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Based on the concepts of pseudocomplement of L-subsets and the implication operator where L is a completely distributive lattice
with order-reversing involution, the definition of countable RL-fuzzy compactness degree and the Lindelöf property degree of an
L-subset in RL-fuzzy topology are introduced and characterized. Since L-fuzzy topology in the sense of Kubiak and Šostak is a
special case of RL-fuzzy topology, the degrees of RL-fuzzy compactness and the Lindelöf property are generalizations of the
corresponding degrees in L-fuzzy topology.

1. Introduction

Combining with fuzzy set theory, Chang [1] introduced the
concept of fuzzy topology together with the definition of
compactness by means of open cover in 1968. Afterwards,
several researchers have tried successfully to extend the theory
of compactness from the crisp topology to fuzzy setting [2–8].
,e disadvantage of Chang’s fuzzy topology is that the open
L-subsets were fuzzy, but the topology consisting of those open
L-subsets is still a crisp subset of LX. ,is prompted Höhle [9]
to make the first attempt to fuzzifying the openness in 1980.
Later on, Höhle’s attempt developed independently by Kubiak
[10] and Šostak [11] to L-fuzzy topology in 1985. In an L-fuzzy
topology, open L-subsets are not crisp subset, and topology
comprising those open L-subsets is an L-subset of LX. In the
setting of L-fuzzy topologies, many researchers have also made
plentiful investigations on the notion of compactness ([12–25]).

In [26], Li and Li introduced L-topology on L-subset and
discussed some of its related properties. ,e new kind of
topology is called an RL-topology which is a generalization of
L-topology. Furthermore, they introduced and characterized
the concepts of RL-continuous function and RL-compactness
by means of an inequality. As an extension of RL-topology,

RL-fuzzy topology on an L-subset is introduced in [27].
Kubiak-Šostak’s L-fuzzy topology and RL-topology are spe-
cial cases of RL-fuzzy topology. ,e RL-fuzzy compactness of
RL-fuzzy topology is further studied. ,ey proved that the
union of two RL-fuzzy compact L-subsets is also RL-fuzzy
compact, and the intersection of an RL-fuzzy compact
L-subset and RL-closed subset is also RL-fuzzy compact.
Moreover, they showed that RL-fuzzy compactness is an
invariant under RL-fuzzy continuous functions.

In this study, we introduce and characterize the degree of
countable RL-fuzzy compactness and the RL-Lindelöf property
of an L-subset in RL-fuzzy topology based on the concepts of
pseudocomplement of L-subsets and the implication operator.
Since L-fuzzy topology in the sense of Kubiak and Šostak is a
special case of RL-fuzzy topology, the degrees of RL-fuzzy
compactness and the RL-Lindelöf property are generalization
of the corresponding degrees in L-fuzzy topology.

2. Preliminaries

,roughout this study, (L,∨,∧, ′) refers to a completely
distributive lattice with order-reversing involution [2, 28], X
to a nonempty set, and LX to the collection of all L-subsets
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on X. ,e greatest and the smallest elements in L and LX are
1, 0, and 1X, 0X, respectively. For μ ∈ LX, ] ∈ LY, and f: X

⟶ Y, we have f⟶L (μ)(y) � ∨ μ(x): f(x) � y  for each
y ∈ Y, and f←L (])(x) � ∨ μ(x): f⟶L (μ)≤ ]  � ](f (x))

for each x ∈ X. ,e binary operation ↦ on L defined by
a↦b � ∨ c ∈ L|a∧c≤ b{ } is called the implication operator.
For more properties of the implication operator, we refer the
reader to [29]. An L-subset λ ∈ LX is said to be valuable if
λ≤ λ′.,e family of all valuable L-subsets on X is denoted by

VL
X, i.e., V

L
X � λ ∈ LX: λ≤ λ′ . For all λ ∈VL

X, we define

the family FL
X(λ) by FL

X(λ) � μ ∈ LX: μ≤ λ . In fact,
FL

X(λ) represents the powerset of L-subset λ ∈ LX. If
λ ∈ VL

X and μ ∈VL
Y, then the restriction of f⟶L on λ, i.e.,

f⟶L |λ: F
L
X(λ)⟶ LY such that c ∈ FL

X(A)↦f⟶L (c), is
called the relative L-fuzzy mapping (briefly, RL-fuzzy
mapping) from λ to μ, denoted by f⟶L,λ : λ⟶ μ if
f⟶L (λ)≤ μ. ,e inverse image of an L-subset ] ∈FL

Y(μ)

under f⟶L,λ is given by f←L,λ(]) � ∨ c ∈ FL
X(λ):

f⟶L (c)≤ ]}. Clearly, we have f←L,λ(]) � λ∧f←L (]).

