
Research Article
An Infeasible Incremental Bundle Method for Nonsmooth
Optimization Problem Based on CVaR Portfolio

Jia-Tong Li,1 Jie Shen ,2 and Na Xu2

1College of Science, Northeast Forestry University, Harbin 150040, China
2School of Mathematics, Liaoning Normal University, Dalian 116029, China

Correspondence should be addressed to Jie Shen; tt010725@163.com

Received 12 November 2020; Revised 30 November 2020; Accepted 28 December 2020; Published 18 January 2021

Academic Editor: Abdelalim Elsadany

Copyright © 2021 Jia-Tong Li et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For CVaR (conditional value-at-risk) portfolio nonsmooth optimization problem, we propose an infeasible incremental bundle
method on the basis of the improvement function and the main idea of incremental method for solving convex finite min-max
problems. ,e presented algorithm only employs the information of the objective function and one component function of
constraint functions to form the approximate model for improvement function. By introducing the aggregate technique, we keep
the information of previous iterate points that may be deleted from bundle to overcome the difficulty of numerical computation
and storage. Our algorithm does not enforce the feasibility of iterate points and the monotonicity of objective function, and the
global convergence of the algorithm is established under mild conditions. Compared with the available results, our method
loosens the requirements of computing the whole constraint function, which makes the algorithm easier to implement.

1. Introduction

Optimization problems arise in the wide range of practical
applications, and they have been successfully solved by utilizing
various methods, especially by state of the art approaches [1–3].
For an actual engineering optimization problem [2], a new
optimal mutation strategy based on the complementary ad-
vantages of five mutation strategies is designed to develop a
novel improved differential evolution algorithm with the
wavelet basis function; the proposed method can improve the
search quality, accelerate convergence and avoid fall into local
optimum and stagnation. Parametric analysis and optimization
are conducted for a novel geothermal combined cooling and
power system [3], and not only the combined system performs
better than the separate system but also the n-nonane brings the
lowest total product unit cost to the proposed system. Non-
smooth optimization (NSO) problems are in general difficult to
solve. Lots of approaches are proposed to solve these problems
[4–8]. Among others, bundle methods are considered as one of
the most efficient and promising methods. Infeasible bundle
methods [9,10] can be viewed as the unconstrained proximal-
like bundlemethods applied to improvement functions, and the

main advantage superior to other methods is that it does not
require the feasibility of the iterate points and the monotonicity
of the objective function. Conditional value-at-risk (CVaR) is
currently the main tool to measure financial risk when we face
portfolio for selected risky assets, and the study of CVaRmodel
usually brings about the following nonsmooth optimization
problem:

min(x,α)∈Rn×R Fθ(x, α) � α +
1

(1 − θ)J


J

j�1
− x

T
yj − α 

+
,

s.t, − x
T
m≤ − M, 

n

i�1
xi � 1, x≥ 0,

(1)

where Fθ(x, α) is the approximate performance function
which is convex and θ ∈ (0, 1) is the probability level, YJ×n �

(yji) is the scenario matrix, J is the number of scenarios, and
its element yji denotes the yield rate of risky asset under
scenario j. ,e vector yj � (yj1, yj2, . . . , yjn)T is the vector
of yield rate of scenario, j. (·)+ � max 0, ·{ }.,e vector y ∈ Rn
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denotes the yield rate at the end of investment which is
uncertain, and m � E(y), the constant M is the given rate of
expected return. We rewrite problem (1) in more general
form:

min(x,α)∈Rn×R Fθ(x, α),

s.t c(x, α)≤ 0,
(2)

where c(x, α) � max cj(x, α)|, tjn ∈ qJh � 1,2,...,n+3{ }  is the
pointwise maximum of finite many convex functions,
c1(x, α) � − xTe1, c2(x, α) � − xTe2, . . . , cn(x, α) � − xTen,

cn+1(x, α) � − xTm + M, and cn+2(x, α) � xTe − 1,

cn+3(x, α) � − xTe + 1 are called the component functions of
c, and ei � (0, . . . , 1ith, . . . , 0)T ∈ Rn, e � (1, 1, . . . , 1)T ∈ Rn.
Obviously, function c: Rn+1⟶ R is convex and
nondifferentiable.

Problem (2) involves a special constraint function,
namely, the max-valued function. Qing-Ye Zhang and Yan
Gao [11] once transform the objective function in the CVaR
model into a piecewise smooth function and present an
algorithm by employing common proximal bundle methods,
where the values of every component function need to be
evaluated at each iteration. An incremental method for
solving convex finite min-max problem provides us a new
approach to deal with max-valued function, which extends
the philosophy of the incremental approaches [12], and it
does not need to evaluate the actual value of max-valued
function. ,e idea has already been applied to linearly
constrained min-max problems [13] and to inequality
constraint min-max problems [14]. ,e algorithms provided
by the above two papers are feasible and descent methods.
But in some cases, the feasibility of iterate points is difficult
to realize since we have to make a tradeoff between the
search for feasibility and for the reduction of the objective
function.

