of PSO over
existing algorithms. *e superior performance can be
attributed to the hybridization of PSO with local search
schemes. *e superior performance of the hybrid PSO al-
gorithm indicates that the algorithm has the potential to solve
different problems arising in different industries. In past, PSO

Table 1: CPU time of CPLEX solutions in the LPP problem.

Group n
CPU

Avg Min Max

G01

20 0.09 0.02 0.98
30 0.37 0.07 3.27
40 1.5 0.18 7.53
60 1.51 0.41 15.63

G02

20 0.03 0.02 0.15
30 0.08 0.06 0.1
40 0.22 0.17 0.3
60 0.4 0.31 0.64

G03

20 0.39 0.02 1.18
30 4.3 0.09 15.07
40 28.78 0.24 121.75
60 308.44 0.53 1314.29

G04

20 0.07 0.02 0.64
30 0.34 0.07 1.46
40 1 0.17 4.59
60 11.7 0.48 138.64

G05

20 0.06 0.02 0.4
30 1.45 0.14 12.28
40 1.16 0.16 3.85
60 27.34 0.76 201.91

G06

20 0.04 0.02 0.11
30 0.4 0.13 1.93
40 0.22 0.12 0.64
60 1.77 0.58 8.1

G07

20 0.32 0.08 0.98
30 4.51 0.55 16.78
40 35.92 0.48 200.73
60 519.62 23.01 1442.53

G08

20 0.06 0.02 0.48
30 0.43 0.08 1.88
40 0.83 0.17 3.21
60 7.33 0.59 88.78
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Table 2: Comparison of algorithms of LPP problem in small instances.

Group n
GA Heuristic PSO

Average
ABS

Average
APD

Average CPU
time

Average
ABS

Average
APD

Average
ABS

Average
APD

Average CPU
time

G01

20 2518.30 0 0.94 2517.60 0.03 2518.35 0 0.56
30 5682.55 0.02 1.95 5680.75 0.05 5683.30 0 1.96
40 9663.80 0.01 3.9 9658.3 0.06 9664.60 0 5
60 21319.3 0.01 8.09 21317 0.02 21321.25 0 17.75

G02

20 2460 0.01 1.01 2458.55 0.02 2460.25 0 0.6
30 5166 0 1.66 5165.15 0 5166.10 0 2.12
40 9784.05 0 3.54 9784.05 0 9784.40 0 5.38
60 21093 0 9 21093.15 0 21093.15 0 19.13

G03

20 920.50 0.11 1.94 904.70 2.25 921.30 0.03 0.47
30 1951.60 0.21 3.76 1940.90 0.7396 1954.40 0.06 1.89
40 3386.15 0.33 7.01 3370.60 0.81 3394.65 0.05 4.58
60 7149.85 0.34 15.82 7119.25 0.749 7168.10 0.07 16.25

G04

20 927.95 0.27 1.41 921.25 1.11 929.90 0.01 0.51
30 2104.65 0.24 3.01 2067.50 2.019 2109.15 0.04 1.79
40 3606.20 0.26 6.16 3555.45 1.81 3616.10 0.02 4.59
60 8228.95 0.11 13.44 8108.20 1.56 8236.50 0.02 16.62

G05

20 3945.65 0.04 1.74 3943.60 0.09 3947.25 0 0.79
30 9043.75 0.02 4.44 9034.70 0.13 9045.20 0 2.90
40 16682.30 0.03 8.84 16683.30 0.03 16687.75 0 7.73
60 35684.45 0.03 20.79 35681.90 0.03 35684.45 0 27.86

G06

20 4051.50 0.09 1.67 4035.35 0.44 4052.10 0 1.07
30 9087.05 0.02 3.36 9045 0.49 9088.50 0 4.19
40 15829.60 0 6.10 15762.45 0.44 15830.40 0 10.50
60 36173.25 0 13.8 35997.25 0.5 36174.90 0 37.70

G07

20 1179.8 0.16 1.70 1145.80 3.20 1181.65 0 0.38
30 2422.85 0.97 3.73 2335.45 4.52 2446.05 0.02 1.41
40 5065.50 0.69 7.16 5096.70 2.53 4971.40 0.08 3.60
60 10551.75 1.17 19.06 10276.80 3.77 10674.25 0.02 13.17

G08

20 1414.75 0.02 0.88 1361.90 4.16 1414.90 0 0.40
30 3572.65 0.04 2.76 3422.10 4.65 3573.50 0 1.54
40 6018.05 0.13 5.04 5747.70 4.62 6026 0 4.02
60 13176.25 0.05 11.7 12704.15 3.66 13180.60 0.01 14.58

Average 8745.69 0.17 6.27 8685.52 1.39 8750.01 0.01 7.22

Table 3: Comparison of algorithms for LPP problem in large problem instances.