If λ ∈VL
X and μ ∈ FL

X(λ), the pseudocomplement of μ
relative to λ [26, 27], denoted by 〈 λ

Lμ, is defined by

〈
λ
Lμ �

λ∧μ′, if μ≠ λ,

0X, if μ � λ.

⎧⎨

⎩ (1)

,e following proposition lists some properties of
pseudocomplement operation 〈 λ

L.

Proposition 1 (see [26, 27]). For each λ ∈VL
X,

μ, ] ∈FL
X(λ), and μi: i ∈ I ⊆FL

X(λ), we have

(1) 〈 λ
Lμ � λ⇔μ≤ λ′.

(2) μ≤ ]⇒〈 λ
L]≤ 〈 λ

Lμ.
(3) 〈 λ

L∧i∈Iμi � ∨i∈I〈
λ
Lμi.

(4) 〈 λ
L∨i∈Iμi ≤∧i∈I〈

λ
Lμi. 4e equation holds provided that

∨i∈Iμi ≠ λ.

Definition 1. Let λ ∈VL
X. A function ⋞: FL

X(λ)× FL
X(λ)

⟶ L is an RL-fuzzy inclusion on X, defined as ⋞(μ, c)

� ∧x∈X(〈λLμ(x)∨c(x)), which is denoted by [μ⋞c] for
simplicity instead of ⋞(μ, c), i.e., [μ⋞c] � ∧x∈X (〈λLμ(x)∨
c(x)). Obviously, if λ � 1X, then ⋞ is an L-fuzzy inclusion
function in the sense of Šostak [17].

,e following lemma gives an important property for the
RL-fuzzy mapping fL,λ.

Lemma 1 (see [26]). Let λ ∈VL
X, μ ∈V

L
Y, and f⟶L,λ : λ

⟶ μ be RL-fuzzy mapping from λ to μ, and c ∈FL
X(λ).

4en, for each P⊆LX, we have


y∈Y

f
⟶

L,λ (c)(y)∧
ξ∈P

ξ(y)⎛⎝ ⎞⎠ � 
x∈X

c(x)∧
ξ∈P

f
←
L,λ(ξ)(x)⎛⎝ ⎞⎠.

(2)

Based on the properties of 〈λL listed in Proposition 1, the
previous equation can be rewritten as follows:


y∈Y

〈
λ
Lf
⟶

L,λ (c)(y)∨
ξ∈P

ξ(y)⎛⎝ ⎞⎠ � 
x∈X

〈
λ
Lc(x)∨

ξ∈P
f
←
L,λ(ξ)(x)⎛⎝ ⎞⎠.

(3)

An L-topological space [1, 2, 28] (briefly, L-ts) is a pair
(X, τ) such that τ is a subcollection of LX which contains 0X

and 1X and is closed for any suprema and finite infima.
Moreover, τ is called an L-topology on X. Furthermore,
elements of τ are called open L-subsets, and their com-
plements are called closed L-subsets. A mapping
f: (X, τ)⟶ (Y, δ) is said to be L-continuous if and only if
f←L (]) ∈ τ for each ] ∈ δ.

Definition 2 (see [10, 11, 30]). An L-fuzzy topology on the
set X is the mapping τ: LX⟶ L, which meets the following
three conditions:

(T1) τ(0X) � τ(1X) � 1.
(T2) ∀ λ, μ ∈ LX, τ(λ∧μ)≥ τ(λ)∧τ(μ).
(T3) ∀ λi: i ∈ I ⊆LX, τ(∨i∈Iλi)≥∧i∈Iτ(λi).

,e pair (X, τ) is called an L-fuzzy topological space
(briefly, L-fts). Here, τ(λ) can be regarded as the degree to
which λ is an open L-subset or the degree of openness of λ.
Similarly, τ∗(λ) � τ(λ′) can be regarded as the closeness
degree of an L-subset λ. A mapping f: (X, τ)⟶ (Y, δ)

between two L-fts’s (X, τ) and (Y, δ) is said to be L-fuzzy
continuous if and only if τ(f←L (]))≥ δ(]) for each ] ∈ LY.

