
Research Article
Estimation of Suspended Sediment Load Using Artificial
Intelligence-Based Ensemble Model

Vahid Nourani ,1 Huseyin Gokcekus ,2 and Gebre Gelete 2,3

1Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
2Faculty of Civil and Environmental Engineering, Near East University, Northern Cyprus, Mersin 10, Turkey
3College of Agriculture and Environmental Science, Arsi University, 193, Asela, Ethiopia

Correspondence should be addressed to Vahid Nourani; vnourani@yahoo.com

Received 13 December 2020; Revised 15 January 2021; Accepted 5 February 2021; Published 17 February 2021

Academic Editor: Haitham Afan

Copyright © 2021VahidNourani et al.)is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Suspended sediment modeling is an important subject for decision-makers at the catchment level. Accurate and reliable modeling
of suspended sediment load (SSL) is important for planning, managing, and designing of water resource structures and river
systems.)e objective of this study was to develop artificial intelligence- (AI-) based ensemble methods for modeling SSL in Katar
catchment, Ethiopia. In this paper, three single AI-based models, that is, support vector machine (SVM), adaptive neurofuzzy
inference system (ANFIS), feed-forward neural network (FFNN), and one conventional multilinear regression (MLR) modes,
were used for SSL modeling. Besides, four different ensemble methods, neural network ensemble (NNE), ANFIS ensemble (AE),
weighted average ensemble (WAE), and simple average ensemble (SAE), were developed by combining the outputs of the four
single models to improve their predictive performance. )e study used two-year (2016-2017) discharge and SSL data for training
and verification of the applied models. Determination coefficient (DC) and root mean square error (RMSE) were used to evaluate
the performances of the developed models. Based on the performance measure results, the ANFIS model provides higher ef-
ficiency than the other developed single models. Out of all developed ensemble models, the nonlinear ANFIS model combination
method was found to be the most accurate method and could increase the efficiency of SVM, MLR, ANFIS, and FFNNmodels by
19.02%, 37%, 9.73%, and 16.3%, respectively, at the verification stage. Overall, the proposed ensemble models in general and the
AI-based ensemble in particular provide excellent performance in SSL estimation.

1. Introduction

Accurate modeling of the suspended sediment transported by
a river is of great importance in environmental and water
resources engineering, as it directly affects the design,
planning, operation, and management of water resources [1].
Moreover, modeling of suspended sediment is crucial because
it has a major effect on the reservoir capacity and dam op-
eration [2], water quality, and contaminant transport [3, 4].
However, suspended sediment estimation is a challenging
task for hydrologists as its interaction with geomorphological
characteristics of the catchment and the streamflow is highly
complex and nonlinear. Suspended sediment transport in the
river is a function of meteorological and hydrological pa-
rameters as a complicated process [5].

For the last decades, several studies were conducted to
model the relationship between river flow and suspend
sediment amount [1]. However, none of the developed
models has gotten universal acceptance for application in all
cases. So far, several researchers have proposedmanymodels
to estimate this complex process ranging from simple sta-
tistical, physical, and black-box models. In earlier decades,
modeling suspended sediment load using mathematical
models was a common task. However, their application was
limited because of the significant time required to set up the
model [6] and the large number of variables involved in the
equations [7].

)e physically based models are reliable methods for
assessing the actual physics of a phenomenon. Physically
based models for suspended sediment load (SSL) modeling
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are usually based on the simplified equitation of sediment
and discharge as well as on the relationship between the
erosive effect of flow and rainfall (e.g., [8–10]). Such physical
and conceptual models can take into account the effect of
catchment property and uneven distribution evapotrans-
piration and rainfall on the catchment [1]. However, using
physically based models for hydrological modeling is rather
complex as they require detailed temporal and spatial data,
which are not easily available. Estimating suspended sedi-
ment load using a physically based model is a very difficult
task due to its requirement of high-resolution sediment and
discharge data which are not often available [11]. Moreover,
direct measurement of high-resolution sediment concen-
tration and discharge is expensive and any error in mea-
surement of these variables also influences the modeling of
suspended sediment load. When accurate estimation is more
important than the physical understanding of the phe-
nomenon, the application of black-box modeling is helpful.

To overcome the limitation of the physical-basedmodels,
black-box artificial intelligence- (AI-) based approaches
which are reliable methods in dealing with nonlinear and
complex phenomena have been employed in different fields
of water resources engineering. Examples of this include
modeling suspended sediment load of the rivers (e.g., see
[12, 13]), rainfall-runoff process (e.g., see [14, 15]), longi-
tudinal dispersion coefficient of water pipeline (e.g., see
[16]), and estimation of overtopping flow the incipient
motion of riprap stones (e.g., see, [17]). )e AI methods
applied for the modeling of SSL include artificial neural
network (ANN), adaptive neurofuzzy inference system
(ANFIS), and support vector machine (SVM). ANFIS model
is an AI-based model appropriate for modeling nonlinear
and complex processes like suspended sediment load (e.g.,
[1, 12–18]). So far, different works have been reported in the
literature on the application of ANN in SSL modeling (e.g.,
[19–21]). SVM is another AI-based model capable of giving a
reliable estimation of suspended sediment load (e.g.,
[1, 4, 22]). In addition to AI-based models, conventional
multilinear regression (MLR) was used in this study. Because
of some difficulties in working with AI-based models, some
researchers applied straightforward, simple, and fast mod-
eling tools such as MLR to describe the linear relationship
between the response and one or more independent vari-
ables [23]. MLR has been successfully applied in modeling
different hydrological problems like evapotranspiration [23],
rainfall-runoff process [14], and suspended sediment load
[20, 24].

