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*is paper investigates the antidisturbance formation control problem for a class of cluster aerospace unmanned systems
(CAUSs) suffering from multisource high-dynamic uncertainties. Firstly, to estimate and compensate the uncertainties
existing in CAUS coordinate dynamics, an adaptive antidisturbance formation control law, which is combined by a robust
adaptive control law and the second order disturbance observer, has been designed. Secondly, aiming at the adverse
influences caused by the nonlinear time-varying nonlinearities existing in the formation flight dynamics, the radial basis
function neural network (RBFNN) is introduced. Furthermore, considering the rapidly varying characteristics of the
aforementioned formation flight nonlinearities, a novel board RBFNN (B-RBFNN) has been constructed and utilized to
improve the approximation and compensation performance. In virtue of the fusing of the B-RBFNN and the second-order
disturbance observer-based adaptive formation control law, the rapid response rate and the higher control accuracy of the
formation control system can be achieved. As a result, a novel B-RBFNN-based intelligence adaptive antidisturbance
formation control algorithm has been established for CAUS trajectory coordination and formation flight. Numerical
simulation results are proposed to illustrate the effectiveness and advantages of the proposed B-RBFNN-based intelligent
adaptive formation control method for the CAUS.

1. Introduction

*e aerospace unmanned systems (AUSs) are a class of
power-driven, unmanned, reusable aircrafts that possess a
series of advantages, including low cost, long duration of
combat, and zero casualties. Currently, AUSs are widely
used in a variety of combat missions, such as ground attack,
communication relay, and target searching and tracking.
When performing combat missions in high-risk environ-
ments, AUSs may demonstrate greater advantages [1]. In
order to improve the ability of AUSs for completing complex
and high-difficulty tasks, many researchers have carried out
the study of cluster aerospace unmanned systems (CAUS).
In the past decade, the CAUS technology has become one of

the research hotspots, and the researchers have proposed a
series of effective methods for task assignment, trajectory
planning and formation control of the CAUS [2–4].

Formation control is of great importance in the research of
CAUS. A perfect formation can effectively avoid obstacles
without complex formation transformation and can modify the
overall endurance time of the CAUS. In practical, formation
shape andmaintenance of the CAUSs cannot be separated from
the support of formation control algorithm. At present, a plenty
of formation control methodologies, including graph theory-
based method [5], leader-follower method [6], behavioral-based
method [7], artificial potential field method [8], and virtual
structure method [9], have been extensively investigated for
the CAUS. Graph theory can describe the topology of
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communication between multiple agents and can be used to
model the whole multiagent. By utilizing this feature, Marcio
et al. presented a new formation control lawbased on rigid graph
theory, which can achieve stable formation control for large-
scale CAUS [10]. Jongho et al. took full advantage of the fact that
the behavior-based formation control method does not require
the AUS in the cluster to have global information, designed a
behavior-based formation controller based on the position and
speed of the adjacent AUS, ensuring the uniform stability of the
closed-loop system [11]. Inspired by the behavior of pigeons,Qiu
et al. proposed a formation control method based on behavior
characteristics of pigeons, using the potential field function
theory to define the topological structure and the master-slave
relationship in the group, thus realizing the formation flight of
the CAUS [7]. Askari et al. used the virtual structure method to
introduce the formation feedback algorithm into formation
control of CAUS, which improved the accuracy of maneuver
[12]. Most recently, the leader-follower method is recognized as
one of the most commonly used methods in the field of for-
mation control of CAUS. Turpin et al. improved the leader-
follower formation method and adopted a distributed com-
munication mode instead of using the leader-follower direct
communication with all the followers [13]. By utilizing airborne
visual perception equipment to obtain the position information
of the CAUS, Saska et al. adopted the leader-follower method to
realize the formation flight of the CAUS under non-GPS po-
sitioning [14]. Considering the shortcoming that the traditional
leader-follower method cannot unify formation control and
obstacle avoidance, Shao et al. presented a formation control
method of CAUS by combining leader-follower method with
artificial potential field method and achieved stable formation
control with obstacle avoidance ability [15].

