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In recent years, the path planning of robot has been a hot research direction, and multirobot formation has practical application
prospect in our life. +is article proposes a hybrid path planning algorithm applied to robot formation. +e improved Rapidly
Exploring Random Trees algorithm PQ-RRT∗ with new distance evaluation function is used as a global planning algorithm to
generate the initial global path. +e determined parent nodes and child nodes are used as the starting points and target points of
the local planning algorithm, respectively. +e dynamic window approach is used as the local planning algorithm to avoid
dynamic obstacles. At the same time, the algorithm restricts the movement of robots inside the formation to avoid internal
collisions.+e local optimal path is selected by the evaluation function containing the possibility of formation collision.+erefore,
multiple mobile robots can quickly and safely reach the global target point in a complex environment with dynamic and static
obstacles through the hybrid path planning algorithm. Numerical simulations are given to verify the effectiveness and superiority
of the proposed hybrid path planning algorithm.

1. Introduction

With the continuous deepening of network applications,
especially the rapid development of the Internet of +ings,
big data, cloud computing, and edge computing, the inte-
gration of information and physical systems has become
increasingly close. Also, the connection between the network
and human society has become much more closer. Cyber-
physical-social system (CPSS) includes system engineering
such as embedded environment perception, dynamic
analysis of human organization behavior, network com-
munication, and network control. Such CPSSs have func-
tions of computing, communication, precise control, remote
collaboration, and autonomy. Technologies such as artificial
intelligence, multiagent, and machine learning have been
more widely used in the CPSS area [1–4]. As a typical
representative of agents, multiple autonomous robots, in-
cluding unmanned aerial vehicles (UAVs), automatic
ground vehicles (AGVs), and unmanned underwater vehi-
cles (UUVs), play an important role in military and civil

fields [5–13]. To ensure robots carry out related work in our
life efficiently and safely, path planning, which means
finding a feasible path without collisions from the starting
state to the target state, has been a hot research point in the
field of mobile robot applications [14–18]. At present, path
planning algorithms can be divided into global path plan-
ning algorithms and local path planning algorithms, which
mainly include geometric algorithms, artificial potential field
algorithms, grid-based search algorithms, and sampling-
based algorithms. Among them, the sampling-based algo-
rithm has received extensive attention because of its superior
performance in high-dimensional state space. Furthermore,
the probability of finding a feasible path in space approaches
1 as the sampling number approaches infinity.

Rapidly Exploring Random Tree (RRT) [19], as a rep-
resentative of sampling-based path planning, has attracted
wide attention of the research community. A large number
of improved algorithms for RRT have emerged in the past
decade. RRT-connect [20] is a dual-tree RRTalgorithm. Two
random trees are generated from the start point and the end

Hindawi
Complexity
Volume 2021, Article ID 6633878, 10 pages
https://doi.org/10.1155/2021/6633878

mailto:xianglinying@neuq.edu.cn
https://orcid.org/0000-0003-2670-4252
https://orcid.org/0000-0003-1747-0001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6633878


point, respectively. However, neither RRTnor RRT-connect
considers the path cost; therefore, the optimality of the
algorithm cannot be guaranteed. Based on the previous
algorithms, the RRT∗ algorithm [21] was proposed, in which
the cost of the path is covered. Also, the steps of selection and
rewiring are added. +is algorithm obtains progressive
optimality, which has become a breakthrough in the de-
velopment of the Rapidly Exploring Random Trees algo-
rithm. However, the convergence speed of the algorithm has
become a new problem. One of the fundamental reasons for
the slow convergence speed of RRT∗ is its global exploration,
which does not have a specific direction. To solve this
problem, P-RRT∗ was proposed in [22]. +is algorithm
incorporates APF into RRT∗, and the addition of APF [23]
provides a direction for exploration, making P-RRT∗ con-
verge faster than RRT∗. In addition, another algorithm
named Quick-RRT∗ [24] was proposed which uses the
triangle inequality to optimize the process of selecting the
parent node and connection. Compared with RRT∗, it has a
faster convergence speed. PQ-RRT∗ [25] combines P-RRT∗
and Quick-RRT∗, which makes the algorithm generate a
better initial solution and can quickly converge to obtain a
relatively optimal solution. However, the dynamic obstacles
are not considered in PQ-RRT∗. +erefore, it can be only
used for static path planning and still has some limitations.