Although the abovementioned AI-based models can
give reasonable results, it is clear that one model may show
higher performance than the others for a given data set and
when different data sets are used, the results may entirely be
different [25]. No single model is superior in providing a
hydrological process forecast for any kind of watershed in
all conditions compared to those of other competing
models [26]. )erefore, combining the outputs of different
models using different ensemble techniques was believed to
give high predictive performance results and low error by
taking the advantages of different models. In this regard,
Bates and Granger [27] approved that combining the

outputs from several models using ensemble techniques
would lead to results that outperform the individual
forecasts. )e thought behind the model combination is to
make use of the exclusive characteristics of the single
models in a unique framework that would improve the
modeling accuracy [28]. )e combination of different
model outputs using several ensemble techniques has be-
come a common practice for the improvement of pre-
diction accuracy in different fields [29–31]. In the field of
hydrology, the first ensemble method was examined by
Cavadias and Morin [32]. Since then, the advantages of
ensemble techniques for improving modeling efficiency
have been proven in modeling several hydrological pro-
cesses (e.g., see [26, 33, 34]). However, to date and based on
our knowledge, there is no study done so far showing the
application of AI-based model combination methods for
suspended sediment load simulation. )e main objective of
this work was to develop AI-based ensemble methods for
daily suspended sediment load estimation in Katar
catchment, Ethiopia. )ree steps were followed to achieve
this objective. Sensitivity analysis was made to select sig-
nificant and relevant inputs in the first step. Secondly, four
black-box models, namely, ANFIS, ANN, SVM, and MLR
models, were developed to estimate suspended sediment
load. )ese AI-based (ANFIS, FFNN, and SVM) models are
chosen in this study because of their fast convergence time,
simplicity, and reliable estimation performance for com-
plex hydrological processes like SSL. Finally, the four en-
semble models (ANFIS ensemble (AE), neural network
ensemble (NNE), simple average ensemble (SAE), and
weighted average ensemble (WAE)) were created to in-
crease the predicting performance of the single black-box
models in forecasting suspended sediment. AE and NNE
were chosen as the nonlinear ensemble method over the
other AI-based models because of their compatibility,
popularity, and also their high performance reported in
model combination studies in other different fields [25, 35].
Moreover, the AE was introduced in this study due to the
robustness of the model observed in the single models.
)ese ensemble techniques have the potential to provide
researchers, decision-makers, and river and watershed
managers with accurate and fast methods for SSL
estimation.

)e models were examined for modeling SSL of Katar
catchment containing Katar River that drains into Lake
Ziway which supports the lives of millions of people. )e
catchment is characterized by intensive agriculture where
both rainfed and irrigated crops are grown. Because of
sediment deposition attributed to periodic flooding together
with improper agriculture, floodplains are formed along the
bank of the lake and the river. Moreover, this sediment
transported through the river causes siltation of irrigation
canals and Lake Ziway. )us, in this study, the Katar
catchment is chosen as the case study due to the availability
of discharge and SSL data (even though it is only two years)
and also for challenging problems associated with sedi-
mentation.)erefore, the Katar catchment represents a good
case study to assess the SSL estimation accuracy of the
proposed single and ensemble models.
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2. Materials and Methods

2.1. Study Area Description. )e study area, the Katar River
catchment, is a subcatchment of the Ethiopian central rift
valley basin. )is watershed is located in the Oromia Re-
gional State of Ethiopia and the northern part of the central
rift valley basin as part of the Ziway-Shala basin. Geo-
graphically, the catchment lies between 7°21’34’’ and 8°9’55’’
north latitudes and 38°53’57’’ and 39°24’46’’ east longitude
(see Figure 1). )e topography of the Katar catchment is
complex, with elevations ranging from 1673m (Abura) to
4181m above sea level. )e total area of the watershed,
upstream, of the Abura gauging station is estimated to be
3350 km2. )e climate of the catchment is characterized by a
semiarid to subhumid climate with minimum and maxi-
mum annual precipitation values of 731.8mm and
1229.7mm, respectively. )e mean annual temperature
ranges between 16°C and 20°C. )e dry season occurs from
October to May, and more than 70% of the rain falls during
the summer season. )e catchment attained a maximum
discharge of 116.32m3/s in August and a minimum dis-
charge of 0.115m3/s in January. Runoff from Katar catch-
ment drains into the Lake Ziway. )e land use of the study
area is characterized dominantly by intensive agriculture
where both rainfed and irrigated crops are grown.

Regarding soil type, Katar catchment consists of six
major soil types as vertisols, andosols, leptosols, fluvisols,
cambisols, and luvisols (see Figure 2).

2.1.1. Sedimentation Problem in the Study Area. Katar
catchment is one of the data-scarce areas of the country
where there is very limited historical measured suspended
sediment data. )erefore, studying suspended sediment of
the catchment is important to obtain accurate information
about the siltation rate and the resulted reservoir storage loss
over time. )e catchment attains a maximum SSL of
57335.524 ton/day in August and a minimum SSL of 0 ton/
day in January. )e catchment is one of the degraded areas
with intensive agriculture and farming on steep slopes.
Furthermore, the dense population together with improper
agricultural activity and rolling topography makes the
catchment susceptible to soil erosion. )e Katar River joins
Lake Ziway and according to Aga et al. [36], there is a
proposed dam on this river for multiple uses. Soil erosion
due to poor management and heavy rainfall is common
phenomena occurring upstream. )e sediment is trans-
ported and deposited at the mouth of the stream channel
(see Figure 3). Despite the aforementioned problems, little
attention was given to the catchment in the field of sus-
pended sediment load modeling and management. )ere-
fore, it is necessary to study the SSL of the catchment using
an effective technique to obtain better information about the
sediment condition of the area to have reliable management
projects.

2.2. Data Used in the Study. In this study, the daily SSL and
discharge data of Katar River catchment at Abura station for
two years (2016-2017) were used for training and verification

of the developed models. )e data were divided into two
subsets: the first 70% were used for training and 30% of the
data were used for verification purposes. Table 1 presents the
descriptive statistics (minimum, average, maximum, and
standard deviation) of the used data.

)e time series plot of daily SSL and discharge values of
Katar catchment at Abura station throughout the study
period is shown in Figure 4. )e data from 1 January 2016 to
25 May 2017 were used for training and the remaining data
(from 26 May to 31 December 2017) served for verification
of the applied models.

