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)e making of infrared templates is of great significance for improving the accuracy and precision of infrared imaging guidance.
However, collecting infrared images from fields is difficult, of high cost, and time-consuming. In order to address this problem, an
infrared image generation method, infrared generative adversarial networks (I-GANs), based on conditional generative
adversarial networks (CGAN) architecture is proposed. In I-GANs, visible images instead of random noise are used as the inputs,
and the D-LinkNet network is also utilized to build the generative model, enabling improved learning of rich image textures and
identification of dependencies between images. Moreover, the PatchGAN architecture is employed to build a discriminant model
to process the high-frequency components of the images effectively and reduce the amount of calculation required. In addition,
batch normalization is used to optimize the training process, and thereby, the instability and mode collapse of the generated
adversarial network training can be alleviated. Finally, experimental verification is conducted on the produced infrared/visible
light dataset (IVFG). )e experimental results reveal that high-quality and reliable infrared data are generated by the
proposed I-GANs.

1. Introduction

Due to the limitations of the application background and
support capabilities, the template used in infrared imaging
guidance is usually a visible image, while the real-time image
itself is infrared. )e imaging principles of infrared and
visible are different, which results in a large feature disparity
between the infrared image and the visible image. As a result,
the difficulty of scenematching in infrared imaging guidance
increases. If the infrared image is used as the reference image
for matching, the matching accuracy and precision can be
improved. Moreover, the matching difficulty can be reduced.
However, relying solely on an off-site field to obtain infrared
reference maps is time-consuming, and it is also arduous to
obtain infrared images of targets in complex environments
and harsh climates. Compared with testing in the field, the
use of infrared image simulation technology to generate the
infrared characteristics of the scene in the environment of
interest can not only effectively reduce the cost of acquiring
infrared data but also generate a large amount of infrared
data that is difficult to obtain in the field under a variety of

natural environments and scene conditions. In this way, the
generated infrared data can be used in the fields of aviation,
aerospace, navigation, meteorology, geology, and agriculture
by providing basic and reliable data for detection [1],
classification [2], positioning, identification, tracking pur-
poses, etc. )erefore, generating infrared reference maps
through infrared image simulation technology is highly
significant for military and civilian applications.

In recent years, with the continuous improvement of
computer performance [3, 4] and the rapid development of
deep learning theory, many new neural network-based
generation models have been proposed. Among these,
generative adversarial networks (GANs) [5] have demon-
strated a unique capacity to meet research and application
needs in many fields and have accordingly become one of the
most critical research hotspots in the field of artificial in-
telligence [6, 7]. Antipov et al. used conditional generative
adversarial networks (CGAN) to generate face images [8].
)rough applying GANs to the field of face turning (which
refers to a technique for synthetizing high definition (HD)
frontal face images from a single-sided face image), Huang
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and Tran proposed two-pathway generative adversarial
networks (TP-GANs) [9] and disentangled representation
learning-generative adversarial networks (DR-GANs) [10],
respectively. )e Markov-based Markovian generative
adversarial networks (MGANs) [11] have the same synthesis
speed as texture network [12] in generating image textures.
Isola et al. demonstrated that pix2pix approach could realize
the conversion of black and white to colour, satellite to map,
semantic to street view, and edge to photo [13]. Moreover,
the image textures and backgrounds generated by BigGAN
[14] are more realistic, although the computation complexity
of this approach is high. Subsequently, in order to improve
the learning performance by taking advantage of the im-
provement in image generation quality, Donahue and
Simonyan proposed BigBiGAN based on the BigGAN
model, extending this approach to the image learning
context by adding encoders and modifying the identifier
[15]. Image super resolution generative adversarial networks
(SRGAN) used residual networks (ResNets) and VGG
networks [16] as generators and discriminators, respectively,
to attain a better texture detail learning effect [17]. In order
to solve the lifelong learning problem of the generative
model, Zhai et al. presented the Lifelong GAN [18]. He et al.
proposed a dual learning mechanism in which the neural
machine translation system can automatically learn from
unlabeled data through a dual learning game [19]. Following
the idea of dual learning, Yi et al. used the DualGAN model
of dual learning to achieve cross-domain image generation
[20], and Zhu et al. introduced cycle consistency into GANs
to extend the image-to-image conversion work [21]. Choi
et al. first proposed a novel and scalable method, StarGAN,
which is capable of converting images to images translation
for multiple domains from using only one model [22].
Beginning with RGB images from Kinect and curve normal
maps, Karras et al. proposed a generative adversarial model
called Style-GAN, which takes normal surface as the basis for
the generative adversarial networks used to generate images
[23]. Based on Style-GAN model, Yang and Lim proposed a
framework capable of generating face images that fall into
the same distribution as that of a given one-shot example
[24]. Besides, Richardson et al. presented a generic image-to-
image translation framework Pixel2Style2Pixel (pSp). )e
pSp framework is based on a new encoder network that
directly generates a series of style vectors which are fed into a
pretrained Style-GAN generator, forming the extended W+
latent space [25]. Chen et al. presented a domain adaptive
image-to-image conversion (DAI2I) framework, which is
suitable for the I2I model of samples outside the domain
[26].

