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Exact solutions of epidemic models are critical for identifying the severity and mitigation possibility for epidemics. However, solving
complexmodels can be difficult when interfering conditions from the real-world are incorporated into themodels. In this paper, we focus
on the generally unsolvable adaptive susceptible-infected-susceptible (ASIS) epidemic model, a typical example of a class of epidemic
models that characterize the complex interplays between the virus spread and network structural evolution. We propose two methods
based onmean-field approximation, i.e., the first-ordermean-field approximation (FOMFA) and higher-ordermean-field approximation
(HOMFA), to derive the exact solutions to ASIS models. Both methods demonstrate the capability of accurately approximating the
metastable-state statistics of themodel, such as the infection fraction and network density, with low computational cost.*esemethods are
potentially powerful tools in understanding, mitigating, and controlling disease outbreaks and infodemics.

1. Introduction

Compartmental models, e.g., the SIS and SIR models, are the
most commonly used frameworks to characterize the dy-
namics of ubiquitous diffusion processes such as epidemics
[1], rumors, and computer network data flows [2]. Analytical
solutions to these models using mean-field approximations
can yield plenty of useful information regarding the severity
and controllability of a diffusion process. For example, the
finding of the absence of an epidemic threshold in scale-free
networks has successfully raised the vigilance of the difficulty
of controlling pandemic in large populations [3]. *is paper
addresses the mean-field approximation solution to epi-
demics in an adaptive and finite-size network.

It has been widely observed that the epidemic spreading
and other network dynamics can have a complex interplay
with the topology of the underlying network [4–7]. On the
one hand, the epidemic propagates among nodes according
to certain rules; on the other hand, the network topology also
changes in response to the epidemic process. *is phe-
nomenon is also referred to as adaptive evolution. Gross

et al. formulated the adaptive evolution of epidemic dy-
namics and network topology with a susceptible-infected-
susceptible model in infinite-size networks and revealed via
homogeneous mean-field approximation that the system
could have four possible steady states, namely, the healthy,
endemic, oscillatory, and bistable states [4].

Although the adaptive evolution can exhibit a complex
bifurcation pattern of system states in an infinite-size net-
work, i.e., a network with an infinite number of nodes, for a
finite-size network, the only steady state is when all nodes’
states are converged, e.g., all healthy [8]. *erefore, the
research focus of epidemics in finite-size networks is the
“metastable” states, in which the system remains for a long
time before getting into the absorbing state. Chakrabarti
et al. [9] and Van Mieghem et al. [8, 10] derived the
metastable-state infection fraction for the discrete-time and
continuous-time epidemics, respectively, with mean-field
approximations and found that the epidemic threshold of
the finite-size network is upper-bounded by the largest ei-
genvalue of the adjacency matrix of the underlying network
topology.
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Guo et al. [11, 12] proposed a general and exact adaptive
susceptible-infected-susceptible model (ASIS) for finite-size
networks. *e model describes the exact Markovian process of
the time-evolution characteristic of the system’s viral state as a
whole. *is framework allows us, in principle, to derive the
expressions of the metastable-state metrics (e.g., the infection
fraction and the epidemic threshold). Unfortunately, without
resorting to mean-field approximations, Guo et al. could only
obtain implicit forms of the metastable-state metrics. Although
their implicit expressions, to some extent, help to give insights
into the complex interplay between the epidemic dynamics and
the topological dynamics, they failed in isolating the dependent
variables (i.e., the metrics) given the independent variable set
(e.g., the infection rate, the recovery rate, and the adjacency
matrix). It is thus intriguing to propose an approximation to the
exact ASISmodel,making it possible to calculate the value of the
metastable-state metrics.

In this paper, we propose two expansions to mean-field
methods, i.e., the first-order mean-field approximation and
the higher-order mean-field approximation, and use them to
derive exact solutions of metastable states of the ASIS ep-
idemic process, i.e., the infection fraction and network
density, and empirically verify the existence of the steady
states of these approximations. We also examine the com-
plex effects of the ASIS process parameters on the metastable
state using these computable methods.

*e rest of this paper is organized as follows. First,
Section 2 elaborates on the SIS process in adaptive networks,
followed by introducing the Markov theory-based ASIS
model proposed previously [11]. *en, the two mean-field
expansions for the exact ASISmodel are presented in Section
3. Section 4 shows the results, i.e., derived metastable states,
of the mean-field approximation methods and compares the
results with simulations.*e effects of the parameter settings

of the ASIS process are also investigated. Section 5 concludes
our works.