Motivated by the work [14, 15], we provide an iterate
method which is strongly connected with the incremental
technique [12] and the infeasible idea [9]. ,e algorithm we
design does not require the evaluation of each component
function of the constraint function. In other words, we
employ the incomplete knowledge of the constraint function
to construct a lower approximate model for improvement
function associated with the original problem, which re-
duces the number of elements in bundle and decreases the
difficulty of implementation of the algorithm. Based on the
approximate model, a descent test is presented. Even though

the model is a more rough approximation to improvement
function, the proposed algorithm still possesses good con-
vergence properties under mild conditions.

,is paper is organized as follows: In Section 2, we
introduce basic notations, concepts, and existing results
which are the basis for the construction of approximate
model and the design of overall algorithm. A new cutting-
planes framework and the way to update the elements in
bundle are also given in this section. Section 3 presents an
infeasible incremental bundle algorithm for solving problem
(2). ,e convergence analysis of the presented algorithm is
discussed in Section 4, and the optimal solution to problem
(2) is obtained under mild conditions.

2. Preliminaries and the
Construction of Subproblem

We denote by 〈·, ·〉 and ‖ · ‖ the usual inner product and
norm in Rn, respectively. ,e subdifferential of a convex
function f: Rn⟶ R at x is defined by zf(x) � p ∈ Rn|f

(y)≥f(x) + 〈p, y − x〉,∀y ∈ Rn}. Let

D � (x, α) ∈ R
n+1

|c(x, α)≤ 0  (3)

be the feasible set of problem (2), and for sake of the notation
simplicity, we leave out the confidence parameter θ in (2)
and indicate Fθ(x, α) by F(x, α).

Lemma 1. Suppose that fi(x) (i ∈ I) is the convex differ-
entiable function and the index set I is finite. /en, the
subdifferential of function f(x) � max fi(x)|it ∈ nI  is
zf(x) � co ∇fi(x)|it ∈ nIq(x) , where “co” denotes the
convex hull, I(x) � i ∈ I|fit(x)n � qfh(x) .

Definition 1. For given (y, β) ∈ Rn+1, the following function,

H(y,β)(x, α) � max F(x, α) − F(y, β), c(x, α) , (x, α) ∈ R
n+1

,

(4)

is called the improvement function associated with problem
(2).

,e following lemmas present some useful properties of
improvement function which play an important role in
designing our algorithm.

Lemma 2. [9] /e subdifferential of improvement function
H(y,β)(·, ·) at point (x, α) is given by

zH(y,β)(x, α) �

zF(x, α), if F(x, α) − F(y, β)> c(x, α),

conv zF(x, α)∪ zc(x, α){ }, if F(x, α) − F(y, β) � c(x, α),

zc(x, α), if F(x, α) − F(y, β)< c(x, α).

⎧⎪⎪⎨

⎪⎪⎩
(5)

Lemma 3. [16] Suppose that the Slater constraint qualifi-
cation is satisfied for problem (2), the following statements are
equivalent:

(i) (x, tα) is a solution to problem (2)
(ii) min H(x,tα)(y, β)|(y, β) ∈ Rn+1  � H(x,tα)(x, tα)

2 Complexity



(iii) 0 ∈zH(x,tα)(x, tα), i.e., 0 ∈zϕ(x, tα), where
ϕ(·, ·) � H(x,tα)(·, ·)

Suppose that (xk, αk) is the current stability center (the
current last serious step) and (yi, βi) is the trial point
generated from previous iterations. We indicate H(xk,αk)(·, ·)

by Hk(·, ·). Choose arbitrarily one component function cjofc
and define the values of the linearization functions of Fand
cj at point (xk, αk):

s
k
Fi

� F y
i
, βi

  +〈gi
F, x

k
, αk

  − y
i
, βi

 〉,

t
k
cji

� cj y
i
, βi

  +〈gi
cj

, x
k
, αk

  − y
i
, βi

 〉,
(6)

where gi
F ∈zF(yi, βi), gi

cj
∈zcj(yi, βi). Bundle Bl keeps

memory of the information of previous iterations:

Bl � B
1
l ∪B

2
l ∪ x

k
, αk

 , F x
k
, αk

 , c x
k
, αk

  , k � k(l), with

B
1
l ⊆ ∪ i<l F y

i
, βi

 , cj y
i
, βi

 , s
k
Fi

, t
k
cji

, g
i
F ∈ zF y

i
, βi

 , g
i
cj
∈ zcj y

i
, βi

  ,

B
2
l ⊆ ∪ i<l εk

i , g
i ∈ zεi

k Hk x
k
, αk

   , (if there is compression),

(7)

where k(l) denotes the index of the last serious step pre-
ceding the iteration l, when it is clear from the context, we do
not specify the dependence of k on the current iteration
index l.,e element (εk

i , gi) in B2
l is the aggregate couple that

is introduced when compression of bundle is implemented

for controlling the size of bundle, and we will discuss ag-
gregate technique later in detail.