In practical, the suppression or compensation for the
multiple disturbances is essential to improve the control
performance of the practical engineering system. *us, the
researches on disturbance suppression or compensation have
spurred considerable attentions in recent years. *e traditional
antidisturbance control mainly relies on the robustness of the
control law. *ese methods mainly include sliding mode
control [16, 17], adaptive control [18, 19], and H∞ control
[20, 21].With the development of disturbance rejection control
technology, the disturbance observer-based control (DOBC)
[22, 23] and the active disturbance rejection control (ADRC)
[24, 25] have gradually appeared. Recently, the DOBC has been
greatly developed. A class of nonlinear disturbance observer is
proposed in literature [26] and applied to the design of missile
attitude control law. [27–29] discusses the application of
antidisturbance control method based on the disturbance
observer in industrial and mechanical systems. Considering
that multilevel and complex interference often occurs in
practical applications, literature [30] proposed a combined
layered anti-interference control method, which is extended to
Markov jumping system [31], higher-order system [32] and
fuzzy system [33].*e authors of [34] study the estimation and
compensation methods for a class of nonlinear dynamic dis-
turbances. *e authors of [35] discussed the combined anti-
disturbance control method for a class of fuzzy random
nonlinear systems and studied the disturbance estimation and

suppression methods for a class of Markov uncertain systems.
Lately, some antidisturbance methods are implemented in the
design of attitude control of AUS. Zhu et al. [36] used ADRC to
solve the problem that small fixed-wing AUS is vulnerable to
wind interference when landing. In [37], a combination al-
gorithm of DOBC and H∞ is exploited, which is able to carry
out strong robust control over the quadrotor AUS subject to
external disturbance. In [38], the combined algorithm of
ADRC and DOBC can better solve this problem and greatly
improve the stability.

In spite of the progress, most of the above formation
control works only focused on the cluster systems subject to a
single-source and slow-varying disturbance. However, in the
actuator flight process of the CAUS, the multiple disturbances,
including the unmodeled dynamics, the winds, the aerody-
namic uncertainties, and the input and structural uncertainties,
are inevitable. When AUS operates in complex scenes, the
source and type of disturbances are usually not unique, and the
high-dynamic disturbance may be encountered. If the multi-
source and high-dynamic features are ignored in the formation
control law design, the actual flight paths of the CAUS may be
different from the nominal ones, and the failed tasks may be
caused. *erefore, it can be concluded that although many
excellent results have been obtained for CAUS, there has been
no study on the trajectory coordination and formation control
for the CAUS under the multisource high-dynamic uncer-
tainties. Moreover, the rapid response rate of the formation
control system is one of the key indexes for CAUS. In [39], a
novel effective learning strategy—board learning system
(BLS)—has been proposed, which can be utilized to improve
the response rate of the formation control system. However, so
far, the board learning thought has never been applied to the
formation control of the CAUSs, and the research of BLS-based
rapid formation control structure has to be developed.

In this paper, a novel intelligence adaptive anti-
disturbance formation control has been proposed for CAUSs
based on B-RBFNN. A second order disturbance observer
and a robust adaptive control law are designed to estimate
and compensate the multisource high-dynamic uncer-
tainties. To deal with the nonlinear time-varying nonline-
arities existing in the formation flight dynamics, the board
RBFNN is utilized as online learning system in the control
structure. Compared with the existing literature, the main
contribution of this paper can be concluded as follows:

(1) In this paper, a novel B-RBFNN based intelligence
adaptive antidisturbance formation control method
has been proposed for CAUS with multiple
uncertainties

(2) Combining the B-RBFNN and the second-order
disturbance observer, the rapid response rate and the
higher control accuracy of the formation control
system can be guaranteed

(3) *is paper provides a board learning system-based
intelligence adaptive formation control canonical
form for the cluster systems, which can be applied to
cluster underwater unmanned systems, cluster space
unmanned system and so on
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2. Problem Formulation and Preliminaries

2.1. 0e System Model of CAUS. According to [40], we can
get the kinematics and dynamics equations of the i-th (i �

1, 2, . . . , N) AUS in the flightpath-coordinate-system as
follows:

_xi � vi cos θi cos ψs,i,

_yi � vi sin θi,

_zi � vi cos θi sin ψs,i,

mi _vi � Pi cos αi cos βi − Qi − mig sin θi + di,1,

mivi
_θi � Pi cos αi sin βi sin cs,i + sin αi cos cs,i􏽨 􏽩 + Yi cos cs,i − Zi sin cs,i − mig cos θi + di,2,

−mivi cos θi
_ψs,i � Pi −cos αi sin βi cos cs,i + sin αi sin cs,i􏽨 􏽩 + Yi sin cs,i + Zi cos cs,i + di,3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xi, yi, zi are the positions in three directions for the s-th
AUS; vi represents the velocity; θi,ψs,i are the flight path angle
and the flight path deflection angle; αi, βi, cs,i are the angle of
attack, angle of sideslip and the heeling angle respectively; Pi is
the thrust, Qi is the drag, Yi is the lift-force, Zi is the side-force;
di,1, di,2, di,3 denote the external disturbances,mi represents the
mass, and g is the acceleration of gravity.