At present, the majority of GANs-based image gener-
ation researches have applied GANs to face synthesis, tex-
ture generation, sketch-to-photo applications, transforming
visible images to night vision images, etc. However, few
studies have been published on the use of GANs models in
the field of infrared image simulation. In view of the high
cost, comparatively small quantities, and the relative diffi-
culty of obtaining infrared data in the off-site field, this paper
proposes an infrared image generation method based on
generative adversarial networks (infrared generative

adversarial networks, or I-GANs), which is capable of
simulating and generating infrared images on the basis of
visible images. Besides, the generated infrared images can be
used to create infrared reference maps, which provide re-
liable infrared data and expand infrared databases. Based on
CGAN architecture, the I-GANs algorithm employs the
D-LinkNet network to build the generation network, using
visible images and infrared simulation samples as the inputs
and outputs, respectively. )en, the real target sample and
the generated simulation sample are utilized to train the
PatchGAN-based discrimination network, which outputs
the probability of a generated sample belonging to the
corresponding category. )rough alternating iterative
training of the generation network and the discriminant
network, the final generated infrared simulation samples
have essentially the same data distribution as the real
samples.

)e novelty of the work in this paper can be summarized
as follows: (1) innovation of research background. We
present a novel generation adversarial network algorithm
(i.e., I-GANs) with infrared image simulation as the research
background, which has a reliable reference value for the
subsequent infrared image generation researches; (2) we
introduce a D-LinkNet module into conditional GANs.
Armed with D-LinkNet, the generator can better preserve
the spatial details of the images and achieve multiscale
feature fusion.

2. Related Work

Generative adversarial networks (GANs) were first proposed
by Goodfellow et al. at the 28th International Conference on
Neural Information Processing Systems in 2014 [5]. )e
generative adversarial networks are a new generative model
developed on the basis of a deep generative model. )e
significant difference between this model and other gener-
ative models lies in its use of an adversarial approach. It first
learns the difference between the generated sample and the
training sample through the discriminator and then guides
the generator to reduce this difference rather than to directly
target the differences between the data distribution and the
model distribution. At present, GANs are one of the most
significant research hotspots in the field of artificial
intelligence.

2.1. Generative Adversarial Networks. )e key concept be-
hind GANs involves setting up a zero-sum game to achieve
learning through the confrontation between two players. In
the zero-sum game, one player acts as the generator while
the other acts as the discriminator.)e generator’s main task
is to generate samples that appear as identical as possible to
the training samples, thereby deceiving the other player. For
the discriminator, the goal is to accurately determine
whether the input samples belong to the set of real training
samples. In GANs, the generation network and the adver-
sarial network are often thought of as analogous to a
counterfeiter of banknotes and a detector of forged currency.
)e GANs training process thus resembles the following
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procedure: the counterfeiter continues to increase the so-
phistication of their forged banknotes in order to produce
counterfeit banknotes that are as identical as possible to real
currency, in the hope that the forgery detector will fail to
spot the forgery; for their part, the money detector con-
stantly improves their ability to identify counterfeit bank-
notes. As the GANs training process continues, both the
counterfeiter’s ability to manufacture convincing counterfeit
notes and the money detector’s ability to identify forgeries
will continually increase [20].