,e concept of RL-topology ϰ on an L-subset λ is in-
troduced as follows:

Definition 3 (see [26]). Let λ ∈ VL
X. A relative L-topology ϰ

on an L-subset λ is a subcollection on FL
X(λ) that satisfies

the following conditions:

(1) λ ∈ ϰ and μ ∈ ϰ for all μ≤ λ′.
(2) μ1∧μ2 ∈ ϰ for each μ1, μ2 ∈ ϰ.
(3) ∨i∈Iμi ∈ ϰ for each μi: i ∈ I ⊆ϰ.

,e pair (λ, ϰ) is called a relative L-topological space on
λ (briefly, RL-ts). ,e members of ϰ are called relative open
L-subsets (briefly, RL-open subset), and an L-subset μ is
called relative L-closed (briefly, RL-closed subset) if and only
if 〈λLμ ∈ ϰ. ,e family of all RL-closed subsets with respect to
ϰ is denoted by 〈λLϰ, i.e., 〈

λ
Lϰ � ]: 〈λL] ∈ ϰ . Let λ ∈ VL

X,
μ ∈VL

Y, and (λ, ϰ1), (μ, ϰ2) be two RL-ts’s.,e relative fuzzy
mapping f⟶L,λ : λ⟶ μ is said to be RL-continuous if and
only if f←L,λ(]) ∈ 〈λLϰ1 for each ] ∈ 〈λLϰ2. It is not difficult to
verify that the RL-topology on λ degenerates to L-topology if
λ � 1X.

Theorem 1 (see [26]). For any RL-ts (λ, ϰ), the following
statements are true for 〈λLϰ:

(1) λ ∈ 〈λLϰ and μ ∈ 〈λLϰ for all μ≤ λ′.
(2) μ1∨μ2 ∈ 〈

λ
Lϰ for each μ1, μ2 ∈ 〈

λ
Lϰ.

(3) ∧i∈Iμi ∈ 〈
λ
Lϰ for each μi: i ∈ I ⊆〈λLϰ.
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Definition 4 (see [27]). Let λ ∈VL
X. An RL-fuzzy topology

on λ is a mapping ϰ: FL
X(λ)⟶ L such that ϰ satisfying the

following statements:

(R1) ϰ(λ) � 1, ∀ μ≤ λ′, ϰ(μ) � 1.
(R2) ∀ μ1, μ2 ∈ F

L
X(λ), ϰ(μ1∧μ2)≥ϰ(μ1)∧ϰ(μ2).

(R3) ∀ μi: i ∈ I ⊆FL
X(λ), ϰ(∨i∈Iμi)≥∧i∈Iϰ(μi).

,e pair (λ, ϰ) is called an RL-fuzzy topological space
(briefly, RL-fts) on λ. For each μ ∈FL

X(λ), the values ϰ(μ)

(respectively, ϰ(〈λLμ)) can be regarded as the degree of
openness (respectively, closeness) of μ relative to ϰ, re-
spectively. Moreover, if ϰ(μ) � 1 (respectively, ϰ(〈λLμ) � 1),
then μ is called an RL-open (respectively, RL-closed) subset.
It is easy to verify that when λ � 1X, the RL-fuzzy topology
on λ is reduced to L-fuzzy topology in the sense of Kubiak
[10] and Šostak [11], that is, the RL-fuzzy topology on λ is an
extension of Kubiak–Šostak’s L-fuzzy topology. Moreover,
(λ, ϰ) is an RL-ts, and χϰ: F

L
X(λ)⟶ L is a mapping de-

fined by

χϰ(μ) �
1, if μ ∈ ϰ,

0, if μ ∉ ϰ,
 (4)

,en, (λ, χϰ) can be seen as a special RL-fts. In this sense,
(λ, ϰ) can also be regarded as RL-fts.

Theorem 2 (see [27]). For any λ ∈VL
X and RL-fts (λ, ϰ) on

λ. 4e mapping 〈λLϰ: F
L
X(λ)⟶ L defined by 〈λLϰ(μ) �

ϰ(〈λLμ) for each μ ∈ FL
X(λ) satisfies the following statements:

(R1)′ 〈λLϰ(λ) � 1, ∀ μ≤ λ′, 〈
λ
Lϰ(μ) � 1;

(R2)′ ∀ μ1, μ2 ∈F
L
X(λ), 〈λLϰ(μ1∨μ2)≥ 〈

λ
Lϰ(μ1)∧

〈λLϰ(μ2);
(R3)′ ∀ μi: i ∈ I ⊆FL

X(λ), 〈λLϰ(∧i∈Iμi)≥ ∧i∈I〈
λ
Lϰ (μi).