In practical, the influence of the multiple uncertainties
and disturbances are unavoidable. Considering the com-
posite uncertainties, the dynamic equations of the CAUS can
be rewritten as

_xi,1(t) � Ai(t) + ΔAi(t)( 􏼁xi,2(t),

_xi,2(t) � g αi, βi, cs,i􏼐 􏼑ui(t) + f θi, vi( 􏼁 + Δf θi, vi( 􏼁 + di(t),

yi(t) � xi,1(t).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where xi,1 � [xi, yi, zi]
T, xi,2 � [vi, θi,ψi,s]

T, (i � 1, 2, . . . , n)

represent the system state vector; yi(t) ∈ R3×1, ui(t) ∈ R3×1

denote the control input and output vector, respectively;
di(t) ∈ R3×1 is the external disturbances; f(θi, vi) ∈ R3×1 is
the known bias vector; Δf(θi, vi) ∈ R3×1 represents an
unknown smooth function. And, Ai(t) ∈ R3×3 is control
system parameter matrices with proper dimensions, and
ΔAi(t) represents the structural uncertainties of Ai(t);
g(αi, βi, cs,i) ∈ R3×3 denotes control distribution matrix.*e
aforementioned matrices can be provided as

Ai(t) �

cos θi cos ψs,i −v sin θi cos ψs,i −vi cos θi sin ψs,i

sin θi vi cos θi 0

−cos θi sin ψs,i vi sin θi sin ψs,i −vi cos θi cos ψs,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f θi, vi( 􏼁 �

−Qi − g sin θi( 􏼁

mi

Pi cos αi sin βi sin cs,i + sin αi cos cs,i􏼐 􏼑 − Zi sin cs,i − mig cos θi􏽨 􏽩

mivi

−
Pi −cos αi sin βi cos cs,i􏼐 􏼑 + Zi cos cs,i􏽨 􏽩

mivi cos θi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g α, β, cs( 􏼁i �

cos αi cos βi 0 0

0 C
α
y􏼐 􏼑

i
cos cs,i 0

0 0 Pi sin αi cos cs,i + Yi cos cs,i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3)
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Remark 1. CAUS will inevitably be affected by high dy-
namic disturbance in actual flight process. To be specific,
the wind, which is the CAUSs suffered, includes constant
wind, dynamic wind, discrete abrupt wind, and shear
wind, and the wind speed may reach 15m/s, which will
have a significant impact on the CAUS’s flight stability. In
addition, aerodynamic disturbances, fabrication process,
installation errors, and control system errors (instrument
errors, actuator errors) are all sources of matched
uncertainties.

In order to make further discussion, it is necessary to
give the following assumptions.

Assumption 1. It is assumed that the unknown disturbances
rate is bounded. For i � 1, 2, . . . , N, there exists a positive
constant μ, such that

���� _di

����≤ μ and
���� €di

����≤ μ.

Assumption 2. It is assumed that the uncertainties of cannot
change the control directions, that is, λmax(Ωi)> 0, where
Ωi � (Ai(t) + ΔAi(t)) · A−1

i (t).
*erefore, the goal of this paper is to design an intel-

ligence adaptive antidisturbance formation control algo-
rithm for the CAUS (2) to achieve the position coordination
and system stability under the existence of external dis-
turbances and input uncertainties.

2.2. Algebraic Graph 0eory. For the CAUS formation
controller design, the algebraic graph theory is necessary. Let
G � (V, E, A) represents a weighted digraph and G is used to
model the communication network among the agents, where
V � υ1, υ2, . . . , υn􏼈 􏼉 represents the set of nodes, E⊆V × V

represents the set of the edges, and A � [aij] represents the
adjacency matrix. Additionally, the node υi denotes the ith
agent. *e edge of the weighted graph G, (i, j) ∈ E is rep-
resented by the edge (i, j) if and only if there is a com-
munication from agent j to agent i. *e neighbor set of node
υi can be described as Ni � υj|(i, j) ∈ E􏽮 􏽯. And, the com-
munication quality between the agents i and j is represented
by the adjacency element aij, which is corresponding to the
edge (i, j), i.e., (i, j) ∈ E⇔aij > 0; otherwise, aij � 0. A
weighted graph G is called undirected if and only if aij � aji.
Undoubtedly, A is symmetric and the diagonal elements
aii � 0 for undirected weighted graphs. Moreover, the
foundation of algebraic graph theory can be referenced in
literature [41].