)e GANs consist of two networks, a generative network
(generator G) and an adversarial network (discriminator D),
which corresponds to the generative and the adversarial
model, respectively. )e basic framework of the original
generative adversarial networks is illustrated in Figure 1.

In the original GANs, the value function V(G, D) [5, 27]
is defined as follows:

V(G, D) � Ex∼pda ta
[log D(x)] + Ez∼pz

[log(1 − D(G(z)))],

(1)

where x ∼ pdata represents the distribution of x taken from
real data, z ∼ pz indicates that the random noise z comes
from simulated data (such as a Gaussian noise distribution),
E(·) is the expected value, and G tries to minimize this
objective while an adversarial D tries to maximize it; i.e.,
G∗ � argminG maxDV(G, D).

2.2. Conditional Generative Adversarial Networks. With the
goal of remedying the original GANs’ inability to generate
pictures with specific attributes, Mirza and Osindero proposed
the conditional generative adversarial networks (CGAN) [28].
)e core concept of the CGAN involves integrating condition
information y into the generator and discriminator. Condition
y can be any label information, such as the facial expressions of
face images and image categories. )e CGAN network
structure is presented in Figure 2.

)e objective of a CGAN can be expressed as follows:

ℓCGAN(G, D) � Ex,y[log D(x, y)] + Ex,z[log(1 − D(x, G(x, z)))].

(2)

3. Methods

3.1. Objective. In this section, based on the CGAN frame-
work, we proposed the I-GANs algorithm which uses images
as input rather than random noise. In order to make better
use of the structural information contained in the input
image, the L1 objective function is introduced into the loss
function as follows:

ℓL1(G) � Ex,y,z ‖y − G(x, z)‖1 . (3)

)e loss function of I-GANs is then finally defined as
follows:

G
∗

� arg min
G

max
D

ℓCGAN(G, D) + λEx,y,z ‖y − G(x, z)‖1 .

(4)

3.2. Generative Networks. )e network of the common
encoder-decoder structure operates by first down-
sampling to a low dimension and then upsampling to the
original resolution. By contrast, D-LinkNet [29], which
uses LinkNet as the basic framework and then introduces
a residual network [30], has the advantages of employing
skip connection (used to retain pixel-level detailed in-
formation at different resolutions), residual blocks, and
encoder-decoder systems, thus increasing the receptive
fields of the network, retaining the spatial detail infor-
mation of the image, and realizing multiscale feature
fusion.

In the proposed I-GANs algorithm, D-LinkNet is used
to construct a generative network. More specifically, in this
article, D-LinkNet is designed to receive images of size
256 × 256 as input. As shown in Figure 3, D-LinkNet is
composed of three parts, A, B, and C, which are the encoder
part, the central part, and the decoder part, respectively. In
the encoder part, ResNet34 [30], which is trained on the
ImageNet dataset, is used as the encoder. In the central
part, dilated convolution with shortcut is added to enhance
the network’s recognition ability, expand the receptive
field, and fuse multiscale information. Finally, the decoder
part uses transposed convolution [31] layers to conduct
upsampling, restoring the resolution of the feature map
from 8× 8 to 256 × 256.

)e center dilation part of this D-LinkNet can be
unrolled into the structure illustrated in Figure 4. From
top to bottom in the figure, if the dilation rates of the
stacked dilated convolution layers are 2, 1, and 0, re-
spectively, then the corresponding numbers of receptive
fields are 7, 3, and 1; finally, the results of each branch are
added together, and the characteristics of the fusion are
obtained. Since the encoder part of the D-LinkNet
contains five downsampling layers, while the size of the
input data is 256 × 256, the encoder output feature map
will be of the size 8 × 8. In this case, D-LinkNet uses
dilated convolution layers with a dilation rate of 1 and 2
in the center part. )us, the feature points on the last
center layer will yield 7 × 7 points on the first center
feature map, covering the main part of the first center
feature map.