± b〈λL κ is called an RL-fuzzy cotopology (briefly, RL-cft)
on λ, and the pair (λ, 〈λLϰ) is called an RL-fuzzy cotopo-
logical space (briefly, RL-cfts).

Definition 5 (see [27]). Let λ ∈ VL
X, μ ∈V

L
Y, and (λ, ϰ1),

(μ, ϰ2) are RL-fts’s on λ and μ, respectively. An RL-fuzzy
mapping fL,λ: λ⟶ μ is said to be RL-fuzzy continuous if
and only if ϰ1(〈

λ
Lf←L,λ(]))≥ϰ1(〈

μ
L]), ∀] ∈FL

Y(μ). Further-
more, if (λ, 〈λLϰ1) and (μ, 〈μLϰ2) are corresponding RL-cfts’s
of (λ, ϰ1) and (μ, ϰ2), respectively; then, f⟶L,λ is called an
RL-fuzzy continuous if and only if 〈λLϰ1(f←L,λ(]))≥ 〈μLϰ2(]),
∀] ∈ FL

X(μ).

Definition 6 (see [27]). Let λ ∈ VL
X and (λ, ϰ) be an RL-fts

on λ. An L-subset μ ∈ FL
X(λ) is said to be an RL-fuzzy

compact with respect to ϰ if for each P⊆FL
X(λ), the fol-

lowing inequality holds:


c∈P
ϰ 〈

λ
Lc ∨

x∈X
μ(x)∧ 

c∈P
c(x)⎛⎝ ⎞⎠

≥ 

R∈2P

x∈X

μ(x)∧ 
c∈R

c(x)⎛⎝ ⎞⎠.

(5)

Theorem 3 (see [27]). In the case of λ � 1X, the following
conclusions hold:

(1) 〈λLμ � μ′, μ ∈ F
L
X(λ)⇔μ ∈ LX.

(2) RL-fuzzy compactness degenerates into L-fuzzy
compactness.

(3) μ is RL-fuzzy compact if and only if μ is L-fuzzy
compact.

Theorem 4 (see [27]). For any λ ∈VL
X and an RL-ft ϰ on λ,

we have following conclusions:

(1) If μ1, μ2 ∈ F
L
X(λ) such that μ1 and μ2 are RL-fuzzy

compacts with respect to ϰ, then μ1∨μ2 is RL-fuzzy
compact with respect to ϰ.

(2) If μ1, μ2 ∈ F
L
X(λ) such that μ1 is an RL-fuzzy compact

with respect to ϰ and μ2 is an RL-closed subset, then
μ1∧μ2 is an RL-fuzzy compact.

Definition 7. Let λ ∈ VL
X, ϰ be an RL-ft on λ, and

μ ∈FL
X(λ). ,en,

cϰ(μ) � 

U⊆FL
X(λ)

ϰ(U)↦ [μ⋞∨U]↦ 

V∈2(U)

[μ⋞∨V]
⎧⎨

⎩

⎫⎬

⎭

⎧⎨

⎩

⎫⎬

⎭

� 

U⊆FL
X(λ)


c∈U
ϰ(c)↦ 

x∈X
〈
λ
Lμ(x)∨

c∈U
c(x)⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

↦ 

V∈2(U)


x∈X

〈
λ
Lμ(x)∨ 

c∈V
c(x)⎛⎝ ⎞⎠

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

(6)

is called the RL-fuzzy compactness degree of μ with respect
to ϰ. Obviously, an L-subset μ is RL-fuzzy compact in RL-ts
ϰ if and only if cχϰ(μ) � 1.

Based on Definition 8 in [27], we can state the following
theorem:

Theorem 5. For any λ ∈ VL
Xlimx⟶∞, μ ∈ F

L
X(λ), and any

mapping ϰ: FL
X(λ)⟶ L, let

cϰ(μ) � 

P⊆FL
X(λ)



F∈2(P)


x∈X

μ(x)∧ 
c∈F

c(x)⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

↦
x∈X

μ(x)∧ 
c∈P

c(x)⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
↦〈

λ
Lϰ(P)

⎫⎪⎬

⎪⎭

� 

P⊆FL
X(λ)



F∈2(P)


x∈X

μ(x)∧ 
c∈F

c(x)⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

↦
x∈X

μ(x)∧ 
c∈P

c(x)⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
↦ 

c∈P
ϰ 〈

λ
Lc 

⎫⎪⎬

⎪⎭
.