In the local path planning algorithm part, the dynamic
window approach (DWA) [26] and other algorithms plan
the path of the mobile robot through the surrounding
information collected by the sensor. However, these al-
gorithms usually do not consider the global map infor-
mation. Tang et al. proposed a high-speed USV local
response obstacle avoidance based on the DWA method
[27]. However, it fails to consider the global map infor-
mation. It is difficult to find the optimal path in the global
range using only this kind of algorithm. Based on this kind
of situation, various hybrid planning algorithms have been
proposed [28–30].

Motivated by the above discussions, we improve the
traditional PQ-RRT∗ algorithm and propose a hybrid
planning algorithm—New Potential Quick-RRT∗ (NPQ-
RRT∗), which takes the attitude adjustment angle of the robot
into consideration and adds the DWA local planning algo-
rithm.Moreover, the algorithm is extended and applied to the
path planning problem of multirobot.

+e remainder of the paper is organized as follows. +e
problem description is addressed in Section 2, and the
traditional PQ-RRT∗ algorithm is explained in Section 3.
+en, the hybrid planning algorithm NPQ-RRT∗ is pre-
sented in Section 4. In Section 5, simulation results are
provided to show the effectiveness of the proposed approach.
Finally, the paper is concluded in Section 6.

2. Problem Description

+roughout the paper, R denotes the set of real numbers, N

denotes the set of natural numbers, and Rd denotes the space
of real d-vectors.

We consider an n-robot system, where each robot moves
in the region. Let Xobs ⊂ X be the obstacle area and the

unobstructed area Xfree � (X/Xobs). +e start position and
the target position of the robot i are xi

init and xi
goal,

respectively.
A trajectory of robot i (i � 1, 2, . . . , n) is defined as

follows: ki: [0, τi]⟶ X, where τi is the duration of the
trajectory. In addition, ki(0) � xi

init and ki(τi) � xi
goal. +e

trajectory is obstacle-free if ki(t) ∈ Xfree for all t ∈ [0, τi].
+e cost function c(·) finds the path length in terms of
Euclidean distance function.

Trajectory ki is said to be conflict-free if it is obstacle-free
and also keeps robot i at a safety distance ds > 0 from all
other robots. ‖xi(t) − xj(t)‖>ds, where xi(t) and xj(t)

represent the positions of robots i and j, t ∈ [0, τ],
i, j � 1, 2, . . . , n, i≠ j, and τ � min(τi, τj). +e total cost of
the trajectories is defined as 􏽐

n
i�1 c(ki).

Our goal is to find the trajectory set K � k1, k2, . . . , kn􏼈 􏼉

in which ki is conflict-free.

3. Related Work

+e Rapidly Exploring Random Trees is a sampling-based
planning method that builds an undirected graph on a
known map through sampling and then finds a relatively
optimal path through a search method. +e PQ-RRT∗ is an
improved version after adding the target attraction function
RGD and the deep parent node search function Ancestry,
which can generate a better initial solution and quickly
converge to obtain the optimal solution. +e pseudocode of
the specific algorithm flow is shown in Algorithm 1 [25],
where G � (V, E) represents the generated graph.

+e related functions are defined as follows:

SampleFree: randomly pick points in the global map.
Here, the return value is random point xrand.
RGD: the adjustment function that adjusts the random
point xrand under the gravitational force of the target
point. Here, the return value is the improved sample
xprand. NearestObstacle function calculates the distance
from xprand to the obstacle space Xobs. +e parameter z

represents the number of iterations. dobs represents the
safety distance, and λ represents the step size. +e
specific pseudocode is shown in Algorithm 2.