2. The ASIS Model

We consider a population in which an individual i can be
either in the state of infectedXi (t)� 1 or susceptibleXi (t)� 0
at time t, with probabilities vi(t) �Pr [Xi(t)� 1] and
1− vi(t) � 1−Pr [Xi(t)� 1], respectively. For a Bernoulli
random variable, the relation E[Xi]�Pr [Xi] holds. *e
population is connected with an undirected and unweighted
graph G (N, L) composed of N nodes and L links. *e
concerned network is denoted by an adjacency matrix A
with elements aij � 1 if node i and j are connected or aij � 0
otherwise.

We consider four independent Poisson processes in the
network, as shown in Figure 1. First, an infected node in the
network can infect its susceptible neighbor with a rate β.
Second, an infected node recovers (to the state of suscep-
tible) with a rate δ. *erefore, for each node i, the probability
of its state changes with

d

dt
E Xi  � E −δXi + 1 − Xi( β 

N

j�1,j≠ i

aijXj
⎡⎢⎢⎣ ⎤⎥⎥⎦. (1)

Meanwhile, the network topology changes in response
to the epidemic dynamics. *erefore, third, if there exists
a link connecting an infected node j and a susceptible
node i, the node i will cut off the link with a rate ζ. Finally,
two susceptible nodes tend to create a link between them
at rate ξ if there is no link connecting the two nodes.
Besides, we denote by τ and ω the effective infection rate
and the effective link-breaking rate. *e adaptation of the
network topology to the epidemic process is as follows:

d

dt
E aij  � aij(0)E −ζaij Xi 1 − Xj  + Xj 1 − Xi(    + ξ 1 − aij  1 − Xi(  1 − Xj 

� aij(0)E −ζaij Xi − Xj 
2

+ ξ 1 − aij  1 − Xi(  1 − Xj  .

(2)

*e link-breaking process ω mimics the immune
strategy employed by the node i, and the link-creating
process mimics the establishment of social ties among
people.

*e concerned topological metrics are introduced in the
following. *e metastable-state infection fraction is defined
as follows:

y∞ � lim
t⟶∞


N
i�1 vi(t)

N
�


N
i�1 vi∞
N

. (3)

Another metric concerned in this paper is the nor-
malized number of links (i.e., the network density) defined
as follows:

L∞ � lim
t⟶∞

2L

N(N − 1)
�

ijaij∞

(N(N − 1)/2)
. (4)

Under the above framework, the exact solutions to the
infection fraction and the epidemic threshold could be
derived (*eorem 1 and *eorem 2 in [11]). Analogously,
other metastable-state metrics could be obtained. Al-
though these expressions give insights into the complex
interplay between the epidemic dynamics and the topo-
logical dynamics, they are unsolvable. To fill this gap, in
the following, we will propose two solvable mean-field
expansions to the ASIS model and investigate the accuracy
of these approximations.

2 Complexity



3. Mean-Field Approximations to the
ASIS Model

3.1. First-Order Mean-Field Approximation. *e simplest
mean-field expansion, which we name the first-order
mean-field approximation (FOMFA), assumes that E
[XiaijXj] � E[Xi]E[aij]E[Xj]. Hence, the change of state for
each node i in equation (1) can be approximated to

d

dt
E Xi  � −δE Xi  + 1 − E Xi (  × β 

N

j�1
E aij E Xj 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(5)

and that the change of network topology in equation (2) can
be approximated to

d

dt
E aij  � −ζE aij  E Xi  − E Xj  

2
+ ξ 1 − E aij   1 − E Xi (  1 − E Xj  . (6)

Obviously, this approximation can be an oversimplified
abstraction of the system, as the assumption of E[XiaijXj]� E
[Xi]E[aij]E[Xj] implies that the nodes and link states are
independent and therefore ignores the coupling of the triple
term [XiaijXj] into consideration. Nonetheless, the simplicity
of this approximation still makes it a useful method to
calculate the metastable-state infection fraction when the
effective infection rate τ is relatively large at the expense of
accuracy.