2.3. Proposed Methodology. In this paper, three AI (SVM,
ANFIS, and FFNN) and one MLR were used for modeling
suspended sediment load in the Katar catchment. )e input
data used were normalized and classified into training and
verification sets. )e study was conducted via three stages
(see Figure 5). In the first stage, the selection of the most
relevant and dominant inputs for suspended sediment load
estimation was conducted through nonlinear sensitivity
analysis. Secondly, four black-box models, namely, FFNN,
SVM, NFIS, and MLR, models were applied for the esti-
mation of suspended sediment. Finally, four ensemble
techniques, namely, AE, NNE, SAE, and WAE, were de-
veloped. In this stage, the outputs from single black-box
models were used as the inputs for the ensemble process.)e
obtained suspended sediment load from the last stage was
compared with the results obtained from individual models
in the second step.

2.3.1. Feed-Forward Neural Network (FFNN). ANN is
among the extensively applied AI techniques in hydrological
modeling which works based on simulation of the structure
and operational performance of a biological neural network.
In recent years, ANN as a self-adaptive and self-learning
simulation function has shown great ability in forecasting
and modeling complex hydrological processes. Its ability to
learn from example makes ANN more efficient and appli-
cable in many fields of science, economics, engineering, etc.
[35]. According to [37], the advantage of the ANN model is
that it establishes a relationship between the dependent and
predicted variables by training the neural network without
detailed knowledge of the characteristics of the catchment.
Among different ANN forms, FFNNwith a backpropagation
algorithm was used for this study because of its simplicity
and extraordinary preferred position of giving exceptional
answers for different problems without prior knowledge of
the process.

)e FFNN consists of interconnected processing ele-
ments known as nodes with unique characteristics of in-
formation processing such as learning, nonlinearity, noise
tolerance, and generalization capability.

FFNN structure contains three layers, namely, the input,
hidden, and output layer (see Figure 6). In the FFNN, the
inputs presented to the input layers’ neuron are propagated
in a forward direction and a nonlinear function known as
activation function is used to compute the output vector.
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2.3.2. Adaptive Neurofuzzy Inference System (ANFIS).
ANFIS developed by Jang [38] is a universal approximator to
overcome the limitations of both ANN and fuzzy inference
system. ANFIS is an amalgamation of both ANN and fuzzy
inference systems (FIS) that has a strong capability to handle
the uncertainty of dynamic and complex interactions that
exist between the input and output variables.

Every fuzzy system has three different parts, namely,
defuzzifier, fuzzifier, and fuzzy database. )e fuzzy rule base
consists of rules which are fuzzy proposition related as is
demonstrated by Jang et al. [39]. As a result, the fuzzy in-
ference is applied in the operational analysis.)is goal can be
achieved by employing different fuzzy inference engine. )e
most famous FIS are Tsukamoto’s system [40], Sugeno’s
system [41], and Mamdani’s system [42]. )ese three types
are different from each other. Sugeno’s approach uses
constant functions, whereas fuzzy membership functions
(MFs) are used in Mamdani’s approach.

)eANFISmodel architecture consists of five layers with
layer 1 representing the input layer; layer 2 representing the
input membership function; layer 3 representing rules; layer
4 representing the output MFs; and layer 5 representing the
output configured as illustrated in Figure 7.

Once the fuzzy system has been built, the relation be-
tween fuzzy variables is specified using if-then fuzzy rules.
Assuming that FIS contains two inputs (x and y) and output
(f ), a first-order Sugeno fuzzy has the following rules:

Rule(1): if μ(x) isA1 and μ(y) isB1: thenf1 � p1x + q1y + r1,

Rule(2): if μ(x) isA2 and μ(y) isB2: thenf2 � p2x + q2y + r2,

(1)

where A1 and A2 are MF parameters for input x and B1 and
B2 are MFs for the inputs y, respectively, whereas p1, q1, r1,
p2, q2, and r2 are outlet functions’ parameters. )e ar-
rangement and structural formula of ANFIS layers are as
follows:

Layer 1: every node i is an adaptive node in this layer,
which has a node function as equation (2).

Q
1
i � μAi(x), for i � 1, 2

orQ
1
i � μBi(x), for i � 3, 4,

(2)

where Q1
i represents the membership grade for inputs x

and y. Gaussian MF was chosen due to its lowest
prediction error.
Layer 2: every rule between inputs in this layer is
connected by the T-Norm operator which is performed
with “and” operator as in equation (3).

Q
2
i � wi � μAi(x) · μBi(y), for i � 1, 2. (3)

Layer 3: the output in this layer is normalized firing
strength and calculated as

Q
3
i � w �

wi

w1 + w2
, i � 1, 2. (4)

Layer 4: each node i in this layer calculates the con-
sequence of the rules on the output of the model:

Q
4
i � w pix + qiy + ri( 􏼁 � wfi. (5)

8°
10

′
0″

N
8°

0′
0″

N
7°

50
′
0″

N
7°

40
′
0″

N
7°

30
′
0″

N
7°

20
′
0″

N

8°
10

′
0″

N
8°

0′
0″

N
7°

50
′
0″

N
7°

40
′
0″

N
7°

30
′
0″

N
7°

20
′
0″

N

38°40′0″E 38°50′0″E 39°0′0″E 39°10′0″E 39°20′0″E

38°40′0″E 38°50′0″E 39°0′0″E 39°10′0″E 39°20′0″E

Kater catchmentEthiopia

0 3.25 6.5 13 19.5 26
Miles

Abura hydrometry
Meteorological stations

Streams
Katar catchment

N

E
S

W
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w is the layer 3 output and p1, q1, and r1 are consequent
parameters.
Layer 5: the overall ANFIS output is calculated by
adding all of the incoming signals to this layer as

Q
5
i � w pix + qiy + ri( 􏼁 􏽘 wifi �

􏽐
​
wifi

􏽐
​
wi

. (6)