Nearest: distance evaluation function. +e Euclidean
distance function is selected in this situation, which
returns the node closest to xprand in the graph G �

(V, E) and defines the node as xnearest.
Steer: this function connects two given points. +e
return value of the function is the segment k between
the two points.
CollisionFree: this function detects whether there is a
collision with a static obstacle.
Near: given a graph G � (V, E), it returns a set Xnear,
which contains the nodes in the range with xprand as the
center and r as the radius.
Ancestry: this function deeply searches the parent node
of each point in Xnear. And it returns the parent node
set Xsparent of Xnear. +e specific process is as follows: in
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a given graph G � (V, E), for a node V1, a natural
number p ∈ N, if the depth p � 0, it returns ∅ and
otherwise returns the pth parent of V1.
ChooseParent: compare the cost of each path and then
determine the parent node xparent and the path kparent.
Rewire-PQ-RRT∗: a function to generate the final path
diagram.

4. An Improved Algorithm
NPQ-RRT∗ for Multirobot

4.1. Overall Ideas. For the robot formation, we divide it into
a leader and several followers. When planning the for-
mation path, we first select the leader as the research
object and generate a global path through the global
planning algorithm. +e path is taken as the target path of
the robot formation. Each node in the global path is taken
as the local starting point and the local target point.
Subsequently, for the movement between the local
starting point and the local target point of the robot
formation, a local path is generated by the local planning
algorithm. Compared with the traditional RRT, RRT∗,
and other algorithms, the global planning algorithm
PQ-RRT∗ has excellent global search capabilities, but it

still has limitations: all these algorithms mentioned above
discuss fast random expansion search while ignoring the
characteristics of the robot to find a feasible path in the
global state. However, when applying this algorithm to
practical path planning, the attitude adjustment angle of
the robot will have an impact on the operation of the
algorithm, as shown in Figure 1.

According to the steps in the traditional RRT∗ series
algorithms, the closest point to Position 1 is evaluated
according to the Euclidean distance. It is concluded that
Position 2 is the closest point to Position 1. However, for a
mobile robot, there is an attitude adjustment angle β to
Position 2. First, the robot needs to adjust the direction that
it faces and then goes to Position 2. For Position 3, it only
needs to travel along a straight line. +erefore, the attitude
adjustment angle needs to be incorporated into the process
of calculating the closest point to Position 1 so as to balance
the problems of algorithm convergence time and path
smoothness caused by the cumulative rotation angle in the
practical application.

At the same time, there are dynamic obstacles in the real
environment, which increases the safety risk of mobile ro-
bots that perform path planning. +e local planning algo-
rithms can better solve these problems and optimize the
local path when taking into account dynamic obstacle

Input: V ⟵ xinit; E⟵∅
Output: G � (V, E)

(1) for i� 1 to n do
(2) xrand⟵ SampleFree(i);
(3) xprand⟵ RGD(xrand);
(4) xnearest⟵ Nearest(V, xprand);
(5) k⟵ steer(xnearest, xprand);
(6) if CollisionFree(k) then
(7) Xnear⟵ Near(V, xprand, r) ;
(8) Xsparent⟵ Ancestry(G, Xnear);
(9) (xparent, kparent) ⟵ ChooseParent(Xnear⋃Xsparent, xnearest, k);
(10) V⟵ V⋃ xprand􏽮 􏽯;
(11) E⟵ E⋃ xparent, xprand􏽮 􏽯;
(12) G⟵ Rewire − PQ − RRT∗ (G, xprand, Xnear);
(13) end
(14) end

ALGORITHM 1: PQ-RRT∗ [25].