(7)

If (λ, ϰ) be an RL-fts, then cϰ(μ) is called the RL-fuzzy
compactness degree of μ with respect to ϰ. Clearly, μ is the
RL-fuzzy compact in RL-ts ϰ iff cχϰ(μ) � 1.
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3. Measure of RL-Countable Compactness

Let F
L

X(λ) � U⊆FL
X(λ) |U is a countable . If λ ∈ VL

X,
(λ, ϰ) be an RL-ts on λ, and ϰc � U⊆ϰ |{ U

is a countable family}. ,en, μ ∈ FL
X(λ) is countably

RL-compact if and only if for each U⊆ϰc, it follows that
[μ⋞∨U]≤∨V∈2(U) [μ⋞∨V]. ,is implies that [[μ⋞ ∨U]≤

∨V∈2(U) [μ⋞∨V]] � 1, i.e., μ ∈FL
X(λ) is countably

RL-compact if and only if for each collection U⊆ϰc, it
follows that χϰ(U)≤ [[μ⋞∨U]≤∨V∈2(U) [μ⋞∨V]].

Definition 8. Let λ ∈ VL
X, ϰ be an RL-ft on λ, and

μ ∈FL
X(λ). ,en,

ccϰ(μ) � 

U⊆F
L

X(λ)

ϰ(U)≤ [μ⋞∨U]≤ 

V∈2(U)

[μ⋞∨V]⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦

� 

U⊆F
L

X(λ)


c∈U
ϰ(c)↦ 

x∈X
〈
λ
Lμ(x)∨

c∈U
c(x)⎛⎝ ⎞⎠↦ 

V∈2(U)


x∈X

〈
λ
Lμ(x)∨ 

c∈V
c(x)⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(8)

is the degree of countable RL-compactness of μ with respect
to ϰ. Clearly, μ is the countable RL-compact in RL-ts (λ, ϰ) if
and only if ccχϰ(μ) � 1.Based on the properties of impli-
cation operation “↦” ([29]), we can state the following
lemma:

Lemma 2. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, α≤ ccϰ(μ) if and only if

ϰ(U)∧[μ⋞∨U]∧α≤ 

V∈2(U)

[μ⋞∨V], (9)

for each U⊆ F
L

X(λ).

Theorem 6. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈FL
X(λ). 4en,

ccϰ(μ) � ∨ α ∈ L |ϰ(U)∧[μ⋞∨U]∧α≤ 

V∈2(U)

[μ⋞∨V], ∀U⊆ F
L

X(λ)
⎧⎨

⎩

⎫⎬

⎭. (10)

The following theorem is an intuitive result from the
Definitions 7 and 8.

Theorem 7. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, cϰ(μ)≤ ccϰ(μ).

Theorem 8. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ1, μ2 ∈F
L
X(λ). 4en, ccϰ(μ1∧μ2)≥ ccϰ(μ1)∧〈

λ
Lϰ(μ2).

Proof. Suppose that ccϰ(μ1)∧〈
λ
Lϰ(μ2)≥ α for any α ∈ L and

U⊆ F
L

X(λ), then 〈 λ
Lϰ(μ2)≥ α and ccϰ(μ1)≥ α. Consider

W � U∪ 〈 λ
Lμ2, then W⊆ F

L

X(λ). By Lemma 2, ϰ(W)

∧[μ1⋞∨W]∧α≤∨V∈2(W) [μ1⋞∨V]. Since ϰ(W) � ϰ(U)∧
ϰ(〈 λ

Lμ2) � ϰ(U)∧〈 λ
Lϰ(μ2), we have

μ1⋞∨W  � 
x∈X

〈
λ
Lμ1(x)∨ 

c∈W
c(x)⎛⎝ ⎞⎠ � 

x∈X
〈
λ
Lμ1(x)∨〈 λ

Lμ2(x)∨
c∈U

c(x)⎛⎝ ⎞⎠

� 
x∈X

〈
λ
L μ1(x)∧μ2(x)( ∨

c∈U
c(x)⎛⎝ ⎞⎠ � 〈

λ
L μ1∧μ2( ⋞∨U ,



V∈2(W)

μ1⋞∨V  � 

V∈2(U)

μ1⋞∨V ∨ 

V∈2(U)

μ1⋞∨ V∨〈 λ
Lμ2  

� 

V∈2(U)

μ1⋞∨V ∨ 

V∈2(U)

μ1∧μ2( ⋞∨V 

� 

V∈2(U)

μ1∧μ2( ⋞∨V .