Lemma 4. Define

e
k
i �

F x
k
, αk

  − s
k
Fi

+ c
+

x
k
, αk

 , if F y
i
, βi

  − F x
k
, αk

 ≥ c y
i
, βi

 ,

− t
k
cji

+ c
+

x
k
, αk

 , if F y
i
, βi

  − F x
k
, αk

 < c y
i
, βi

 ,

⎧⎪⎨

⎪⎩

g
i
Hk

�
g

i
F, if F y

i
, βi

  − F x
k
, αk

 ≥ c y
i
, βi

 ,

g
i
cj

, if F y
i
, βi

  − F x
k
, αk

 < c y
i
, βi

 ,

⎧⎪⎨

⎪⎩

(8)

where notations sk
Fi

, tk
cji

, gi
F, gi

cj
, (yi, βi), and (xk, αk) are

from (6) and (7). ,en, we have ek
i ≥ 0 and

gi
Hk
∈ zek

i
Hk(xk, αk).

Proof. By definitions of sk
Fi

, tk
cji

and
gi

F ∈ F(yi, βi), gi
cj
∈zcj(yi, βi), we have

F(xk, αk) − sk
Fi
≥ 0 and cj(xk, αk) − tk

cji
≥ 0. Since

c+(xk, αk)≥ 0, c+(xk, αk)≥ cj(xk, αk), it follows from (8) that
ek

i ≥ 0. According to the definition of improvement function
Hk(·, ·), we have

Hk(y, β)≥max
F(y, β) − F x

k
, αk

 

c(y, β)

⎧⎨

⎩ ≥max
F(y, β) − F x

k
, αk

 

cj(y, β)

⎧⎨

⎩

� max
− F x

k
, αk

  + s
k
Fi

+〈gi
F, (y, β) − x

k
, αk

 〉

t
k
cji

+〈gi
cj

, (y, β) − x
k
, αk

 〉

⎧⎪⎨

⎪⎩

� c
+

x
k
, αk

  +〈gi
Hk

, (y, β) − x
k
, αk

 〉−

F x
k
, αk

  − s
k
Fi

+ c
+

x
k
, αk

 , if F y
i
, βi

  − F x
k
, αk

 ≥ c y
i
, βi

 ,

− t
k
cji

+ c
+

x
k
, αk

 , if F y
i
, βi

  − F x
k
, αk

 < c y
i
, βi

 .

⎧⎪⎨

⎪⎩

(9)

Notice that Hk(xk, αk) � c+(xk, αk) and the above in-
equality implies gi

Hk
∈ zek

i
Hk(xk, αk).

Now, we are in position to define the cutting-planes
model for Hk(·, ·):
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ψl(y, β) � c
+

x
k
, αk

  + max maxi∈B1
l

 − e
k
i +〈gi

Hk
, (y, β) − x

k
, αk

 〉 ,

maxi∈B2
l

− εk
i +〈gi

, (y, β) − x
k
, αk

 〉 .

(10)

By Lemma 3 and gi ∈ zε k
i

Hk(xk, αk), ψl is a lower ap-
proximate model for Hk, that is,

ψl(y, β)≤Hk(y, β), ∀(y, β) ∈ R
n+1

. (11)

Given μl, a positive proximal parameter, the next trial
point (yl, βl) is generated by solving the following quadratic
programming:

min(y,β)∈Rn+1 ψl(y, β) +
μl

2
(y, β) − x

k
, αk

 
�����

�����
2
. (12)

Obviously, (yl, βl) is unique and

y
l
, βl

  � x
k
, αk

  −
1
μl

g
l
, where gl ∈ zψl y

l
, βl

 . (13)

In order to measure whether the new trial point (yl, βl)

provides sufficient decrease of Hk(·, ·), we define the
nominal decrease δl by

δl � Hk x
k
, αk

  − ψl y
l
, βl

  −
μl

2
y

l
, βl

  − x
k
, αk

 
�����

�����
2

� εk
l +

1
2μl

g
l

�����

�����
2
,

(14)

where

εk
l � Hk x

k
, αk

  − ψl y
l
, βl

  −
1
μl

g
l

�����

�����
2
(≥ 0). (15)

Since (yl, βl) is the solution to problem (12) and ψl is a
lower approximation to Hk, we have

Hk x
k
,αk

 ≥ψl x
k
,αk

 ≥ψl y
l
,βl

  +
μl

2
y

l
,βl

  − x
k
,αk

 
�����

�����
2
.