2.3. Broad Radial Basis Function Neural Network.
According to [41], by the use of NNs, the uncertainty and the
disturbance in the nonlinear systems can be estimated.*us,
RBFNN is brought in for approximation. For any given
continuous function f(x): Rn⟶ R on a compact set
U ∈ Rn and an arbitrary ε> 0, there exists the RBFNN
ΘTΦ(x) such that supx∈U|f(x) − ΘTΦ(x)|< ε, where
Θ ∈ Rl is the weight vector, l is the node number, x ∈ Rn is
the input vector, and S(x) � [s1(x), . . . , sl(x)]T is Gaussian
basis function vector, which can be expressed by

si(x) � exp −
x − πi

����
����
2

ω2
i

⎛⎝ ⎞⎠, i � 1, . . . , l, (4)

where πi � [πi,1, . . . , πi,n]T and ωi represents the center and
the width of the Gaussian function, respectively. In the ideal
condition, we can get the following equality:

f(x) � Θ∗( 􏼁
TΦ(x) + ε∗, (5)

where Θ∗ represents the optimal weight vector and ε∗
represents the approximation error. In conclusion, Θ∗ and
ε∗ are bounded. In the process of controller design, the
unknown functions of the systems and the uncertain pa-
rameters are unaccessible.

In [39], as an alternative way for deep learning and
structure, broad learning system (BLS) has been proposed to
offer an idea of extension in width structure. In a BLS, we
first map the input vectors to construct feature nodes by
feature mappings. Secondly, the mapped features are con-
catenated to take nonlinear transformation so that the en-
hancement nodes are formed. Furthermore, connect the
whole outputs of mapped features and enhancement nodes
into the output layer.

It can be assumed that we present the input data X and
project the data, using ϕi(XWei + βei), to become the i th
mapped features, Zi, where Wei is the random weights with
the proper dimensions. Denote Zi ≡ [Z1, . . . , Zi] which is
the connection of all the first i groups of mapping features.
Similarly, the jth group of enhancement nodes, ξj(ZiWhj +

βhj) is denoted as Hi, and the connection of all the first j

groups of enhancement nodes are represented as
Hj � [H1, . . . , Hj]. Hence, the broad model can be repre-
sented as follows:

Y � Z1, . . . Zn|ξ Z
n
Wh1 + βh1( 􏼁, . . . , ξ Z

n
Whm + βhm( 􏼁􏼂 􏼃W

m

� Z1, . . . Zn|H1, . . . , Hm􏼂 􏼃W
m

� Zn|Hm􏼂 􏼃W
m

.

(6)

where Wm � [Zn|Hm]+Y. Wm denotes the connecting
weights for the broad structure.

Undoubtedly, we can use BLS to expand the structure of
RBFNN when new feature nodes and enhancement nodes
are needed. Meanwhile, the expanded structure will possess
more excellent approximation ability. In the next section, we
will use the B-RBFNN to estimate these functions, and the
weight matrices of the B-RBFNN will be approximated by
designing several adaptive laws.

3. Main Result

*e proposed control scheme can be divided into the inner
loop and outer loop. In the inner loop, in order to overcome
the input uncertainty in the collaborative flight of AUS, an
adaptive law is designed. In the outer loop, B-RBFNN is
applied for approximation in view of the time-varying
nonlinearities. To deal with the time-varying disturbances di,
a second-order disturbance observer is proposed, which can
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both estimate di and the derivative _di synchronously.
Meanwhile, _di will be fed back into the equation of the
disturbance estimation, reducing the estimation error
caused by the disturbance change rate. At last, the estimated
disturbance values are introduced into the formulation
control law, and a coordinate adaptive antidisturbance
control structure is constructed. *e proposed control
structure can be depicted by Figure 1.

3.1. Input-Uncertainty-Suppressed Inner Loop Adaptive For-
mation Control Law Design. According to the consistency
theory [41], we can define the tracking error as

Zi,1 � 􏽘

N

j�1
aij yi − yj􏼐 􏼑 + bi yi − yr( 􏼁,

Zi,2 � xi,2 − βi,1,

(7)

where aij represent the elements in adjacency matrix A and
bi represent the elements in information connection matrix
B of the AUSs and their leader.

Define the inner loop system error eyi � yi − yr, where
yr represents the leader state. According to (3), we can take
the differential of eyi as

_eyi � _yi − _yr

� Ai(t) + ΔAi(t)( 􏼁xi,2(t) − _yr.
(8)

Define Ωi � [Ai(t) + ΔAi(t)]/Ai(t). *us, we can re-
write (8) as

_eyi � Ai(t)Ωixi,2(t) − _yr. (9)

*erefore, the indirect virtual control signal is designed
as

xi,2c(t) � A
−1
i (t) −K1Zi,1 + _yr􏼐 􏼑, (10)

where K1 ∈ R3×3 represents the control gain of the inner
loop.

However, it is obvious that because of the effect of
uncertainty term ΔAi(t), which cannot achieve the stability
of the inner loop system only use the control signal xi,2c(t),
so we propose the final virtual control signal in the inner
loop as βi,1, which is designed as

βi,1 � xi,2c(t) + xi,2a(t), (11)

where xi,2a(t) is the adaptive compensation term of the input
uncertainty, which can be obtained that

xi,2a(t) � − 􏽢Ψixi,2c(t), (12)

where 􏽢Ψi is the estimation of Ψi, and Ψi � (Ωi − I3) ·Ω−1
i .