3.2. Higher-OrderMean-Field Approximation. To accurately
capture the higher-order interactions between the network
dynamics and topology, we consider the network evolution
equation at a “node-link-node” triple level. In this case, the
state of a triple can be one in the six possible states: SCS, SCI,
SDS, SDI, ICI, and IDI, where S and I stand for nodes in the

susceptible and infected states, respectively, and C and D
stand for connected and disconnected links, respectively.
Figure 2 illustrates the Markov state transition diagram
among all the possible triple states. Note that eight states are
shown in the figure, as for the SCI and SDI states, and the
infected node can be either node in the triple.

*e changes of the node state E[Xi] and network con-
nection E[aij] and the “node-link-node” triple can be
expressed as follows. Note that the change of node state is
influenced by its recover rate and aggregated infectious effect
from infected neighbors.

d

dt
E Xi  � −δE Xi  + β 

N

j�1,j≠ i

E 1 − Xi( aijXj . (7)

*e change of link state is influenced by

d

dt
E aij  � −ζ E Xiaij 1 − Xj   + E 1 − Xi( aijXj   + ξE 1 − Xi(  1 − aij  1 − Xj  . (8)
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Figure 1: Illustration of four independent epidemics and topology adaptation Poisson processes in the network.
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*e change of the probability of the triple SDS is as
follows:

d

dt
E Xi 1 − aij Xj  � −2δE Xi 1 − aij Xj  + E 1 − Xi(  1 − aij Xj 

× β
k

E 1 − Xi( aikXk  + E XiaikXk (  + E 1 − Xj  1 − aji Xi  × β
l

E 1 − Xj ajlXl  + E XjajlXl  .

(9)

*e change of the probability of the triple SCS is as
follows:

d

dt
E XiaijXj  � −2δE XiaijXj  + E 1 − Xi( aijXj β


k

E 1 − Xi( aikXk  + E XiaikXk (  + E 1 − Xj ajiXi β
l

E 1 − Xj ajlXl  + E XjajlXl  .

(10)

*e change of the probability of the triple IDI is as
follows:

d

dt
E 1 − Xi(  1 − aij  1 − Xj   � −E 1 − Xi(  1 − aij  1 − Xj  

× ξ + β
k

E 1 − Xi( aikXk  + E XiaikXk (  + β
l

E 1 − Xj ajlXl  + E XjajlXl  
⎧⎨

⎩

⎫⎬

⎭ + δ E 1 − Xi(  1 − aij Xj  + E 1 − Xj  1 − aji Xi  .

(11)

*e change of the probability of the triple ICI follows:

d

dt
E 1 − Xi( aij 1 − Xj   � −E 1 − Xi( aij 1 − Xj  

× β
k

E 1 − Xi( aikXk  + E XiaikXk (  + β
l

E 1 − Xj ajlXl  + E XjajlXl  
⎧⎨

⎩

⎫⎬

⎭ + δ E 1 − Xi( aijXj  + E 1 − Xj ajiXi   + ξE 1 − Xi(  1 − aij  1 − Xj  .

(12)

*e change of the probability of the triple SDI is as
follows:

d

dt
E 1 − Xi(  1 − aij Xj  � −E 1 − Xi(  1 − aij Xj 

× β
k

E 1 − Xi( aikXk  + E XiaikXk (  + δ
⎧⎨

⎩

⎫⎬

⎭ + δE Xi 1 − aij Xj 

+ E 1 − Xi(  1 − aij  1 − Xj   × β
l

E 1 − Xj ajlXl  + E XjajlXl   + ζE 1 − Xi( aijXj .

(13)
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*e change of the probability of the triple SCI is as
follows:

d

dt
E 1 − Xi( aijXj  � −E 1 − Xi( aijXj  × ζ + δ + β

k

E 1 − Xi( aikXk  + E XiaikXk ( 
⎧⎨

⎩

⎫⎬

⎭

+ δE XiaijXj  + E 1 − Xi( aij 1 − Xj   × β
l

E 1 − Xj ajlXl  + E XjajlXl  
⎧⎨

⎩

⎫⎬

⎭.

(14)

*e above governing equations (7)–(14) are named the
high-order mean-field approximation (HOMFA). From
HOMFA, the steady-state values of all the variables as well as
the metastable-state metrics such as the infection fraction y
are defined in equation (3).