3.3. Adversarial Networks. In the I-GANs, the adversarial
network is constructed using the convectional PatchGAN
classifier. )e main idea behind PatchGAN is as follows:
since GANs are used to build high-frequency information,
there is no need to input the entire image into the dis-
criminator; instead, the discriminator can make true or
false judgments about each block of the image, which
penalises the structure only on the scale of the image
block. )erefore, the I-GANs’ discriminator only needs to
pay attention to the local structure of the image (which
can effectively reduce the number of parameters in
training), model the high-frequency components of the
image, and rely on the L1 items to ensure the accuracy at
low frequencies.
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4. Results and Discussion

4.1. Datasets. UAV is equipped with a thermal infrared
camera and a visible camera (both of which are coaxially
installed) to capture the desired target and scene in the
designated area. In brief, the designated area is photo-
graphed using a coaxial infrared camera and a visible-light
camera simultaneously. Targets in the data include
buildings (with materials including steel, concrete, ce-
ment, and various types of bricks), vehicles (including
trucks and buses), radar covers, power stations (e.g.,
thermal and hydroelectric), oil depots, highways (with
materials including cement and asphalt), runways,
grasslands (both real and artificial), trees, and rivers (or
ponds). Scenes in the data include cities, campuses,
streets, factories, residential areas, transportation hubs,
and rivers. Meteorological conditions identified in the
data collection include sunny, cloudy, hazy, and rainy. We
name this dataset “IVFG.”

4.2. Subjective Evaluation. In order to evaluate the proposed
I-GANs methods, we conducted a large number of exper-
iments on the IVFG dataset. )e generation effect of in-
frared-generated images is evaluated by means of subjective
observation and objective index verification.

Next, infrared-generated images of buildings, chimneys,
and cooling towers, generated by the I-GANs algorithm, are
presented in Figures 5–7. )e building materials in Figure 5
include steel, concrete, cement, and various types of bricks.
)rough visual interpretation and subjective evaluation, it
can be determined that the grey information and contour

information of the infrared-generated images are closer to
those of the real infrared images. In addition, the similarity
between the two is higher, and the infrared generation effect
is superior.

4.3. Objective Evaluation. Generally speaking, the greater
the similarity of the grey characteristics between generated
infrared images and those obtained in real time, the better
the infrared image generation results. In order to objectively
evaluate the I-GANs algorithm’s effectiveness at generating
infrared images, we calculate the Root Mean Square Error
(RMSE) and feature similarity (Feature SIMilarity, FSIM)
[32] between infrared generation-based templates (which
are split off from infrared-generated results via human-
computer interaction) and infrared real-time maps,
respectively.

)e RMSE is a measure of the degree of information
change between the two images, which reflects the dif-
ference in grey values. In general, the smaller the RMSE
value, the smaller the greyscale difference between the
two, that is, the better the generation effect of the infrared-
generated images. On the contrary, the larger the RMSE
value, the worse the generation effect of the infrared-
generated image. Moreover, FSIM represents an im-
provement of structural similarity, which not only uses
phase consistency to extract rich texture, edge, and
structure information, but also introduces the contrast
information of the gradient amplitude to extract images,
enabling the structural differences between images to be
evaluated. Generally speaking, the greater the FSIM value,
the higher the similarity between images (i.e., the better

Conditional y

Random noise
samples z

Training data x

The generated
data G (z|y)

True/false

The generator
G

The discriminator
D

Figure 2: )e basic framework of CGAN. CGAN has an additional condition y.

Random noise
samples z

Training data
x

The generated
data G (z)

True/false

The generator
G

The discriminator
D

Figure 1: )e basic framework of the original GANs. )e GANs consist of two networks: a generative network (generator G) and an
adversarial network (discriminator D).
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the infrared generation). Because the user tends to pay
more attention to the infrared generation effect of the
target, this paper only calculates the RMSE and FSIM

between the target’s infrared real-time map and the in-
frared generation map. )e RMSE and FSIM are calcu-
lated according to the following equations:
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(a)

(b)

(c)

Figure 5: Examples of infrared-generated images of buildings produced on the basis of the I-GANs algorithm. (a) Visible images. (b) Real
infrared images. (c) Infrared-generated images.

(a)

(b)

(c)

Figure 6: Examples of infrared-generated images of chimneys produced on the basis of the I-GANs algorithm. (a) Visible images. (b) Real
infrared images. (c) Infrared-generated images.
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(5)

where I and S represent the infrared measure of the target
and the infrared simulation chart, respectively. Moreover,
PC1(I) and PC2(S) represent the phase consistency of I and
S, respectively, while G1(I) and G2(S) represent the gradient
amplitude of I and S, respectively.