Input: random point xrand, target point xgoal
Output: improved point xprand

(1) for n� 1 to z do
(2) F

→
� (xgoal − xrand)

(3) dmin⟵ NearestObstacle(Xobs, xrand);
(4) ifdmin ≤dobsthen
(5) returnxprand;
(6) else
(7) xprand⟵ xrand + λ( F

→
/| F

→
|);

(8) end
(9) end

ALGORITHM 2: RGD(xrand).

Complexity 3



avoidance. Based on the abovementioned requirements, this
paper proposes a hybrid path planning algorithm that
considers the attitude adjustment angle.

+e local path planner generates a local path for each
robot in the formation to follow the local target and avoid
obstacles on the local map. By using local targets, the local
path planner and the global path planner are combined. +e
global planner plans the path to the target point in a rela-
tively long period of time for the leader, and the followers
follow the leader’s path. +e local planner updates the
trajectory in real time to avoid dynamic and static obstacles.
+e main idea is shown in Figure 2.

4.2. Specific Steps

4.2.1. 2e Generation of Global Target Path. +e hybrid
planning algorithm NPQ-RRT∗ proposed in this paper
improves the problems of the attitude adjustment and dy-
namic obstacle avoidance. +e leader generates the forma-
tion target path through the global planning part of the
algorithm.

After applying the new distance evaluation function and
local programming algorithm to the PQ-RRT∗ algorithm,
the pseudocode of NPQ-RRT∗ is shown in Algorithm 3. In
the pseudocode, most of the function operations are con-
sistent with the operations of related functions in Algo-
rithm 1. +e specific operations of the newly proposed
distance evaluation function NewNearest are given as
follows.

+e function incorporates the attitude adjustment angle
as a new influencing factor into the distance consideration
range:

q � εvl + ζwφ, (1)

where εv and ζw are the evaluation weights of velocity and
angular velocity, respectively. Since the local starting point is
close to the local target point, l is the Euclidean distance
between the nth node and the sample point xprand. φ is the
attitude adjustment angle, as shown in Figure 3.

l and φ are defined as follows:

l �

�������������������

xv − xr( 􏼁
2

+ yv − yr( 􏼁
2

􏽱

,

φ � ϕ −
180∘ · arctan yr − yv/xr − xv( 􏼁( 􏼁

π
,

(2)

where (xv, yv) and (xr, yr) are the coordinates of the node
and the modified sample xprand. ϕ is the angle between the
orientation of the mobile robot and the X-axis of the global
coordinate system, as shown in Figure 3.

Since l and ϕ have different units in the new distance
evaluation function, it is of no practical significance to di-
rectly add and subtract numerically. +e selection of the
evaluation weights εv and ζw becomes the core of the
evaluation function. Under the circumstances, the time to
reach the destination can be used to measure the length of
the distance. When measuring the distance between two
points, we assume that the forward speed and the attitude
adjustment angular velocity are constant. +erefore, the new
distance evaluation function will select the time as the
evaluation index. +e smaller the value of the function, the
shorter the distance between the two points. +e evaluation
weights εv and ζw are numerically equal to the reciprocal of
the robot’s speed and angular velocity at the current mo-
ment. +erefore, the new distance evaluation function
returns the node that minimizes the function value in the
graph G � (V, E) and then defines this node as xnew nearest.

After the leader completes the steps in the pseudocode,
the graph G � (V, E) is obtained which is regarded as the
global goal path of the formation.

4.2.2. 2e Generation of Local Path. For each robot in the
formation, take the selected xparent and xprand as the starting
point and target point of the local planning, respectively.
Using the function Local to obtain the LocalPath, the specific
operations are given as follows:

Step 1: generate velocity space [26]. Define the ith
robot’s velocity set Vmi as follows:

Vmi �
vi ∈ vmin, vmax􏼂 􏼃,

ωi ∈ ωmin,ωmax􏼂 􏼃
􏼨 􏼩, (3)

where vmin and vmax represent the minimum and
maximum velocities that the robot can reach, respec-
tively. ωmin and ωmax represent the minimum and
maximum angular velocities that the robot can reach,
respectively.