2.3.3. Support Vector Machine (SVM). It is an artificial
intelligence model that can be used for both regression and
classification tasks [43]. SVM is a relatively new approach
that can successfully be applied in the modeling of nonlinear
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Figure 3: Siltation along the riverbank [36].
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and complex real-world problems. )e regression estima-
tion with SVM is to estimate a function according to a given
data set, (xi, di)􏼈 􏼉

n
i where xi denotes the input vector, di

denotes the actual value, and n is the total number of data
sets. )e general SVM regression function is formulated as

y � f(x) � ωφ xi( 􏼁 + b, (7)

where φ is nonlinear mapping function and ω and b are
regression function parameters and determined by assigning
positive values for the slack parameters of ξ and ξ∗ and
minimization of the objective function as shown in

Minimize
1
2
‖w‖

2
+ c⎛⎝ 􏽘

n

i

ξi + ξ∗i( 􏼁⎞⎠

Subjected to

wiϕ xi( 􏼁 + bi − di ≤ ε + ξ∗i
di − wiϕ xi( 􏼁 + bi ≤ ε + ξ∗i , i � 1, 2, . . . n

ξiξ
∗
i

,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where (1/2)‖w‖2 is the weights vector norm and C is the
regularized constant; the general conceptual model structure
of SVM is illustrated in Figure 8.

By defining Lagrange multipliers αi and α∗i , the opti-
mization problem shown above can be changed to a dual
quadratic optimization problem. )e vector w can be de-
termined after finding the problem solution of optimization
[44].

w
∗

� 􏽘
n

i

αi − α∗i( 􏼁φ xi( 􏼁. (9)

)erefore, the general form of SVM can be in the form as

f x, αi, α
∗
i( 􏼁 � 􏽘

n

i�1
αi − α∗i( 􏼁K x, xi( 􏼁 + b, (10)

where k(xi, xj) is the kernel function and b is the bias term.
)e radial basis function (Gaussian) is the most common
kernel function [45] and is expressed as

k x1, x2( 􏼁 � exp −c x1 − x2
����

����
2

􏼒 􏼓, (11)

Table 1: Descriptive statistics of daily runoff and sediment data.

Data set Period
Statistical parameters

Min Mean Max Standard deviation Coefficient of variation

Discharge (m3/s)
Training 0.115 8.862 116.32 15.3016 1.727

Verification 0.8 17.338 111.32 20.062 1.157
Whole 0.115 11.401 116.32 17.31 1.518

SSL (ton/day)
Training 0 1760.29 57335.524 5102.626 2.899

Verification 0 3391.356 52947.35 5850.01 1.725
Whole 0 2248.94 57335.52 5389.566 2.397
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Figure 4: Time series of suspended sediment load and river discharge observed at Katar catchment (Abura station) for a period of two years
(2016-2017).
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where c is the kernel parameter.

2.3.4. Multilinear Regression (MLR). MLR is one of the most
commonly used mathematical modeling techniques to an-
alyze the linear relationship that exists between the

dependent and one or more independent variables. )is
method is based on the assumption that the dependent
variable Y is affected by predictor variables X1, X2, . . . , Xn

and then a linear equation is selected for the relationship
between the dependent and independent variables [14].
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error

WAE

Modeling

Comparison
of models

SVM MLRANFIS

End

Ensemble
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Figure 5: Schematic of the proposed methodology.
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Generally, the regression equation for the dependent vari-
able (Y) can be written as

Y � b0 + b1x1 + b2x2 + · · · bnxn, (12)

where xn is the value of the nth predictor, b0 is the regression
constant, and bn is the coefficient of the nth predictor.

2.4. Ensemble Techniques. Ensemble modeling is a type of
machine learning in which the outputs of different
models are combined to improve the final model

performance [46]. Even though it is a complex process
and consumes a long time for designing and computa-
tion, an amalgamation of the outputs of several models
produces results that are more accurate than the indi-
vidual models [47]. )is is because one of the used
techniques for a given data set may perform better than
the others and when different data sets are used, the
result may become the opposite. )erefore, an ensemble
technique may be developed to get benefit from the
advantages of all single models. Ensemble method uti-
lizes output from every single method with a certain
priority level assigned to each with the help of arbitrator,
providing the output [28]. For this study, two nonlinear
(AE and NNE) and two linear (WAE and SAE) ensemble
models were used for enhancing the performance of the
single models.

Multimodel combination methods have already been
applied in various forecasting applications such as cluster-
ing, classification, time series, regression and web ranking
[48], weather and economic forecasting in the early 1960s
[49], rainfall-runoff [26], dissolved oxygen concentration
modeling [50], groundwater level prediction [34], river
water quality index prediction [30], and wastewater effluent
quality modeling [31]. However, no study is reported on the
applicability of ensemble modeling in suspended sediment
load modeling to the best of our knowledge. )us, this study
employed four ensemble methods (two nonlinear and two
linear) to enhance the accuracy of the single models in the
estimation of SSL.

2.4.1. Linear Ensemble Methods. Simple average ensemble
(SAM): in this ensemble technique, the arithmetic average of
outputs (suspended sediment load) of SVM, ANFIS, FFNN,
and MLR models was calculated as the final computed
suspended sediment load value as

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x
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x, y f
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Figure 7: Structure of equivalent ANFIS.
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Figure 8: )e architecture of SVM algorithms.
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SS �
1
N

􏽘

N

i�1
SSi, (13)

where SS is the output of the SAMmodel, SSi is the output of
the ith single model (i.e., ANFIS, FFNN, SVM, and MLR),
and N is the number of single models (here, N� 4).

Weighted average ensemble (WAE): in this method, the
prediction is made by assigning different weight to each
output based on the relative importance of the outputs as

SS � 􏽘
N

i�1
wiSSi, (14)

where wi stands for weight on the output of the ith method
and it is computed based on the performance measure of the
ith method as

wi �
DCi

􏽐
N
i�1 DCi

, (15)

where DCi represents the determination coefficient of the ith

model.