In this paper, in order to verify the generation results, the
proposed I-GANs algorithms are compared with three
GANs-based algorithms, the generators of which are
U-Net256, ResNet9, and ResNet34, respectively. Among
them, the algorithmwith U-Net256 as generator is the classic
Pix2pix algorithm [13], and the following are all described
with “Pix2pix”. Besides, in the following, the GANs-based
algorithms construct generators with ResNet9 and

ResNet34, respectively, are called “Resnet9” and “Resnet34,”
respectively. )e network structure of the four algorithms
participating in the experimental comparison is shown in
Table 1.

)ere are 1374 sets of infrared/visible light images (1374
infrared images and 1374 visible images) in the dataset
involved in the experiment in this paper. )e training
samples and test samples are constructed according to the
ratio of 1070 : 304. For the RMSE index, smaller value is
superior; among the FSIM index, larger value is superior.We
make statistics on the number of superior and inferior values
of the actual values of the image quality evaluation indexes
and define the statistical result as the ratio of superiority and
inferiority (RSI).

We count the RMSE and FSIM values between all in-
frared images generated by these four algorithms and the
corresponding real infrared images. We also calculate the
average value of each index value (represented by mRMSE
and mFSIM) and the RSI of the index values between the
four algorithms. )e statistical results are shown in Table 2.
RMSE needs to consider the grey value of the corresponding
points of the two images. However, there are differences
(such as scale transformation, rotation, and angle) between
the visible image and the real infrared image—it is not
possible to fully pair the corresponding points of the target’s
infrared generation reference map and the same coordinates
in the real infrared image. )is affects the calculation of the
square root error, which may lead to a larger RMSE value.

According to the experimental data given in Table 2, it
can be concluded that

(a)

(b)

(c)

Figure 7: Examples of infrared-generated images of cooling towers produced on the basis of the I-GANs algorithm. (a) Visible images.
(b) Real infrared images. (c) Infrared-generated images.
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(a). Among the four algorithms, our method has the
smallest mRMSE value of 33.82 and the largest
mFSIM value of 0.737, which means that the quality
of the infrared images generated by our method is
the best;

(b) In the 304 groups of comparative data, the numbers
of samples where our method's RMSE index values
are better than Pix2pix, Resnet9, and Resnet34 are
207, 180, and 228, respectively;

(c) In the 304 groups of comparative data, the numbers
of samples where our method's FSIM index values
are better than Pix2pix, Resnet9, and Resnet34 are
220, 220, and 243, respectively.

According to the above analysis, the quality of the in-
frared image generated by our method is better than the
other three GANs-based algorithms.

4.3.1. Statistical Results of RMSE. In order to express the
experimental results more intuitively, based on the as-
cending order of the 304 RMSE values obtained by our
algorithm, a comparison chart of the experimental results of
our method and Pix2pix is drawn. As shown in Figure 8, the
experimental results of our method are represented by the
curve “”, and the experimental results of Pix2pix are rep-
resented by the scattered points “”.

It can be seen from Figure 8 that the number of “” above
the curve “” is obviously more than those below the curve.
Among the RMSE index results of our method, 207 index
values are superior to the Pix2pix, and 97 index values are
inferior to the Pix2pix. )at is, the RMSE index RSI of the
two algorithms is 207 : 97, indicating that, among the in-
frared images generated by our method, 207 images are with
better quality than the Pix2pix algorithm.

According to the drawing standard in Figure 8, the
RMSE index results obtained by our method, Resnet9, and

Resnet34 algorithms are drawn, as shown in Figure 9. In
Figure 9, the RMSE values of our method, Resnet9, and
Resnet34 are represented by the curve “”, the scattered point
““, and the scattered point “”, respectively.

As demonstrated in Figure 9, the number of “” and “”
distributed above the curve “” is obviously more than those
below the curve. )e RMSE index RSI of our method and
Resnet9 algorithm is 180 : 124, and the RSI of our method
and Resnet34 algorithm is 228 : 76. )ese illustrate that the
quality of infrared images generated by our method is
significantly better than Resnet9 and Resnet34 algorithms.