Follower 2

Follower 1

Leader

Global map

Local target 1

Local target 2

Local target 3 Global target

Figure 2: +e intersection of global path planner and local path
planner.

Position 2

Position 1 Position 3

β

Figure 1: +e influence of attitude adjustment angle on the se-
lection of the nearest node.
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Due to the limited torque of the motor, there are
maximum acceleration and deceleration limits. +e
achievable velocity set Vdi affected by the motor per-
formance is defined as

Vdi � vi,ωi( 􏼁|vi ∈ vci − abΔt, vci + amΔt􏼂 􏼃∩ωi ∈􏼈

· ωci − αbΔt,ωci + αmΔt􏼂 􏼃􏼉,
(4)

where vci and ωci are the current velocity and angular
velocity of the ith mobile robot, respectively. ab and am

correspond to the maximum acceleration during de-
celeration and the maximum acceleration during ac-
celeration. αb and αm correspond to the maximum
angular acceleration during deceleration and the
maximum angular acceleration during acceleration.
+e opposite direction of the original movement di-
rection is defined as the deceleration direction.
When the robot decelerates with the maximum accel-
eration at the current velocity, it can be guaranteed to
stop before encountering an obstacle, then the velocity is
safe. +e safe velocity set Vsi is defined as follows:

Vsi � vi,ωi( 􏼁|vi ≤
�������������

2 · d vi,ωi( 􏼁 · ab

􏽱

∩ωi ≤
�������������

2 · d vi,ωi( 􏼁 · αb

􏽱

􏼚 􏼛,

(5)

where the function d(vi,ωi) represents the distance
between the ith robot and the nearest obstacle on the
current trajectory.
+e final definition of the ith robot’s feasible velocity
space set is

Vai � Vmi ∪Vdi ∪Vsi. (6)

Step 2: obtain the predicted trajectory corresponding to
each velocity and avoid collisions within the formation.
First of all, we need to build a model of the robot.
Assume that the robot only has two movement modes:
forward and rotating. At the current moment, the robot
has velocities v(t) and ω(t). Consider two adjacent
moments, as shown in Figure 4. Since the robot’s
adjacent moment Δt (usually measured by the code disc
sampling period in ms) is relatively short, the motion at
the two adjacent moments can be regarded as uniform
motion.+e trajectory of the motion can be regarded as
a straight line. Within Δt, the robot moves v(t)Δt in the
current direction. ϕ(t) is the angle between the di-
rection of the mobile robot and the X-axis of the global
coordinate system.
In the real coordinate system, the displacement Δx of
the robot moving in the X-axis direction of the global
coordinate system and the displacement Δy of the
Y-axis movement in the global coordinate system are
defined as follows:

Δx � v(t)Δtcosϕ(t),

Δy � v(t)Δtsinϕ(t).
(7)

As for the trajectory of the robot, t represents the
previous moment and t + 1 represents the current
moment. x(t + 1), y(t + 1), and ϕ(t + 1) represent the
robot’s position information and orientation angle
information, respectively, which are defined as

Input: V⟵xinit; E⟵∅
Output: G � (V, E)

(1) for i� 1 to n do
(2) xrand⟵ SampleFree(i);
(3) xprand⟵RGD(xrand);
(4) xnearest⟵NewNearest(V, xprand);
(5) k⟵ steer(xnew nearest, xprand);
(6) if CollisionFree(k) then
(7) Xnear⟵Near(V, xprand, r);
(8) Xsparent⟵Ancestry(G, Xnear);
(9) (xparent, kparent)⟵ChooseParent(Xnear⋃Xsparent, xnearest, k)

(10) LocalPath⟵Local(xparent, xprand)

(11) V⟵V⋃ xprand􏽮 􏽯;
(12) E⟵E⋃ xparent, xprand􏽮 􏽯;
(13) G⟵Rewire − NPQ − RRT∗ (G, xprand, Xnear);
(14) end
(15) end

ALGORITHM 3: NPQ-RRT∗.