2.4.2. Nonlinear Ensemble Methods. In the nonlinear en-
semble methods, the nonlinear averaging is performed by
training an AI nonlinear model such as ANFIS and FFNN
using suspended sediment values obtained from the single
models. In the nonlinear ensemble modeling, the outputs of
individual ANFIS, SVM, MLR, and FFNN models are
combined and used as new inputs for the nonlinear en-
semble models (AE and NNE) to get the overall ensemble
output.

Neural network ensemble (NNE): in this technique, a
nonlinear ensemble is made by training another FFNN by
feeding the outputs of single models as inputs. )en, the
maximum number of epochs and hidden layers’ neurons is
determined by trial and error.

ANFIS ensemble (AE): in this method, the suspended
sediment load values obtained from single SVM, FFNN,
MLR, and ANFIS models are fed to train a new ANFIS
model using various numbers of epochs and membership
functions. )e general procedure used in the ensemble
process is presented in Figure 9.

2.5. Data Normalization and Model Evaluation Criteria.
)e input and output data should be first normalized before
the model is trained to remove their dimensions and to
ensure that equal attention is given to all variables [25, 47].
Data normalization helps to avoid numerical calculation
difficulty. To bring the data in a range of [0, 1], the dataset
should be normalized as

SSn �
SSi − SSmin

SSmax − SSmin
, (16)

where SSn, SSmax, SSmin, and SSi represent the normalized,
maximum, minimum, and actual suspended sediment load
values, respectively.

In forecasting hydrological parameters, Dawson et al.
[51] discussed and explained 20 frequently used model
performance indicators. As indicated in the previous parts,
three AI-based models (ANFIS, ANN, and SVM) and a
commonly used linear model (MLR) were used in this study.
)e performance of hydrological and climatological time
series forecasting models must be evaluated in both training
and verification phases. )e model that yields the best
modeling result on the training and verification steps is
determined by trial and error. For better evaluation of model
performance, at least one absolute error measure and one
good of fit should be used [47]. For this study, Root Mean
Square Error (RMSE) and Nash-Sutcliffe Efficiency (NSE) or
Determination Coefficient (DC) were used to evaluate the
performance and efficiency of the developed models. DC has
values between -∞ and 1 and measures how well the pre-
dicted value fits with the observed data. Higher model
performance is obtained when the DC value is closed to 1,
and vice versa [52]. )e other performance measure used in
this study is RMSE. It measures the deviation of the com-
puted from the observed values. )e best model is the model
that gives the least RMSE and the highest DC values, as
calculated by equations (17) and (18), respectively.

RMSE �

������������������

1
N

􏽘

N

i�1
SSobsi − SSprei􏼐 􏼑

2

􏽶
􏽴

, (17)

DC � 1 −
􏽐

N
i�1 SSobsi − SSprei􏼐 􏼑

2

􏽐
N
i�1 SSobsi − S�Sobs( 􏼁

2,
(18)

where SSobsi, SSprei, S�Sobs, and N are observed, predicted, and
average of the observed SSL values and number of obser-
vations, respectively.

3. Results and Discussion

All of the used models, namely, SVM, FFNN, ANFIS, and
MLR, were trained and tested for modeling suspended
sediment load in Katar catchment. )e results of sensitivity
analysis to select dominant inputs, single black-box mod-
eling, and ensemble models for suspended sediment load are
presented in the following subsections.

3.1. Results of Inputs Selection. )e effect of several factors,
for example, runoff, precipitation, and catchment charac-
teristics, are involved in the suspended sediment load
modeling [5]. )erefore, careful selection of the most rel-
evant and significant factors as inputs in any AI-based
modeling is an important step to obtain the optimum result.
Previous studies indicated that there exists the highest
correlation between the present value of suspended sediment
load and its previous values. )e influence of different
factors can indirectly be considered by the antecedent SSL
values [53]. To estimate the current SSL (SSt), different lag
time series of discharge (Q) and SSL were used in previous
researches [4, 18]. )us, the value of suspended sediment
load at the current time step (SSt) would be the function of
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the sediment values up to time step n and also runoff (Q)
values at present and up to time step m as

SSt � f Qt, Qt−1, Qt−2, . . . , Qm, SSt−1, SSt−2, . . . , SSn( 􏼁.

(19)

Selection of the most relevant input variables and correct
network parameter adjustment (e.g., number of training
iterations, hidden neurons, and transfer function) in any AI-
based modeling is a crucial step in attaining the most op-
timal result [35, 54]. Linear sensitivity analysis methods (e.g.,
Pearson correlation) have previously been used for the se-
lection of the dominant input variable in suspended sedi-
ment modeling (e.g., see [6, 21, 22, 55]). However, the
application of linear Pearson correlation analysis for
selecting the dominant input variables has been criticized by
previous works (e.g., [35, 56]) since, for a complex nonlinear
hydrological process like SSL, there may exist a stronger
nonlinear relationship between the predictor and predicted
variables than a weak linear relationship. Because of this,
sensitivity analysis of input variables for suspended sediment
load estimation using nonlinear FFNNwas conducted in this
work to determine the most relevant inputs. To predict
current-day suspended sediment load (SSt), different lags
(up to 5 past days) of suspended sediment and discharge data
were evaluated as sole input and ranked based on the
verification phase DC values of the modeling. )e ranking
results based on sensitivity analysis of input variables to
predict SSt are presented in Table 2.

In Table 2, t stands for the present time step and the
corresponding output is the current suspended sediment
load (SSt). In the table, the highest DC value implies themost
dominant input variable. )us, Qt is the first most dominant
and SSt−1 is the second, and Qt−1 is the third dominant input
parameter. Insufficient input variables cannot give accurate
results whereas including too many input variables makes
the modeling process complex and may cause overfitting
issues [35]. )us, after ranking the input variables based on
their verification DC value, the Student t-test was performed
to identify the dominant inputs and remove those which do
not have a significant impact on the estimation results. Based
on the result of the Student t-test, Qt−4, Qt−5, SSt−4, and SSt−5
were found less relevant and not included in the inputs
combination set. After the selection of the dominant inputs
and removal of less relevant inputs, different input com-
binations using the remaining parameters, that is, SSt−1,
SSt−2, SSt−3, Qt, Qt−1, Qt−2, and Qt−3, were examined to
predict the SSL by the proposed models.