Moreover, we introduce σ-modification to design the
update law _􏽢Ψi:

_􏽢Ψi � ΓΨ Zi,1x
T
i,2c(t)A

T
i (t) − σΨ 􏽢Ψi􏼐 􏼑, (13)

where ΓΨ is the gain of the adaptive law of 􏽢Ψi, σΨ > 0.

3.2. Second-Order Disturbance Observer-Based Outer Loop
Adaptive Antidisturbance Formation Control Law Design.
In this section, to approximate the unknown uncertainties
Δf(θ, v)i, we introduce a B-RBFNN 􏽢ΘT

i Φi(x). Hence, it can
be obtained that Δf(θ, v)i � ΘT

i Φi(x) + εi, where εi is the
bounded estimation error. Let 􏽢Θi be the estimations of Θi.

In order to deal with the time-varying disturbances, the
second-order disturbance observer for the control system (3)
is designed as

􏽢di � Pi,1 + l1xi,2,

_Pi,1 � −l1 g α, β, cs( 􏼁iui(t) + f(θ, v)i + 􏽢ΘT

i Φi(x) + 􏽢di(t)􏼒 􏼓 +
􏽢_di,

􏽢_di � Pi,2 + l2xi,2,

_Pi,2 � −l2 g α, β, cs( 􏼁iui(t) + f(θ, v)i + 􏽢ΘT

i Φi(x) + 􏽢di(t)􏼒 􏼓,

(14)

where 􏽢di and
􏽢_di represent the estimation of di and _di, re-

spectively; Pi,1 and Pi,2 are auxiliary variables;
l1 � diag l11, l12, l13􏼈 􏼉 and l2 � diag l21, l22, l23􏼈 􏼉 are designed
parameters.

From (2) and (7), we can obtain that

_Zi,2 � g α, β, cs( 􏼁iui(t) + f(θ, v)i + Δf(θ, v)i + di(t) − _βi,1.

(15)

*erefore, considering the features of (15), the outer loop
adaptive antidisturbance formation control law is designed
as

ui(t) � g
− 1 α, β, cs( 􏼁i −K2Zi,2 + _βi,1 − 􏽢di(t) − f(θ, v)i − 􏽢ΘT

i Φi(x)􏼔 􏼕,

(16)

where K2 ∈ R3×3 represents the control gain of the outer
loop.

Moreover, the update law of _􏽢Θ on the basis of the
σ-modification method is designed as

_􏽢Θi � ΓΘ Φi(x)Z
T
i,2 − σΘ 􏽢Θi􏼐 􏼑, (17)

where ΓΘ is the gain of the adaptive law of 􏽢Θi, σΘ > 0.
*e convergence property of the intelligent adaptive

antidisturbance formation control laws can be analyzed by
the following theorem.

Theorem 1. Consider the closed-loop formation control
system consisting of the CAUS system (2), the antidisturbance
control law (10), (11), and (16), the second order disturbance
observer (14), and the adaptive update laws (13) and (17).
Suppose Assumptions 1 ∼ 2 are satisfied. It can be guaranteed
that all the signals are bounded and the positions of the
followers can track the leader coordinately and accurately in
spite of the multiple uncertainties.

Proof. Define the estimation error as
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􏽥ζd,i � 􏽥di,
􏽥_di􏼔 􏼕

T

,

􏽥di � di − 􏽢di,

􏽥_di � _di −
􏽢_di,

(18)

where 􏽥di is the disturbance estimation error and 􏽥_di represent
the disturbance differential estimation error. Combining (2),
(14), and 􏽥di � di − 􏽢di, we can obtain that the differential of 􏽥di

as

_􏽥di � _di − l1
􏽥di − l1

􏽥ΘT

i Φi(x) + l1εi +
􏽢_di􏼒 􏼓

� −l1
􏽥di +

􏽥_di + l1
􏽥ΘT

i Φi(x) − l1εi.

(19)

In the similar way, according to 􏽥_di � _di −
􏽢_di, we can get

the differential of 􏽥_di that
_􏽥_di � −l2

􏽥di + €di
+ l2

􏽥ΘT

i Φi(x) − l2εi, (20)

where 􏽥Θi � 􏽢Θi − Θi. Substitute (20) into the differential of
(19), we can easily know that

€􏽥di � −l1
_􏽥di +

_􏽥_di + l1
_􏽢Θ

T

i Φi(x) − l1ε
.

i

� −l1
_􏽥di − l2

􏽥di + €di + l1
_􏽢Θ

T

i Φi(x) + l2
􏽥ΘT

i Φi(x) − l1ε
.

i − l2εi.