ϕ

l

Node V

Xprand

Figure 3: +e attitude adjustment of the mobile robot.
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x(t + 1) � x(t) + v(t)Δtcosϕ(t), (8)

y(t + 1) � y(t) + v(t)Δtsinϕ(t), (9)

ϕ(t + 1) � ϕ(t) + ω(t)Δt. (10)

Substituting the velocity space Vai of the robot obtained
in the first step into equations (8)–(10), we can obtain
the corresponding trajectory expression.
In addition, due to the possibility of collisions between
the robots in the robot formation, we make further
constraints. For the obtained local predicted trajecto-
ries of two adjacent robots, when the predicted tra-
jectories of the two robots have no intersection, they
will not collide. On the contrary, when the two pre-
dicted trajectories have intersections, they may collide,
as shown in Figure 5.
Define the positions of the two robots as pi(t) and
pj(t), respectively. +e meeting point is m(t) and the
velocities of the two robots are vi(t) and vj(t). +e
distances Δl1 and Δl2 are defined as

Δl1 � pi(t) − m(t)
����

����,

Δl2 � pj(t) − m(t)
�����

�����.
(11)

According to the distance, we can constrain the ve-
locities of the two robots: if Δl1 ≥Δl2, then

vi(t + 1) � vi(t) − ab · ϵ,

vj(t + 1) � vj(t) + am · ϵ.
(12)

Else, if Δl1 ≤Δl2, then

vi(t + 1) � vi(t) + am · ϵ,

vj(t + 1) � vj(t) − ab · ϵ,
(13)

where ϵ is a constant that can be set according to the
relationship between the velocity and the maximum
acceleration.

Step 3: select the locally optimal path through the
evaluation function. Define the evaluation function of
the ith robot’s local path as

G vi,ωi( 􏼁 � α · m head vi,ωi( 􏼁 + δ · m d vi,ωi( 􏼁

+ c · m vel vi,ωi( 􏼁 − ρ · m meet vi,ωi( 􏼁,
(14)

where (vi,ωi) ∈ Vai and the variables α, δ, c and ρ are
the initial weights of the function. m is the total number
of all trajectories sampled. +e function m head(vi,ωi)

is used to evaluate the heading score, which is defined
as follows:

m head vi,ωi( 􏼁 �
head vi,ωi( 􏼁

􏽐
m
c�1 head vi,ωi( 􏼁

. (15)

+e function head(vi,ωi) is defined as

head vi,ωi( 􏼁 � 180∘ − θi, (16)

where θi is the angle between the current direction that
the mobile robot is facing and the direction when it
reaches the local target point. It can be defined as

θi � ϕ −
180∘ · arctan yb − yp/xb − xp􏼐 􏼑􏼐 􏼑

π
, (17)

where (xb, yb) is the coordinate of the local target point
in the global map and (xp, yp) is the coordinate of the
predicted position of the ith robot in the global map.
+e function m d(vi,ωi) is used to evaluate the safety
distance score, which is defined as follows:

m d vi,ωi( 􏼁 �
d vi,ωi( 􏼁

􏽐
m
c�1 d vi,ωi( 􏼁

. (18)

+e function d(vi,ωi) can be defined as

d vi,ωi( 􏼁 � min dist xi, sj􏼐 􏼑􏽮 􏽯, (19)

where xi is a random point on the trajectory, sj rep-
resents the corresponding obstacle, and dist is a
function to calculate Euclidean distance. If there are no
obstacles on this trajectory, set d(vi,ωi) as a constant.
+e function m vel(vi,ωi) is used to evaluate the speed
score of the current trajectory. +e function vel(vi,ωi)

ϕ

x

y

Figure 4: +e model of the mobile robot.