Group n
GA Heuristic PSO

Average
ABS

Average
RPD

Average CPU
time

Average
ABS

Average
RPD

Average
ABS

Average
RPD

Average CPU
time

G01

80 39999.70 0 18.36 39996.55 0.01 40001.35 0 47.17
100 60348.05 0 33.35 60344.20 0.01 60351 0 98.50
120 90745.90 0 53.99 90746 0 90747.45 0 175.65
150 136730.50 0 95.76 136730.25 0 136732.45 0 349.23

G02

80 40321.55 0 19.09 40321.80 0 40322.25 0 50.24
100 59533.70 0 35.84 59533.25 0 59534.45 0 106.82
120 88112.60 0 55.2 88112.85 0 88113.20 0 193.73
150 135944.40 0 93.05 135945.20 0 135945.20 0 375.07

G03

80 13218.35 0.18 33.01 13169.90 0.57 13241.65 0 43.49
100 21454.10 0.10 51.24 21390.30 0.41 21474.45 0 90.17
120 29716.55 0.24 75.88 29621.80 0.56 29772.05 0.04 154.81
150 45783.90 0.17 144.39 45646.40 0.47 45850.05 0.02 333.35
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Table 3: Continued.

Group n
GA Heuristic PSO

Average
ABS

Average
RPD

Average CPU
time

Average
ABS

Average
RPD

Average
ABS

Average
RPD

Average CPU
time

G04

80 16005.40 0.08 27.18 15764.05 1.63 16017 0 43.59
100 23260.65 0.13 43.34 22756 2.39 23290.40 0 86.89
120 33656.80 0.11 64.35 33128.60 1.77 33688.35 0.02 148.34
150 55188.40 0.03 113.93 54435.75 1.40 55145.45 0.13 297.54

G05

80 65441.85 0.02 41.28 65444.25 0.02 65454.45 0 72.36
100 105339.85 0.01 69.83 105337.10 0.01 105351.90 0 152.88
120 144242 0.01 130.24 144235.25 0.01 144246.15 0 273.69
150 224901.75 0.01 201.08 224900.70 0.01 224919.10 0 565.53

G06

80 67786.35 0 27.94 67596.85 0.30 67786.15 0 95.73
100 102016.45 0 58.30 101679.35 0.33 102016.30 0 200.17
120 142779.90 0 93.90 142188.55 0.41 142761.25 0.02 332.17
150 229024.20 0 151.58 228191.40 0.36 228882.65 0.06 663.42

G07

80 18552.30 1.46 48.56 18146.20 3.59 18823.95 0 11
100 31254.30 2.01 94.25 31044.10 2.69 31896.40 0 64.70
120 44185.65 2.16 154.37 43879.85 2.88 45117.95 0.10 116.44
150 66529.35 1.99 327.84 66258.80 2.39 67843.05 0.04 240.82

G08

80 23772 0.02 24.75 22833.25 4.07 23770 0.03 36.53
100 36552.20 0.13 41.10 34912.65 4.67 36548.90 0.10 67.50
120 55435.10 0 57.59 53400 3.77 55273.10 0.30 123.48
150 85601.85 0 104.03 84987.10 3.98 82243.20 0.74 262.19

Average 72919.86 0.28 80.77 72583.70 1.21 72911.29 0.05 183.54

Table 4: CPU time of CPLEX solutions in TPP problem.

Group n
CPU

Avg Max Min
G01 20 202.06 3001.29 0.29
G02 20 7.46 117.49 0.18
G03 20 75.50 428.41 0.20
G04 20 5.19 27.88 0.13
G05 20 2089.13 38991.2 0.19
G06 20 9.69 156.75 0.18
G07 20 75.60 448.80 2.80
G08 20 9.53 49.89 0.71

Table 5: Comparison of algorithms in TPP problem in small instances.

Group n
Heuristic PSO

Average ABS Average APD Average ABS Average CPU time Average APD
G01 20 116.80 0.68 117.60 0.30 0
G02 20 112.50 2.29 115.15 0.35 0
G03 20 98.30 14.21 112.85 0.53 0.14
G04 20 96.75 11.46 108.50 0.61 0.10
G05 20 110.45 6.02 117.45 0.46 0
G06 20 107.15 10.24 119.50 0.53 0
G07 20 71.30 23.57 92.60 0.35 0.23
G08 20 70.20 29.53 98.15 0.49 0.44

Average 97.93 12.25 110.23 0.45 0.11
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Table 6: Comparison of algorithms in TPP problem in large instances.