3.2. Results of SS Modeling Using Single Models. For each
input combination, the ANFIS, SVM, FFNN, and MLR
models were trained and tested where the best results of each
model are presented in Table 3. )e FFNN model with five
inputs and one hidden layer trained by the Levenberg-
Marquardt algorithm was developed for suspended sedi-
ment load estimation in the Katar catchment. Determination
of the optimal model structure (e.g., number of the hidden
neurons) is an important step in FFNN modeling to obtain
the best result. )is is because too small neurons may
capture unacceptable information while too many neurons
may cause overfitting A trial and error method by assessing
the accuracy of different models trained with varying hidden
neuron number was used to determine the best structure of
the model. For the best input combination, 8 hidden neu-
rons were found as the optimum structure of the hidden
layer.

)e second AI applied in this study was SVM. Radial
basis function (RBF) kernel was used to create the SVM
model for all input combinations. )is kernel was selected
because it provides better performance and contains fewer
tuning parameters than polynomial and sigmoidal kernels
[44].

)e third AI-based model used was the ANFIS model
that is known for its ability to handle the uncertainty of
complex and nonlinear processes via a fuzzy concept. In this
way for the ANFIS model, Sugeno fuzzy inference system
using a hybrid algorithm was used to calibrate the MF
parameters.)e study also used a trial and error approach by
changing the types of MFs to obtain the best result. Trap-
ezoidal, triangular, and Gaussian-shaped MFs were exam-
ined because of their suitability in modeling the
hydroclimatic process [25]. As well, the trial and error
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unit
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Figure 9: Schematic view of the ensemble process.

Table 2: Sensitivity analysis results.

Inputs Verification DC Rank
Qt 0.8208 1
SSt−1 0.7964 2
Qt−1 0.7605 3
SSt−2 0.6338 4
Qt−2 0.60438 5
Qt−3 0.5188 6
SSt−3 0.4966 7
Qt−4 0.3594 8
SSt−4 0.3027 9
Qt−5 0.2934 10
SSt−5 0.2134 11
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method was used to determine the number of membership
functions and to determine the best ANFIS construction.
ANFIS model with Gaussian MFs trained by 55 epochs gave
the best result among the others. Lastly, MLR that expresses
the linear relationship between the predictor (independent)
and output (dependent) variables was also applied for SSL
modeling. )e obtained results of the developed AI-based
and MLR models to predicted suspended sediment load in
Katar catchment for the best input combination are pre-
sented in Table 3. )e numbering of a-b-c in the FFNN
(Table 3) stands for the number of input, hidden, and output
neuron layers. Similarly, the numbering y-z in the structure
of MLR in Table 3 represents the number of inputs and
output parameters.

Table 3 shows that the ANFIS model having the highest
DC and lowest RMSE outperformed all developed AI and
MLR models in suspended sediment load estimation fol-
lowed by FFNN, SVM, and MLR. )e result is confirmed by
previous studies about the performance of ANFIS and ANN
models in suspended sediment load estimation [12, 13]. )e
MLR which measures the linear relationship between the
inputs and output led to less accurate results than the AI-
basedmodels.)is is because the suspended sediment load is
a dynamic, nonlinear, and complex process and hence a
nonlinear model may be used to accurately model it instead
of a linear technique.

From the results of single models shown in Table 4, the
application of the best model (ANFIS) could increase the
performances (based on DC value) of FNNN, SVM, and
MLR by 6%, 8.47%, and 24.86%, respectively. In addition to
statistical performance measures, different visual indicators
like scatter plots, boxplot, and Taylor diagram were used in
this study to obtain a better view of the estimation per-
formances of the employed models. )e scatter plots of
single AI-based and MLR model result against the observed
value in the verification phase are presented in Figure 10.

According to Sharafati et al. [31], a scatter plot shows the
possible pattern similarity between the observed and esti-
mated data. Figure 10 compares the estimation performance
of FFNN, MLR, SVM, and ANFIS models in the estimation
of SSL on scatter plots. )e figure reveals less spread of
points for predicted and observed SSL in the ANFIS model
than other computing single models. )is could be due to
the ability of the ANFIS model to handle the uncertainties of
the SSL process.

In Figure 11, the median (Q50%) value for ANFIS
model� 1,497.3 ton/day, MLR� 2014.4 ton/day, SVM� 1,
672.7, FFNN� 1,562.8 ton/day, and observed� 1,482 ton/
day. )is indicates the ANFIS model performs better than

the other models with FFNN being the second while MLR
provides the worst estimation. )e reasonable performance
of the ANFIS model is because of its ability to handle the
uncertainty of complex SSL process. Kumar et al. [12] ap-
plied ANFIS and ANN to model the current-day suspended
sediment and runoff in the Godavari basin using the pre-
vious period discharge and SSL data as input. )ey found
that the ANFIS model gave a better performance than ANN
in suspended sediment prediction. Nourani and Andalib [4]
employed the least squares support vector regression
(LSSVR) and ANN for monthly and daily SSL prediction.
)e result showed that LSSVR has a better predictive per-
formance than ANN. Buyukyildiz and Kumcu [18] applied
SVM, ANFIS, and SVM to estimate the current-day SSL of
Coruh River using a different combination of lag time series
of Q and SSL as input. )ey found that ANN performed
better than the other models. From the comparison with the
reported studies in the literature, it can be observed that the
estimation accuracy of AI-based models varies for different
case studies. According to Salih et al. [2], it is because of SSL
data stochasticity of each considered catchment and also the
capacity of the constructed AI-based models to handle the
nonstationarity and nonlinearity in the data set.