Robot 2

Robot 1

Predicted path 1

Predicted path 2 Meeting point

Figure 5: +e model of multirobots.
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corresponds to the velocity value of the current tra-
jectory. m vel(vi,ωi) is defined as follows:

m vel vi,ωi( 􏼁 �
vel vi,ωi( 􏼁

􏽐
m
c�1 vel vi,ωi( 􏼁

. (20)

+e function m meet(vi,ωi) is used to evaluate the
score of internal collision probability. +e function
meet(vi,ωi) corresponds to the number of intersections
with the predicted trajectories of other robots in the
formation. m meet(vi,ωi) is defined as follows:

m meet vi,ωi( 􏼁 �
meet vi,ωi( 􏼁

􏽐
m
c�1 meet vi,ωi( 􏼁

. (21)

+e path with the highest overall score obtained by the
evaluation function evaluation is the optimal path. +is path
is regarded as the local path and is combined with the global
planning path to obtain the final path.

5. Simulation

In this section, we discuss the practical effects of the pro-
posed hybrid path planning algorithm NPQ-RRT∗ in
complex environments with dynamic and static obstacles.
We perform a comparative simulation experiment through
MATLAB on an Intel Core i5 4-core, 8 GB RAM computer.

5.1. Build a Simulation Environment and Set Relevant
Parameters. We first construct a 1000×1000 map envi-
ronment. We set (0,0) as the starting point for global
planning and (1000,1000) as the target point for global
planning. +ere are 5 static obstacles, which are represented
by green rectangles. +e obstacles are distributed in this
environment, as shown in Figure 6.

After the command to start path planning is issued,
additional obstacles (not overlapping with the current
mobile robot position) will be randomly generated as dy-
namic obstacles in the environment at any given time, as
shown in Figure 7.

In this simulation, the relevant parameters of the
NPQ-RRT∗ hybrid path planning algorithm are set as fol-
lows: in the RGD function, λ� dobs � 1 and z � 80. In the
ChooseParentfunction, d � 2. In the Local function, the
initial weights α, δ, c, and ρ of the evaluation function are set
to 0.05, 0.2, 0.1, and 0.1, respectively. +emaximum speed of
the mobile robot is 1m/s, the maximum angular speed is
0.5 rad/s, and the acceleration range is [−1, 1]. +e angular
acceleration range is [−0.5, 0.5], the velocity resolution is
5m/s, and the angular velocity resolution is 6 rad/s.

5.2. 2e Simulation Design and Results

5.2.1. Group 1. To verify the performance of using the
improved distance evaluation function in the path planning
process of mobile robots, we conduct 10 sets of comparative
tests without considering dynamic obstacles. +e original
PQ-RRT∗ algorithm and our proposed NPQ-RRT∗ perform
the same path planning missions. +e sum of the changes in

the heading angle between the nodes makes up the entire
adjustment angles. +e adjustment angular velocity
ω� 0.5 rad/s is used for obtaining the posture adjustment
time. After conducting 10 groups of calculations, the average
results in Table 1 are obtained.

Figures 8 and 9 show the results of path planning for
NPQ-RRT∗ and PQ-RRT∗, respectively. It can be seen that
the improved algorithm’s robot attitude adjustment time is
shortened, the algorithm’s running speed is sharply
accelerated, and the resulting path is smoother than the
original PQ-RRT∗.

5.2.2. Group 2. To verify that the hybrid path planning
algorithm NPQ-RRT∗ after adding local planning has better
dynamic obstacle avoidance performance than the original
PQ-RRT∗ algorithm, we carry out the following comparative
test in consideration of obstacle dynamic obstacles, as shown
in Figure 7.

+e confirmed xprand and xparent are used as the target
point and starting point of local planning. +e original al-
gorithm PQ-RRT∗ lacks a local path planning algorithm;
that is, it moves along the line of xchild and xparent
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Figure 6: +e global environment of simulation.
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Figure 7: +e intersection of global path planner and local path
planner.
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(represented by the red line in Figure 7). It is unable to reach
the target due to the existence of dynamic obstacles, causing
path planning to fail. After using NPQ-RRT∗ with local
planning algorithm, the mobile robot successfully avoids
obstacles and reaches the local target point (the blue line in
Figure 7).