(21)

According to (18)–(20), we can get that

_􏽥ζd,i � Ad,i
􏽥ζd,i + Fd,i

€di
+ Ld,i

􏽥ΘT

i Φi(x) − εi􏼒 􏼓, (22)

where

Ad,i �
−l1 I

3

−l2 0
⎡⎣ ⎤⎦,

Fd,i �
0

I
3􏼢 􏼣,

Ld,i �
l1

l2
􏼢 􏼣.

(23)

Clearly, we can always find the disturbance observer
gains l1 and l2 such that there exists a symmetric positive
definite matrix Qd,i, whose minimum feature value is cm,i,
and a symmetric positive definite matrix Pi satisfies

A
T
d,iPi + PiAd,i � −Qd,i. (24)

Substitute (10)–(12) into (9), we can get that

_eyi � −K1Zi,1 − Ai(t)Ωi
􏽥Ψixi,2c(t) + Ai(t)ΩiZi,2, (25)

where 􏽥Ψi � 􏽢Ψi − Ψi. Substitute (16) into (15) yields

_Zi,2 � −K2Zi,2 + 􏽥di(t) − 􏽥ΘT

i Φi(x) + εi, (26)

where 􏽥Θi � 􏽢Θi − Θi. *us, in order to prove the stability of
this control system, we can take the Lyapunov candidate
function as

V � 􏽘

n

i�1

􏽥ζ
T

d,iPi
􏽥ζd,i +

1
2
e

T
yi(L + B)eyi +

1
2ΓΨ

tr 􏽥ΨT

i Ωi
􏽥Ψi􏼒 􏼓􏼠 􏼡

+ 􏽘
n

i�1

1
2
Z

T
i,2Zi,2 +

1
2

􏽥d
T

i
􏽥di +

1
2ΓΘ

tr 􏽥ΘT

i
􏽥Θi􏼒 􏼓􏼠 􏼡,

(27)

�e adaptive
parameter in Eq. (12)

�e adaptive
parameter in Eq. (16)

inner loop virtual
controller in Eq. (9)

inner loop final
controller in Eq. (10)

outer loop 
controller in Eq. (15)

CAUS

A,B

Topology of communication graph

1

2 3

654

yr
eyi Zi,1

Zi,2

xi,2c (t)

yi (t)

xi,2 (t)

di (t)

Δf (θi ,vi )

–

–

–K1

–K2

×∑

∑

high order disturbance
observer in Eq. (13)

Broad RBFNN

Ψi

βi,1

Oi

I

Figure 1: B-RBFNN-based adaptive formation control scheme structure for CAUS.
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where tr(·) represents the trace of matrices,L andB are the
Laplacian matrix and the information connection matrix of
the algebraic graph theory, respectively, which satisfy that

zi,1 � (L + B)ey,i. *en, we can get the differential of (27)
that

_V � 􏽘

n

i�1
2􏽥ζ

T

d,iPi
_􏽥ζd,i + Z

T
i,1 _eyi +

1
ΓΨ

tr 􏽥ΨT

i Ωi
_􏽢Ψi􏼒 􏼓􏼠 􏼡 + 􏽘

n

i�1
Z

T
i,2

_Zi,2 + 􏽥d
T

i
_􏽥di +

1
ΓΘ

tr 􏽥ΘT

i
_􏽢Θi􏼒 􏼓􏼠 􏼡. (28)

Substitute (13), (17), (22), (25), and (26) into (28), we
know that

_V � 􏽘
n

i�1
2􏽥ζ

T

d,iPi Ad,i
􏽥ζd,i + Fd,i

€di + Ld,i
􏽥ΘT

i Φi(x) − εi􏼒 􏼓􏼔 􏼕

+ 􏽘
n

i�1
Z

T
i,1 −K1Zi,1 − Ai(t)Ωi

􏽥Ψixi,2c(t) + Ai(t)ΩiZi,2􏼐 􏼑 +
1
ΓΨ

tr 􏽥ΨT

i Ωi
_􏽢Ψi􏼒 􏼓

+ 􏽘
n

i�1
Z

T
i,2 −K2Zi,2 + 􏽥di(t) − 􏽥ΘT

i Φi(x) + εi􏼒 􏼓 + 􏽥d
T

i −l1
􏽥di +

􏽥_di + l1
􏽥ΘT

i Φi(x) − l1εi􏼒 􏼓 +
1
ΓΘ

tr 􏽥ΘT

i
_􏽢Θi􏼒 􏼓.