4.3.2. Statistical Results of FSIM. According to the drawing
standard in Figure 8, the FSIM index results obtained by our
method and Pix2pix are drawn, as shown in Figure 10. In
Figure 10, the FSIM values of our method and Pix2pix are
represented by the curve “ ” and the scattered point
“ ”, respectively.

As shown in Figure 10, the number of “ ” below the
curve “ ” is obviously more than those above the curve.
Among the FSIM index results of our method, 220 index
values are superior to the Pix2pix, and 84 index values are
inferior to the Pix2pix. )is indicates that the FSIM index
RSI of the two algorithms is 220 : 84, which means that
among the infrared images generated by our method, 220
images are with better quality than the Pix2pix algorithm.

Similarly, we draw the FSIM index results obtained by
our method, Resnet9, and Resnet34 algorithms. As shown in
Figure 11, the FSIM values of our method, Resnet9, and
Resnet34 are represented by the curve “”, the scattered point
““, and the scattered point “”, respectively.

As shown in Figure 11, the number of “” and “” dis-
tributed below the curve “” is obviously more than those
above the curve. )e FSIM index RSI of our method and
Resnet9 algorithm is 220 : 84, and the RSI of our method and
Resnet34 algorithm is 243 : 61. )ese also show that the

Table 1: )e network structure of the four GANs algorithms.

Method
Networks

Generator Discriminator
U-net256 ResNet9 ResNet34 D-LinkNet34 PatchGAN

Pix2pix √ √
Resnet9 √ √
Resnet34 √ √
Our method √ √

Table 2: )e average and the superior/inferior sample numbers of the evaluation indexes.

Method

)e average of the
evaluation indexes )e superior/inferior sample numbers of the evaluation indexes

mRMSE mFSIM
RMSE samples FSIM samples

Our’<Other’ Our’>Other’ Our’>Other’ Our’<Other’
Pix2pix 35.01 0.721 207 97 220 84
Resnet9 34.42 0.722 180 124 220 84
Resnet34 37.04 0.700 228 76 243 61
Our method 33.82 0.737 — — — —
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Figure 8: )e RMSE results between the real infrared images and the infrared images generated by our method and the Pix2pix. )e X-axis
represents different test samples and the Y-axis represents the RMSE value corresponding to the sample.
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Resnet34. )e X-axis represents different test samples and the Y-axis represents the RMSE value corresponding to the sample.
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represents different test samples and the Y-axis represents the FSIM value corresponding to the sample.
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quality of infrared images generated by our method is
significantly better than Resnet9 and Resnet34 algorithms.

Based on subjective interpretation and objective analysis,
it can be determined that the infrared images generated by
our method (that is, I-GANs algorithm) are similar to the
real infrared images; i.e., the infrared generation effect is
well.

5. Conclusions

Infrared reference map preparation plays an important role
in improving the accuracy and precision of infrared imaging
guidance. )is paper proposes an infrared image generation
algorithm based on generative adversarial networks, which is
named I-GANs. )e algorithm introduces the D-LinkNet
network to build a generation network for the purpose of
learning image textures and discovering the dependencies
between images. Furthermore, PatchGAN is adopted to
construct a discriminant model, which can effectively pro-
cess the high-frequency components of the image and re-
duce the amount of calculation required. In the training
process, batch normalization and the Adam are utilized to
optimize the training process in order to alleviate training
instability and mode collapse. )e simulation on the pro-
duced infrared/visible light image data (IVFG) reveals that
the proposed I-GANs algorithm can generate high-quality
infrared images, which are more realistic and similar to the
real infrared images.

Data Availability

)e data used to support this research was collected by the
authors through UAV, which is equipped with a thermal
infrared camera and a visible camera (both of which are
coaxially installed) to capture the desired target and scene in
the designated area; in brief, the designated area is photo-
graphed using a coaxial infrared camera and a visible-light
camera simultaneously. Targets in the data include buildings
(with materials including steel, concrete, cement, and var-
ious types of bricks), vehicles (including trucks and buses),

radar covers, power stations (e.g., thermal and hydroelec-
tric), oil depots, highways (with materials including cement
and asphalt), runways, grasslands (both real and artificial),
trees, and rivers (or ponds). Scenes in the data include cities,
campuses, streets, factories, residential areas, transportation
hubs, and rivers. Meteorological conditions identified in the
data collection include sunny, cloudy, hazy, and rainy.
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