5.2.3. Group 3. To compare the performance of the common
RRTmixed planning algorithm and NPQ-RRT∗, we perform
experiments in the same obstacle environment. +e results
are obtained, as shown in Figures 10 and 11.

It can be seen that NPQ-RRT∗ can obtain a smoother
path with a shorter overall length and better overall per-
formance compared to the ordinary RRT mixed planning
algorithm.

5.2.4. Group 4. To test the performance of the algorithm
when applied to multirobot path planning, we take three
robots as an example to perform the following test. Among
them, the small black circle represents the robot. +e green
area represents the detection range of the robotic lidar. +e
big red circle represents obstacles randomly generated on
the map. +e blue lines represent the local paths generated
by each robot. We use confirmed xprand and xparent as the
target point and starting point of the formation planning.
Obstacles are randomly generated on the map, and the robot
formation moves from the starting point to the target point
at the same time. For randomly generated obstacles, the
three robots use local planning algorithms to plan their paths

Table 1: Comparing the time of attitude adjustment.

Number PQ-RRT∗ NPQ-RRT∗

1 65.971 59.311
2 56.567 50.889
3 57.288 45.499
4 63.755 47.139
5 73.209 62.714
6 67.423 41.650
7 59.422 64.298
8 64.478 52.669
9 71.492 49.184
10 68.424 51.770
Average 64.703 52.512

1000

1000

900

800

700

600

500

800600

400

400

300

200

200

100

0
0

Figure 8: +e path planned by NPQ-RRT∗.
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Figure 9: +e path planned by PQ-RRT∗.
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Figure 10: +e path planned by hybrid RRT.
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Figure 11: +e path planned by NPQ-RRT∗.
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to generate obstacle-free paths. At the same time, each robot
in the robot formation adopts an avoidance strategy to
maintain a safe distance to avoid collisions in the formation.
+e result is shown in Figures 12–15.

+rough the simulation results, we can find that the
robot formation completes the obstacle avoidance to the

target point, which verifies the feasibility of the proposed
algorithm applied to the robot formation.

Based on the above simulation results, it can be found
that NPQ-RRT∗ has better dynamic obstacle avoidance
ability and can effectively shorten the attitude adjustment
time and get a smoother path. In addition, this algorithm can
also obtain ideal results when it is applied to the robot
formation path planning.

6. Conclusions

+is paper proposes a hybrid path planning algorithm
NPQ-RRT∗, which studies the path planning of multi-
robot in an environment with dynamic and static ob-
stacles. NPQ-RRT∗ chooses the improved version of the
Rapidly Exploring Random Trees algorithm PQ-RRT∗ as
the global planning algorithm. Combined with the at-
titude adjustment angle of the mobile robot, we propose a
new distance evaluation function, which optimizes the
selection of the nearest node. After the parent node and
the child node are identified, the local planning step is
added. +e parent node and child node are used as the
local starting point and the local target point to generate
a local path avoiding dynamic obstacles. +e global path
is obtained by tracking the local target point. At the same
time, the algorithm optimizes the potential collisions
within the robot formation to ensure the safety of the
robots. Also, the potential collision possibility in the
formation is added as a new evaluation index into the
evaluation function to select the optimal path. +e
simulation results show that compared with PQ-RRT∗,
the hybrid path planning algorithm NPQ-RRT∗ has
better dynamic obstacle avoidance ability. Furthermore,
it can get a relatively better path compared with the
ordinary RRT hybrid planning algorithm. When applied
to the path planning of robot formation, it can effectively
shorten the attitude adjustment time and obtain a
smoother path.

Data Availability

No data were used to support this study.
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