(29)

Since for any constant vector a, b, tr(aTb) � baT holds,
we can get the following inequality based on Assumption 1,
(22), and (24):

2􏽥ζ
T

d,iPi Ad,i
􏽥ζd,i + Fd,i + Ld,i

􏽥ΘT

i Φi(x) − εi􏼒 􏼓􏼒 􏼓 � 􏽥ζ
T

d,i A
T
d,iPi + PiAd,i􏼐 􏼑􏽥ζd,i + 2􏽥ζ

T

d,iPiFd,i + 2􏽥ζ
T

d,iPiLd,i
􏽥ΘT

i Φi(x) − εi􏼒 􏼓

− 􏽥ζ
T

d,iQd,i
􏽥ζd,i + 2 􏽥ζd,i

����
���� PiFd,i

����
����μi + 2 􏽥ζd,i

����
���� PiLd,i

����
����χm,i

≤ − cm,i
􏽥ζd,i

����
����
2

+
2
ci

􏽥ζd,i

����
����
2

+ ciμ
2
i PiFd,i

����
����
2

+ ciχ
2
m,i PiLd,i

����
����
2

≤ − cm,i −
2
ci

􏼠 􏼡 􏽥ζd,i

����
����
2

+ ci μ2i PiFd,i

����
����
2

+ χ2m,i PiLd,i

����
����
2

􏼒 􏼓,

(30)

where ci is a positive constant and χm,i represents the
boundness of estimation error, that is,
‖Δ􏽢fi − Δfi‖ � 􏽥ΘT

i Φi(x) − εi ≤ χm,i.

Substitute (13), (17) and (30) into (29), we can get that

_V≤ 􏽘
n

i�1
− cm,i −

2
ci

􏼠 􏼡 􏽥ζd,i

����
����
2

+ ci μ2i PiFd,i

����
����
2

+ χ2m,i PiLd,i

����
����
2

􏼒 􏼓􏼠 􏼡

+ 􏽘
n

i�1
−Z

T
i,1K1Zi,1 − Z

T
i,2K2Zi,2􏼐 􏼑 + 􏽘

n

i�1
Z

T
i,1Ai(t)ΩiZi,2􏼐 􏼑

+ 􏽘
n

i�1
Z

T
i,2

􏽥di(t)􏼐 􏼑 + 􏽘
n

i�1
−􏽥d

T

i l1
􏽥di + 􏽥d

T

i

􏽥_di􏼒 􏼓 + 􏽘
n

i�1
Z

T
i,2 − 􏽥d

T

i l1􏼒 􏼓εi + 􏽘
n

i�1

􏽥d
T

i l1
􏽥ΘT

i Φi(x)􏼒 􏼓

+ 􏽘
n

i�1
−σΨtr 􏽥ΨT

i Ωi
􏽢Ψi􏼒 􏼓􏼒 􏼓 + 􏽘

n

i�1
−σΘtr 􏽥ΘT

i
􏽢Θi􏼒 􏼓􏼒 􏼓.

(31)
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Obviously, apply Young inequality, we can finally get
that

_V≤ − 􏽘

n

i�1
cm,i −

2
ci

􏼠 􏼡􏽥ζd,i
2

+ 􏽘

n

i�1
−Z

T
i,1K1Zi,1 − Z

T
i,2 K2 −

1
2
H

T
i Hi −

1
2

I −
1
4c

I􏼒 􏼓Zi,2􏼒 􏼓

+ 􏽘
n

i�1
−􏽥d

T

i l1 −
1
4

I􏼒 􏼓􏽥di􏼒 􏼓 + 􏽘
n

i�1
−
1
2
σΘtr 􏽥ΘT

i
􏽥Θi􏼒 􏼓 −

1
2
σΨtr 􏽥ΨT

i Ωi
􏽥Ψi􏼒 􏼓􏼒 􏼓 + τi,

(32)

where Hi � ZT
i,1Ai(t) and

τ � 􏽘
n

i�1
ci μ2i PiFd,i

����
����
2

+ χ2m,i PiLd,i

����
����
2

􏼒 􏼓

+ 􏽘
n

i�1

1
2
λmax2 Ωi( 􏼁 + ci

􏽥Θi

����
����
2ϕ2m +

􏽥_d
T

i

􏽥_di +
1
2
σΘtr Θ

T
i Θi􏼐 􏼑 +

1
2
σΨtr Ψ

T
i ΩiΨi􏼐 􏼑􏼒 􏼓.

(33)

Combining (27) and (32), it is obvious that
_V≤ − λV + τ, (34)

where

λ � min

􏽘

n

i�1

cm,i − 2/ci􏼐 􏼑

λmax Pi( 􏼁
,

λmax(L + B)
−1

λmax K1( 􏼁
, λmin 2l1 −

1
2

I􏼒 􏼓

􏽘

n

i�1
λmin 2K2 − H

T
i Hi − I −

1
2c

I􏼒 􏼓, ΓΘσΘ, ΓΨσΨ

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (35)

So, the solutions of the CAUS 􏽥ζd,i, Zi,1, 􏽥Ψi, Zi,2, 􏽥di, 􏽥Θi,
i � 1, 2, . . . , n are all bounded, which completes the
proof. □

4. Simulation

In this part, in order to verify the achievement of the tra-
jectory coordination of CAUS with the proposed intelligent
adaptive antidisturbance formation control method, the
simulation with the CAUS model described by (2) is carried
out.