Figure 12(a) shows the time series plot of observed
versus computed suspended sediment load in the verifica-
tion phase of Abura station for the applied MLR, SVM,
FFNN, and ANFIS models. Figure 12(b) shows a section of
modeling of SSL time series by MLR, SVM, FFNN, and
ANFIS models. For better visibility of predicted values of
SSL by each model, only a 51-day period (from July 26 to
September 14, 2017) has been focused on in Figure 12(b).

As shown in Figure 12(b), the date of July 29, August 08,
August 24, and August 31 are marked as points 1, 2, 3, and 4,
respectively. With regard to point 1, ANFIS� 5752.136 ton/
day, MLR� 3857.018 ton/day, FFNN� 4620.326 ton/day,
SVM� 6573.967 ton/day, and observed� 3831.348 ton/day.
)is indicates that the MLR value is more close to the actual
value than the other models. )is, in turn, shows that even
the least accurate model at a certain point in the time series
could give the best result. With regard to point 2,
ANFIS� 6313.366 ton/day, MLR� 4563.506 ton/day,
SVM� 8595.878 ton/day, FFNN� 6695.642 ton/day, and
observed� 6245.252 ton/day. )is implies that the ANFIS
model performs better than other models. At point 3,
ANFIS� 6181.81 ton/day, MLR� 4190.825 ton/day,
SVM� 6270.75 ton/day, FFNN� 5424.629 ton/day, and
observed� 5249.579 ton/day. )is indicates that the FFNN
value has less deviation from the observed SSL value than the
other competing models. At the final point (point 4), SVM

Table 3: Results of single black-box models for SSL modeling by the best input combination.

Model Input combination Best structure
Training Verification

DC RMSE DC RMSE
FFNN Qt, Qt−1, Qt−2, SSt−1, SSt−2 5-8-1 0.876 0.03134 0.834 0.04155
ANFIS Qt, Qt−1, Qt−2, SSt−1, SSt−2 Gaussian 0.918 0.0255 0.884 0.0339
SVM Qt, Qt−1, Qt−2, SSt−1, SSt−2 RBF 0.867 0.0324 0.815 0.0439
MLR Qt, Qt−1, Qt−2, SSt−1, SSt−2 5-1 0.755 0.0441 0.708 0.0553
RMSE has no unit as the data are normalized.
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performs better than the other models. From the results of
the selected points, it is clear that different models at dif-
ferent time points could lead to different performances
(from different data aspects). )us, the objective of more
accurate SSL estimation can be better achieved through an
ensemble method. In this regard, WAE, SAE, NNE, and AE
ensemble methods were developed for SSL modeling to
improve the overall performance of the modeling.

3.3. Results of Ensemble Techniques. In order to increase the
estimation efficiency of single AI-based and MLR models,
the outputs of ANFIS, SVM, MLR, and FFNN models were

used as inputs for the four ensemble techniques as a novel
ensemble method for SSL modeling.)e results of linear and
nonlinear ensemble models for suspended sediment esti-
mation are presented in Table 4.

Table 4 shows the performances of WAE, SAE, AE, and
NNE for the estimation of SSL. In the SAE structure, a-b is
used to show the number of inputs and outputs (SSt). In
WAE structure, w, x, y, and z denote the weights of FFNN,
ANFIS, SVM, and MLR models, respectively. In Table 4, it
can be seen that AE outperformed all the competing model
combination techniques because of its robustness by com-
bining the advantages of both ANN and fuzzy concepts via
the ANFIS framework.

Table 4: Results of the proposed ensemble methods for SSL modeling.

Ensemble method Best structure
Calibration Verification

DC RMSE DC RMSE
SAE 4-1 0.922 0.0249 0.8793 0.0349
WAE 0.257, 0.274, 0.251, 0.218 0.9257 0.0243 0.888 0.0327
AE Gausian-3 0.9804 0.0125 0.97 0.0176
NNE 4-7-1 0.953 0.0193 0.924 0.0281
RMSE has no unit as the data used is normalized.
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Figure 10: Scatter plots showing the actual and predicted SSL, at verification phase by (a) MLR, (b) SVM, (c) FFNN, and (d) ANFIS.
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Figure 12: Observed versus predicted suspended sediment load value in the verification stage of Abura station in (a) January
2016–December 2019 and (b) July 26 up to September 14, 2017.
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Figure 11: Boxplot of observed versus computed SSL in the verification phase.
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)e linear ensemble (SAE) performed better than all the
single models except the ANFIS model. It is known that
linear averaging usually gives values higher than the min-
imum value and lesser than the highest value in the data set
[35]. Even from the nonlinear ensemble methods, WAE
gives a slightly better performance than SAE. )is could be
due to the assigned weights on the parameter based on their
relative importance.

NNE model was trained by the Levenberg-Marquardt
algorithm similar to the single FFNN model and the tan-
gent sigmoid activation function was utilized for both
output and hidden layers. In this study, the Levenberg-
Marquardt algorithm was selected among different ANN
training algorithms because of its fastest convergence
ability as reported by Sahoo et al [57]. A trial and error
process was used to determine the best epoch number and
the appropriate number of hidden neurons. NNE has been
successfully used as multimodel combination techniques in
hydrological modeling (e.g., [25, 46, 52]). Similar to the
ANFIS single model, Sugeno fuzzy inference system using a
hybrid training algorithm was used to calibrate the MFs
parameters in AE. )e AE model has greatly enhanced the
accuracy of single models in previous studies in another
field [35].

)e result in Table 5 shows the capability of ensemble
techniques to improve the prediction performance of
single AI and MLR models based on their DC values. )e
results in Table 5 show that all used ensemble methods can
be applied to improve single model performance in SSL
modeling. However, nonlinear ensemble techniques show
superiority over the linear ensemble models. )is could be
because of the incapability of linear ensemble methods to
undergo another black-box learning process unlike the
nonlinear ensemble methods (AE and NNE). )e NNE
increased the performance of SVM, FFNN, ANFIS, and
MLR models by 12%, 12.8%, 6.6%, and 28.4%, respectively
in the verification stage. In the AE model, the performance
of SVM, FFNN, ANFIS, and MLRmodels was increased by
16.4%, 17.3%, 10.9%, and 33.5%, respectively, in the
verification stage. Also, from the obtained results shown
in Table 4, the AE performed better than the other three
ensemble methods because of its robustness to handle the
complex nonlinear process between outputs and inputs.
)e performance accuracy of the ANFIS model over AI-
based and MLR single models applied in modeling sus-
pended sediment load was also confirmed by the AE
model.