n Group
Heuristic PSO

Average ABS Average RPD Average ABS Average CPU time Average RPD
30

G01

173.75 1.96 176.95 0.89 0
40 225.55 3.05 232.60 2.45 0
60 344.05 1.29 348.60 6.35 0
80 463.15 1.10 468.50 17.24 0
100 608.30 1.20 615.50 32.93 0
120 726.05 0.23 727.70 52.49 0
150 892.95 0.23 894.95 105.01 0
30

G02

169.90 0.61 170.85 0.90 0
40 239.55 0.15 239.90 2.20 0
60 363.25 0 363.25 6.94 0
80 485.35 0.09 485.80 17.87 0
100 601.40 0.19 602.60 40.77 0
120 723.30 0.05 723.65 64.81 0
150 903.70 0 903.70 113.56 0
30

G03

146.90 11.37 164.65 1.86 0
40 204.55 9.94 225.35 4.10 0
60 292.95 10.14 323.45 13.87 0
80 414.80 7.53 447.30 36.97 0
100 537.10 7.21 575.75 70.42 0
120 581.60 8.15 625.75 122.50 0
150 807.35 5.61 852.75 247.89 0
30

G04

146.40 14.27 169.85 2.41 0
40 200.45 9.95 221.75 5.64 0
60 308.90 9.59 341.15 18.73 0
80 419.95 8.50 458 53.93 0
100 549.25 8.75 601 114.19 0
120 633.95 10.49 705.30 203.20 0
150 753.05 11.06 843.50 371.27 0
30

G05

170.25 6.08 180.75 1.58 0
40 234.40 3.34 242.40 3.72 0
60 346.85 4.61 363.10 12.29 0
80 463.80 2.58 476.40 28.42 0
100 590.40 2.65 606.35 54.21 0
120 692.50 3.94 720.15 95.59 0.01
150 853 2.75 877.15 205.54 0
30

G06

171.55 7.68 185.90 1.72 0
40 211.50 7.34 227.20 4.01 0
60 343.10 8.22 373.85 13 0
80 431.15 6.29 460.10 26.34 0
100 570.90 5.90 606.85 55.61 0
120 647.70 8.14 704.20 109.97 0
150 822.70 6.22 877.15 198.15 0
30

G07

114.20 23.30 146.70 1.14 0
40 147.10 23.20 190.40 2.75 0
60 226.35 20.75 284.50 9.13 0
80 297.55 21.60 377.20 20.83 0
100 368.55 20.70 462.10 40.88 0
120 460.10 19.70 570 72.39 0
150 559.60 18.74 685.60 142.20 0
30

G08

131.35 23.49 171.15 1.96 0
40 158.10 26.43 214.60 4.81 0
60 243.80 24.31 321.50 18.36 0
80 326.85 23.24 424.55 50.35 0
100 396 24.61 525.35 101.70 0
120 493.05 25.71 662.35 181.65 0
150 588.45 25.46 788.05 374.11 0

Average 428.18 9.64 468.49 63.64 0
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has been successfully used to solve the option price model
(Sharma et al., [34]). In the future, the hybrid PSO can be
applied to solve different pricing and index-based models
such coupon bond model (Jin et al. [35]), option pricing
model (Jin et al., [36]), and risk index model (Jin and Zhu,
[37]).

7. Conclusions

*is paper works on the order acceptance two-agent
scheduling problems, which are regarded as an NP-hard
problem. *is paper contemplates and examines the two
variants of the problem named the LPP problem and the TPP
problem. *e objective function of the LPP problem is to
maximize the total revenues of accepted orders minus the
total weighted lateness of the jobs from agent A. *e ob-
jective function of the TPP problem is to maximize the total
revenues of accepted orders minus the total weighted tar-
diness of jobs from agent A. Both variants of the problem
impose a constraint that the sum of the weighted number of
tardy jobs belonging to agent B is not allowed to exceed the
given upper bound. Algorithms including a metaheuristic
(PSO) and a heuristic are proposed to solve these problems.
Additionally, a mathematical model is provided. *e pro-
posed algorithms are designed in such a way so that it can
decode and find a solution to both problems that are being
considered in this paper.

*e numerical results stipulate that the proposed algo-
rithm is competitive with the existing GA algorithm. *e
solution produced by the proposed PSO algorithm is within
less than 1% of the optimal solution for the small problem
instances. *e PSO could provide better solutions while the
heuristic could provide solutions with an acceptable deviation
percentage from the PSO solution in shorter CPU time.

In the future, the mathematical model formulation could
be improved and tweaked by removing the redundant
constraints and decision variables to solve bigger problem
instances. Also, experimental efforts could essentially be
performed, focusing on the aspects like reducing CPU time
of the proposed PSO algorithm.
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