It is assumed that the first AUS is the virtual leader;
meanwhile, we design the topological graph of AUS as
Figure 2. *e simulation time is T � 15 s. *e mass of single
AUS is m � 45 kg. *e parameters of the disturbance ob-
server can be chosen as l1 � diag 10, 10, 10{ } and
l2 � diag 20, 20, 20{ }, and the gain of the inner loop controller
and the outer loop controller are k1 � diag 4, 2, 4{ } and
k2 � diag 8, 4, 8{ }. *e initial states and the desired states of
CAUS are shown in Table 1:

*e uncertainties can be identified as ΔAi � diag 1, 1, 1{ }

and

Δf θi, vi( 􏼁 �

0.3 sin
6.28
20 × t

􏼒 􏼓

0.2 sin
6.28
20 × t

􏼒 􏼓

0.5 sin
6.28
20 × t

􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

Meanwhile, the disturbances can be identified as
di � [0.7, 0.5, 0.6]T. *e design constants are chosen as

ΓΨ � 0.001I3,

σΨ � 0.5I3,

ΓΘ � 15I3,

σΘ � 0.5I3.

(37)

*e simulation results are given in Figures 3–10. It can be
seen from Figures 3–5 that, with the compensation of the
disturbance observers, the collaborative control algorithm
presented in this paper can guarantee rapid convergence.
*e position of CAUS can be stabilized at a fixed difference
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Figure 2: Topology of communication graph for CAUS.
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Figure 3: Trajectories of x position of CAUS.

Table 1: *e initial states and the desired states of CAUS.

State/Number 1 2 3 4 5 6
x10 � [xi,0, yi,0, zi,0]

T [10, 20, 10]T [10, 20, 10]T [10, 20, 10]T [10, 20, 10]T [10, 20, 10]T [10, 20, 10]T

x20 � [vi,0, θi,0,ψs,i0]
T [1, 0, 1]T [1, 1, 0]T [0.5, 1, 1]T [1, 1, 1]T [1, 0.8, 1]T [1, 1, 0.4]T

x1 d � [xid, yid, zid]T [10, 20, 10]T [9, 22, 10]T [11, 22, 10]T [7, 24, 10]T [8, 24, 10]T [12, 24, 10]T

18
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21

22

23

24

25

0 5

AUS1
AUS2
AUS3

AUS4
AUS5
AUS6

10 15
Time (s)

y i

Figure 4: Trajectories of y position of CAUS.
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relative to the position of the leader according to the to-
pological graph. Figure 6 shows the control attitude angles α,
cs of every AUS can also be stable at a fixed value, re-
spectively. From Figure 7, it is obvious that the boundedness
of all the adaptive parameters can be guaranteed. *e es-
timation of disturbances and the nonlinearities are shown in
Figure 8. Figure 9 shows the characteristics of B-RBFNN,
and the boundness of all the B-RBFNN nodes number can be
verified. Figure 10 shows the trajectory of tracking errors of
different control methods, which exhibits the advantage in
control accuracy of the proposed method.

Remark 2. *e selected results are obtained according to
several rules, such as

(i) *e control gains and the adaptive gains should be
positive constants

(ii) Generally speaking, the control gains should satisfy
that k1 ≤ 0.5k2, l1 ≤ 0.5l2

(iii) *e adaptive damping parameters should satisfy
that ΓΨ ≤ 0.001σΨ, ΓΘ ≤ 30σΘ

Based on the aforementioned rules, and through the
adjustment and iteration on the basis of the simulation
results, the design parameters can be finally selected.

5. Conclusions

In this paper, the B-RBFNN intelligence adaptive anti-
disturbance formation control method has been studied for

50
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Figure 6: Trajectories of the angle of attack and the heeling angle of
CAUS.
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CAUSs in the presence of multi-source disturbances.
According to the time-varying features of disturbances, a
second-order disturbance observer which can both estimate
the disturbance and its derivative, is designed. Meanwhile,
the input-uncertainty-suppressed inner loop adaptive for-
mation control law and the second order disturbance ob-
server-based outer loop adaptive antidisturbance formation
control law has been proposed. Furthermore, the intro-
duction of B-RBFNN can maintain satisfactory approxi-
mation performance and achieve a rapid response rate for
the formation control system of the CAUS. Meanwhile, the
stability proof the closed-loop formation control system of
the CAUS has been completed. A simulation example is
given to verify the effectiveness of the proposed formation
control scheme. In the future, we will consider the formation

control issue of CAUS under the abruptly changing
disturbances.
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