4. Simulations and Numerical Results

4.1.<eMetastable State and SimulationMethod. One could
denote the system state by the vector of N components, where
i-th component represents the viral state of vi. Each possible
value of the vector represents a specific system state. *e state
space composed of all possible states is finite for the SIS process
in finite-size networks. Usually, the system state could change
from one to another following a finite Markovian process. We
name the particular state, which the system could change into
but not vice versa, as the absorbing state. Van Mieghem et al.
noted that the only final steady state of the exact Markov
process representing the SIS process in a finite-size network is
an absorbing state where all nodes are healthy [8]. Before
reaching this absorbing state, the exact SIS model remains for a
long time in a “metastable state.” Generally speaking, it is a bit
hard to precisely determine the metastable state partly because
it depends not only on the network size but also on other
parameters of the SISmodel. Take, for example, the classical SIS
process model in finite-size networks, it is possible to exper-
imentally determine the metastable state and calculate some
statistical metrics such as themetastable-state infection fraction
[13] although the metastable state is not defined precisely. In
order to get the average value of a metastable-state metric for a
specific configuration of parameters, one could run a number
of simulation instances and compute the value of the metric
over time and look for a plateau. *en, one should determine
empirically a time point at the plateau and specify the value at
the time point as the metastable-state value [9]. Obviously, this
approach looks inaccurate as a simulation method.

Alternatively, one could change the exact SISmodel slightly
by introducing a nodal self-infection Poisson process with rate
ε [14], which can be seen as a perturbation to the exact SIS
model. Specifically, the self-infection process enables each node
to spontaneously become infected.*e introduction of the self-
infection process means that the state where all nodes are
healthy is no more the absorbing state. In other words, the
absorbing state is eliminated from the state space because the
probability of leaving the all healthy state is slightly larger than
zero for small ε. As a result, one will not be bothered to de-
termine empirically themetastable state. Instead, one could run

only one simulation instance for a long time while recording
the change in the value of the concernedmetric.*en, one only
needs to calculate the time-average value of the metric which is
also named as the steady-state value. *e steady-state value of
the ε-SIS offers a well approximation to the metastable-state
value of the corresponding exact SIS model [13].

Extending the ε-SISmodel elaborated above by introducing
the link dynamics, Guo et al. proposed the ε-ASIS model and
also showed that the “metastable state” of the exact ASIS model
could be accurately approximated by the steady state of the
corresponding adaptive ε-SIS simulation approach (Section 3
in [11]). We implement an event-driven time-continuous ε-SIS
simulator to calculate the metastable-state statistical metrics of
the exact ASIS process. One apparent advantage of the ε-SIS
simulator is that it will not bother to determine whether and
when the system enters into the metastable state, which is not
clearly defined. One only needs to choose a proper small ε and
to run the simulator for a warm-up period. *en, one starts to
record the change of the concerned metric, based on which the
steady-state value of the metric could be calculated over the
whole recording period. If the recording period is long enough,
the steady-state value is considered accurately approximate to
the metastable-state value.

Figure 3 demonstrates the comparisons between the
exact ASIS process and HOMFA with respect to the
changes in the infection fraction and the number of links.
*e exact ASIS process is run with a nontrivial configu-
ration of parameters: a complete graph with the number of
nodes N � 40, δ � 1, ζ � 1, ξ � 1, and ε� 10−3. *e solid lines
stand for the changes of the metrics concerned, while the
dashed lines represent the HOMFA expansion. It shows
that there exists a metastable-state of the exact ASIS
process. After a sharp change, both metrics’ values found
some new level of equilibrium for the period of the ob-
serving time. *e proposed mean-field approximations
HOMFA can approximate the exact ASIS process
accurately.

4.2. Comparisons between FOMFA and HOMFA. We
compare the metastable-state infection fraction and the
normalized number of the two proposed mean-field ap-
proximations, i.e., FOMFA and HOMFA. *e metrics of
the exact ASIS process are empirically obtained via the
simulations of the corresponding ε-ASIS model depicted
in Section 4.1. *e metrics of the mean-field approxi-
mations are numerically calculated. As shown in Figure 4,
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both approximations can closely reproduce the meta-
stable-state metrics. Also noticeable is that both ap-
proximations perform well as the effective infection rate τ
increases, given that the other parameters are fixed. As the
effective infection rate increases, more nodes are in the
infected state so that there are more connections between
the infected nodes and the susceptible nodes. As a result,
there would be more links getting broken because of the
link-breaking process. Both the mean-field approxima-
tions and the exact ASIS process show the decline in the
number of links. However, the HOMFA performs a bit
better than the FOMFA. If more accurate predictions are
needed, the HOMFA may be the better choice. Never-
theless, it would not be ignored that better accuracy is

achieved at the expense of much higher computational
complexity.