(11)
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,erefore, (ϰ(U)∧〈 λ
Lϰ(μ2))∧[(μ1∧μ2)⋞∨V]∧α≤

∨V∈2(U) [(μ1∧μ2)⋞∨V]. Since 〈 λ
Lϰ(μ2)≥ α, we have

ϰ(U)∧[(μ1∧μ2)⋞∨U]∧α≤∨V∈2(U) [(μ1∧μ2)⋞∨V]. ,us, by
Lemma 2, ccϰ(μ1∧μ2)≥ α, and the proof is
completed. □

Corollary 1. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, ccϰ(μ)≥ cc(1X)∧〈 λ

L(μ).

Theorem 9. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ1, μ2 ∈ F
L
X(λ). 4en, ccϰ(μ1∨μ2)≥ ccϰ(μ1)∧ccϰ(μ2).

Proof. Suppose that ccϰ(μ1)∧ccϰ(μ2)≥ α for each α ∈ L and
U⊆ F

L

X(λ), then ccϰ(μ1)≥ α and ccϰ(μ2)≥ α. By using
Lemma 2, we have ϰ(U)∧[μ1⋞∨U]∧α≤∨V∈2(U) [μ1⋞∨V]

and ϰ(U)∧[μ2⋞∨U]∧α≤∨V∈2(U) [μ2⋞∨V]. ,erefore,
ϰ(U)∧ [μ1⋞∨U]∧[μ2⋞∨U]∧α≤ (∨V∈2(U) [μ1⋞∨V])∧
(∨V∈2(U) [μ2⋞∨V]). By

μ1⋞∨U ∧ μ2⋞∨U  � 
x∈X

〈
λ
Lμ1(x)∨

c∈U
c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠∧ 

x∈X
〈
λ
Lμ2(x)∨

c∈U
c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 
x∈X

〈
λ
Lμ1(x)∨

c∈U
c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠∧ 〈

λ
Lμ2(x)∨

c∈U
c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 
x∈X

〈
λ
Lμ1(x)∧〈 λ

Lμ2(x) ∨
c∈U

c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 
x∈X

〈
λ
L μ1∨μ2( (x)∨

c∈U
c(x)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� μ1∨μ2( ⋞∨U ,



V∈2(U)

μ1⋞∨V ∧ 

V∈2(U)

μ2⋞∨V  � 

V∈2(U)

μ1⋞∨V ∧ μ2⋞∨V ( 

� 

V∈2(U)

μ1∨μ2( ⋞∨V ,

(12)

we have that ϰ(U)∧[(μ1∨μ2)⋞∨U]∧α≤∨V∈2(U)

[(μ1∨μ2)⋞∨V]. By using Lemma 2, we can obtain that
ccϰ(μ1∨μ2)≥ α, and thus, the proof is completed. □

Theorem 10. Let λ ∈ VL
X, μ ∈ V

L
Y, (λ, ϰ1), and (μ, ϰ2) be

RL-fts. If f⟶L,λ : λ⟶ μ is RL-fuzzy continuous, then
ccϰ2(f⟶L,λ (]))≥ ccϰ1(]).

Proof. Suppose that ccϰ1(])≥ α for each α ∈ L, and let
U⊆ F

L

Y(λ) and R � f←L,λ(U) � ζ: ζ � f←L,λ(c), c ∈ U .