)e scatter plots of the ensemble methods result and the
observed suspended sediment load values in the verification
phase are presented in Figure 13.

In Figure 13, the scatter plots of the developed ensemble
models for SSL estimation in the verification are compared.
As indicated in the figure, the AE is seen to have less spread
estimation and the points were closer to the best line
compared to the other ensemble models, while the linear
ensemble methods (SAE andWAE) show the most scattered
estimation.

)e boxplot is also another graph commonly used to
make a comparison between the observed value and esti-
mated outputs obtain by different models [6, 31]. )e
variability of observed SSL values versus those obtained by
the developed ensemble models was compared using dif-
ferent quartiles and interquartile range (IQR) through
boxplots in Figure 14. In this figure, the median (Q50%) value
for SAE� 1,681.1 ton/day, WAE� 1, 678 ton/day,
NNE� 1,212.4 ton/day, AE� 1,636.4 ton/day, and observ-
ed� 1, 482 ton/day. )is shows that AE outperforms the
other ensemble techniques. Moreover, Figure 14 depicts that
the most consistency is found between the output obtained
by AE (IQR� 4,968.3 ton/day) and observed value
(IQR� 4,929.8 ton/day).

Figure 15 shows the time series of observed versus
predicted SSL in the verification phase of Abura station
SSL modeling for the applied ensemble methods (SAE,
WAE, NNE, and AE). From Figure 15, it is clear that the
WAE and SAE methods were less accurate than AE and
NNE. )e values of AE were more fitted with the observed
data, whereas there is a wider fluctuation between ob-
served data and the values obtained by WAE and SAM
ensembles.

Alternatively, four ensemble methods (SAE, WAE,
AE, and NNE) were also assessed using the Taylor dia-
gram (two-dimensional diagram), which shows the pre-
dicted and observed values. Taylor’s diagram could be
used as a successful diagram for comparison of model
performances in different fields [2, 6, 58–60]. Taylor’s
diagram was used to construct and graphically visualize
the combination of two performance indicators, namely,
correlation (r) and standard deviation (SD) [61] (Fig-
ure 16). )e key objective of using this diagram is to
combine different models performances indicators in one
graph and it can also statistically quantify the level of
resemblance between the predicted and observed values.
From Figure 16, it is seen that the best ensemble method is
AE (r � 0.985) and SAE is the least with the r-value of
0.927. From the ensemble result comparisons, the men-
tioned performance metrics indicate the degree of pre-
diction accuracy of AE. )e AE outperformed the other
ensemble methods as the predicted values are more close
to the observed values. )is can be additionally confirmed
by considering the high SD value which could be credited
to the AE.

Table 5: )e comparison of the nonlinear ensemble models using
single AI and MLR models.

Model Training (%) Verification (%)
AE vs MLR 29.85 37
AE vs FFNN 11.9 16.3
AE vs SVM 13.08 19.02
AE vs ANFIS 6.8 9.73
NNE vs MLR 26.22 30.5
NNE vs SVM 9.92 13.37
NNE vs FFNN 8.8 10.79
NNE vs ANFIS 3.8 4.5
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Figure 13: Scatter plots showing observed versus predicted suspended sediment load by (a) SAE, (b) WAE, (c) NNE, and (d) AE, in the
verification phase.
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Figure 14: Boxplot of observed versus predicted values by ensemble models in the verification phase.
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4. Conclusions

In this study, the capability of ANFIS, SVR, FFNN, andMLR
models was examined for modeling daily SSL of Katar
catchment, Ethiopia. Before the development of suspended
sediment load estimation using single AI andMLRmodels, a
nonlinear sensitivity analysis was conducted for selecting the
relevant inputs. After conducting the Student t-test, some
irrelevant and less significant input variables were removed

and only the dominant inputs were used in different
combinations to predict SSL.

By comparing the results obtained from the single
models, it was demonstrated that the ANFIS model could
lead to the highest prediction performance over the other
competing models because of its strength in dealing with the
dynamic, nonlinear, and complex process via fuzzy concept.
After developing single AI and conventional MLR models,
four ensemble methods that combine the outputs from every
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single back box models were created to improve the per-
formances of the individual models. Combining the results
of individual models enhanced the accuracy of single models
in the estimation of suspended sediment. Nonlinear en-
semble techniques (AE and NNE) showed the highest
performance because of their capability of handling the
uncertainty of complex and nonstationary processes such as
the suspended sediment process. AE method showed su-
periority over the other ensemble methods by increasing the
predictive performance of FFNN, ANFIS, MLR, and SVM
models in the testing phase by 16.3%, 9.73%, 37%, and
19.02%, respectively. )e performance of the nonlinear
ensemble (SAE) showed higher efficiency compared to the
single black-box models except the ANFIS model. )is is
because linear averaging always gives a result that is higher
than the minimum value and lesser than the maximum value
in the set. In this study, the linear ensemble provides less
performance than the ANFIS model because of the lower
performance of the conventional MLR. )erefore, the
limitation of the linear ensemble method is that the least
performed single models may lead to performance lower
than that of the most accurate model.

)e result of this study generally revealed the promising
power of ensemble methods in SSL modeling. )e ensemble
outputs obtained specifically by the AE technique revealed
that better SSL forecasting accuracy could be achieved via a
combination of individual model outputs rather than the use
of single models. )is study is limited to the application of
black-box models for ensemble SSL modeling. Hence, the
inclusion of physically based models in the ensemble unit
should be tested for future study. Moreover, this study used
only two years of daily SSL and discharge data for suspended
sediment load estimation due to the data limitation. )us,
more data and input parameters can be tested for future
studies.
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