We also investigate the impact of both the infection
rate and link-breaking rate on the metastable-state in-
fection fraction. As shown in Figure 5, the increase in the
infection rate and the decrease in the link-breaking rate
can increase the infection fraction in the metastable state.
For a fixed effective link-breaking rate, the infection
fraction increases rapidly as the effective infection rate
rises. In contrast, the increase in the link-breaking rate
leads to a minor decrease in the infection fraction for a
fixed infection rate. *ese observations imply that the
infection rate’s impact is much higher than that of the
link-breaking rate.

E [IDI] E [ICI]

E [SDI] E [ICS]

E [IDS] E [SCI]

E [SDS] E [SCS]

Figure 2: State transition diagram in the proposed high-order mean-field approximation.
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Figure 3: *e time evolution of the adaptive SIS process in the complete graph for the configuration N� 40, δ � 1, ζ � 1, ξ � 1, and ε� 10−3.
*e black dashed line denotes the high-order mean-field approximation (HOMFA). *e blue line denotes one single run of the exact ASIS
process. Two metastable-state metrics, namely, the infection fraction and the normalized number of links, are shown.
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5. Conclusion

*e exact ASIS model helps provide physical insights into
the metastable-state infection fraction and the topology.
Nevertheless, the expressions for the infection fraction
and the epidemic threshold are unsolvable. As a result,
they have difficulties applying to characterizing the
metastable state of the ASIS process quantitatively and
accurately. *is paper presents two mean-field expansions
to the exact ASIS model, namely, the first-order mean-
field approximation (FOMFA) and the high-order mean-

field approximation (HOMFA). We first present the
governing equations for FOMFA and HOMFA. Based on
these approximations, we could calculate the metastable-
state infection fraction and the normalized number of
links, which are the appropriate metrics for measuring the
epidemic dynamics and the topology dynamics. *e
simulations show that the proposed approximations could
approximate the exact ASIS process in relative accuracy.
Under the approximation framework, the pattern of the
impact of the infection rate and the link-breaking rate on
the metastable-state infection fractions is also investi-
gated. Our works provide a computable tool for those
focusing on the virus spread in adaptive networks. For
example, the mean-field approximations help better un-
derstand the complex impact of the parameters on the
epidemic threshold [15].

Furthermore, our works help individuals to design better
quarantine or immune strategies [1, 16–21]. *e theoretical
approach for epidemic modelling employed by the ASIS
model is an example of the individual-based mean-field
approach [1], which can be extended to formalize the in-
dividual’s dilemma in optimally allocating containment
resources (e.g., vaccines and social distancing) to suppress
the disease while minimizing the cost. *e cost is usually
consisted of the payment of resource usage and the adverse
effect of being infected. *e decrease in the payment of
resource usage will lead to the increase in the payment of
being infected, and vice versa. It is straightforward to model,
formulize, and solve this dilemma under the framework of
optimization technique [14]. *erefore, based on the mean-
field approximations proposed in this paper, the effect of
strategies could be assessed quantitatively.

Average metastable-state infection fraction

0.
1

0.1

0.2
0.2

0.3

0.
3

0.4

0.4

0.
5

0.5

0.6

0.6

0.7

0.7

0.7
0.8

0.
8

0 0.05 0.150.1 0.250.2 0.350.3 0.45 0.50.4
Effective infection rate τ

1.8

1.6

1.4

1.2

Ef
fe

ct
iv

e l
in

k-
br

ea
ki

ng
 ra

te
 ω

1

0.8

0.6

0.4

2
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of the effective infection rate and the effective link-breaking rate.
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Figure 4: Comparison between the mean-field approximations and the simulation results in complete graphs for N� 40, δ � 1, ζ � 1, ξ � 1,
and ε� 10−3.*e black dashed line denotes the first-order mean-field approximation (FOMFA) while the red dashed-dotted line denotes the
high-order mean-field approximation (HOMFA). *e blue triangles denote the simulation results. *e impact of the effective infection rate
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