,en, R⊆ F
L

X(λ). Since ccϰ1(])≥ α, we have ϰ1(R)∧
[]⋞∨R]∧α≤∨S∈2(R) []⋞∨S]. Since f⟶L,λ is RL-fuzzy con-
tinuous, ϰ1(f←L,λ(c))≥ϰ2(c) for each c ∈ U, i.e.,
ϰ1(R) � ϰ1(f←L,λ(U))≥ϰ2(U). Based on Lemma 1, we have

f
⟶

L,λ (])⋞∨U  � 
y∈Y

〈
λ
Lf
⟶

L,λ (])(y)∨
c∈U

c(y)⎛⎝ ⎞⎠

� 
x∈X

〈
λ
L](x)∨ 

η∈R
η(x)⎛⎝ ⎞⎠

� []⋞∨R],



S∈2(R)

[]⋞∨S] � 

S∈2(R)


x∈X

〈
λ
L](x)∨

ξ∈S
ξ(x)⎛⎝ ⎞⎠

� 

V∈2(U)


y∈Y

〈
λ
Lf
⟶

L,λ (])(y)∨ 
ψ∈V

ψ(y)⎛⎝ ⎞⎠

� 

V∈2(U)

f
⟶

L,λ (])⋞∨V .

(13)
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,erefore, we have the following inequality:

ϰ2(U)∧ f
⟶

L,λ (])⋞∨U ∧α≤ϰ1(R)∧[]⋞∨R]∧α

≤ 

S∈2(R)

[]⋞∨S]

� 

V∈2(U)

f
⟶

L,λ (])⋞∨V .

(14)

,us, by Lemma 2, ccϰ2(f⟶L,λ (]))≥ α, and thus com-
pleted the proof. □

4. Lindelöf Property Degree in RL-Fts’s

Definition 9. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). ,en,

Lϰ(μ) � 

U⊆FL
X(λ)

ϰ(U)≤ [μ⋞∨U]≤ 

V∈2[U]

[μ⋞∨V]⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦

� 

U⊆FL
X(λ)


c∈U
ϰ(c)↦ 

x∈X
〈
λ
Lμ(x)∨

c∈U
c(x)⎛⎝ ⎞⎠

⎧⎪⎨

⎪⎩

⎧⎪⎨

⎪⎩

↦ 

V∈2[U]


x∈X

〈
λ
Lμ (x)∨ 

c∈V
c (x)⎛⎝ ⎞⎠

⎫⎪⎬

⎪⎭

⎫⎪⎬

⎪⎭
,

(15)

is the degree to which μ has the RL-Lindelöf property with
respect to ϰ. Clearly, μ has the RL-Lindelöf property in RL-ts
ϰ if and only if Lχϰ(μ) � 1.

Lemma 3. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈FL
X(λ). 4en, α≤Lϰ(μ) if and only if

ϰ(U)∧[μ⋞∨U]∧α≤ 

V∈2[U]

[μ⋞∨V], (16)

for each U⊆FL
X(λ).

Theorem 11. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈FL
X(λ). 4en,

Lϰ(μ) � ∨ α ∈ L | ϰ(U)∧[μ⋞∨U]∧α≤ 

V∈2[U]

[μ⋞∨V], ∀U⊆FL
X(λ)

⎧⎨

⎩

⎫⎬

⎭. (17)

Theorem 12. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ1, μ2 ∈F
L
X(λ). 4en, Lϰ(μ1∧μ2)≥Lϰ(μ1)∧〈

λ
Lϰ(μ2).

Corollary 2. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, Lϰ(μ)≥L(1X)∧〈 λ

L(μ).

Theorem 13. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ1, μ2 ∈F
L
X(λ). 4en, Lϰ(μ1∨μ2)≥Lϰ(μ1)∧Lϰ(μ2).

Theorem 14. Let λ ∈ VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, Lϰ(μ)∧ccϰ(μ)≤ cϰ(μ).

Proof. Suppose Lϰ(μ)∧ccϰ(μ)≥ α for each α ∈ L and
U⊆FL

X(λ). ,en, Lϰ(μ)≥ α and ccϰ(μ)≥ α. ,us,
ϰ(U)∧[μ⋞∨U]∧α≤∨V∈2[U] [μ⋞∨V]. For any V ∈ 2[U],
V⊆ F

L

X(λ).,erefore, ϰ(U)≤ ϰ(V), and by using Lemma 2,
we have ϰ(V)∧[μ⋞∨V]∧α≤∨W∈2(V) [μ⋞∨W]. Moreover,
we have

ϰ(U)∧[μ⋞∨U]∧α≤ ϰ(U)∧ 

V∈2[U]

[μ⋞∨V]∧α

≤ 

V∈2[U]

(ϰ(V)∧[μ⋞∨V]∧α)

≤ 

V∈2[U]



W∈2(V)

[μ⋞∨W]⎛⎝ ⎞⎠

≤ 

V∈2[U]



W∈2(U)

[μ⋞∨W]⎛⎝ ⎞⎠

≤ 

W∈2(V)

[μ⋞∨W] � 

V∈2(U)

[μ⋞∨V].

(18)

then, (ϰ(U)∧α)≤ ([μ⋞∨U]↦∨V∈2[U] [μ⋞∨V]) for each
U⊆FL

X(λ). Also, we have ϰ(U)↦([μ⋞∨U]↦∨V∈2[U] )≥ α
for each U⊆FL

X(λ). Hence, cϰ(μ)≥ α. ,e proof is
completed.

,e following corollary can be considered as the mul-
tivalue extension of the principal. If μ has the Lindelöf
property, then μ is compact if and only if it is countable
compact. □
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Corollary 3. Let λ ∈VL
X, (λ, ϰ) be an RL-fts on λ, and

μ ∈ FL
X(λ). 4en, Lϰ(μ)∧ccϰ(μ)≤Lϰ(μ)∧cϰ(μ).

5. Conclusion

In this paper, we introduced and characterized the countable
RL-fuzzy compactness degree and Lindelöf property degree of
an L-subset in RL-fuzzy topology based on pseudocomplement
of L-subsets and an implication operator. Since if λ � 1X, the
RL-fuzzy topology on λ is reduced to L-fuzzy topology in the
sense of Kubiak and Šostak; the degrees of RL-fuzzy com-
pactness and Lindelöf property are generalizations of the
corresponding degrees in L-fuzzy topology.
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[17] A. Šostak, General Topology and its Relations to Modern
Analysis and Algebra, Chapter on Compactness and Con-
nectedness Degrees of Fuzzy Sets in Fuzzy Topological Spaces,
Heldermann Verlag, Berlin, Germany, 1988.

[18] Y. Yueli and F. Jinming, “Generated I-fuzzy topological
spaces,” Fuzzy Sets and Systems, vol. 154, no. 1, pp. 103–117,
2005.

[19] A. Ghareeb, “L-fuzzy semi-preopen operator in L-fuzzy
topological spaces,” Neural Computing and Applications,
vol. 21, no. 1, pp. 87–92, 2012.

[20] A. Ghareeb, “A new form of F-compactness in L-fuzzy
topological spaces,” Mathematical and Computer Model-
ling, vol. 54, no. 9, pp. 2544–2550, 2011.

[21] W. F. Al-Omeri, O. H. Khalil, and A. Ghareeb, “Degree
of (L, M)-fuzzy semi-precontinuous and (L, M)-fuzzy
semi-preirresolute functions,” Demonstratio Mathema-
tica, vol. 51, no. 1, pp. 2391–4661, 2018.

[22] A. Ghareeb and F.-G. Shi, “SP-compactness and SP-con-
nectedness degree in L-fuzzy pretopological spaces,” Journal
of Intelligent & Fuzzy Systems, vol. 31, no. 3, pp. 1435–1445,
2016.

[23] A. Ghareeb and W. F. Al-Omeri, “New degrees for functions
in L, M-fuzzy topological spaces based on L, M-fuzzy semi-
open and L, M-fuzzy preopen operators,” Journal of Intelligent
and Fuzzy Systems, vol. 36, no. 1, pp. 787–803, 2019.

[24] A. Ghareeb, “Degree of F-irresolute function in L, M-fuzzy
topological spaces,” Iranian Journal of Fuzzy Systems, vol. 16,
no. 4, pp. 189–202, 2019.

[25] A. Ghareeb, H. S. Al-Saadi, and O. H. Khalil, “A new rep-
resentation of α-openness, α-continuity, α-irresoluteness, and
α-compactness in L-fuzzy pretopological spaces,” Open
Mathematics, vol. 17, no. 1, pp. 559–574, 2019.

[26] H. Li and Q. Li, “RL-topology and the related compactness,”
Journal of Mathematical Research with Applications, vol. 38,
no. 6, pp. 636–642, 2019.

[27] H. Li and Q. Li, “RL-Fuzzy topology and the related fuzzy
compactness,” Journal of Shandong University (Natural Sci-
ence), vol. 54, no. 2, pp. 51–57, 2019, in Chinese.

[28] W. Guo-Jun, “,eory of topological molecular lattices,” Fuzzy
Sets and Systems, vol. 47, no. 3, pp. 351–376, 1992.
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