(16)

It follows that δl ≥ 0. Now, we present the descent test.
Let m ∈ (0, 1) be a given parameter, when (yl, βl) satisfies:

Hk y
l
, βl

 ≤ c
+
j x

k
, αk

  − mδl, (17)

then we declare a serious step: (xk+1, αk+1) � (yl, βl); oth-
erwise, a null step is declared: (xk+1, αk+1) � (xk, αk). Notice
that here we only employ the information of one component
function cj of c to measure the “property” of the new
generated trial point (yl, βl), unlike [9]; therein, they use the
whole information of c.

Obviously, for any (y, β) ∈ Rn+1,

Hk(y, β)≥ψl(y, β)≥ψl y
l
, βl

  +〈gl
, (y, β) − y

l
, βl

 〉

� Hk x
k
, αk

  − 〈gl
, (y, β) − x

k
, αk

 〉 − εk
l ,

(18)

Hence, gl ∈ z
ε

k

l

H(xk, αk). If εk
l and ‖gl‖ are very small, it

follows that the approximate optimality condition is satisfied
and the algorithm stops (see Step 3 in Algorithm 1).

As iterations go along, the number of elements in bundle
Bl increases and the burden of computation and storage
increases simultaneously. When the size of bundle becomes
too big, it is necessary to compress and to clean the model.
We have to discard some elements from bundle B1

l and
append the aggregate couple (εk

l , gl) into bundle B2
l since the

aggregate couple summarizes the information of previous
iterate points [17]. For this purpose, we introduce the ag-
gregate function:

lk,l(y, β) � Hk x
k
, αk

  +〈gl
, (y, β) − x

k
, αk

 〉 − εk
l ,

(y, β) ∈ R
n+1

.
(19)

It has the following equivalent expression:

lk,l(y,β) �ψl y
l
,βl

  +〈gl
,(y,β) − y

l
,βl

 〉, (y,β) ∈Rn+1
.

(20)

For each k, the following conditions guarantee the
bundle technique applied to function Hkeither produces a
serious step after a finite number of null steps, or the current
serious step (xk, αk) is the minimum of Hk[18]:

(a) ψl(y, β)≤Hk(y, β), for all l≥ 1;

(b) lk(l),l(y, β)≤ψl+1(y, β), y
l
, βl

  is a null step;

(c) Hk y
l
, βl

  +〈gl
Hk

, (y, β) − y
l
, βl

  〉, y
l
, βl

  is a null step.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

Conditions (b) and (c) mean that the bundle Bl should
contain both the aggregate information and the last gen-
erated information.

For model function ψl defined by (10) to satisfy con-
ditions (a)-(c) when passing to the next iteration l + 1, we

should consider two cases of the l th iteration being a null
step or a serious step. When there is a null step, the updates
of the elements in bundle and the model do not present any
problems since the improvement function is fixed between
consecutive serious steps. Now suppose that the l th iteration
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produces a serious step, i.e., (xk+1,αk+1) � (yl, βl), it means
that for the next iteration we have to work with the new
function Hk+1(·, ·) � H(xk+1 ,αk+1)(·, ·). Since serious step can
be infeasible and the monotonicity of the objective function
is not enforced, we can only make sure
Hk(xk+1, αk+1)<Hk(xk, αk), it is possible that
F(xk+1, αk+1)>F(xk, αk), and in that case, we have
Hk+1(·, ·)≤Hk(·, ·), and, as a consequence, the cutting-
planes model for Hk(·, ·) may not be a lower approximation
for Hk+1(·, ·). ,us, the old model must be revised and
adjusted to ensure that the conditions (a − c) are satisfied for
the new function Hk+1(·, ·).

Next lemma provides one approach to make sure that all
elements in bundle correspond to approximate subgradients
of new improvement function Hk+1 at (xk+1,αk+1); hence,
the model ψl+1 is still a lower approximation function for
Hk+1 after adjusting the bundle. For elements in B1

l , we only
need to update the values of the linearization functions of F

and cj at (xk+1,αk+1). For elements in B2
l , we have to invoke

the information of F and c in order to make sure the ag-
gregate subgradient gi also corresponds to some approxi-
mate subgradient of Hk+1at (xk+1,αk+1).

Lemma 5. Suppose that the trial point (yl, βl) generated by
(12) is a serious step, i.e.,(xk+1, αk+1) � (yl, βl). /en, the
following statements hold:

(i) For each i ∈ B1
l ,

s
k+1
Fi

� s
k
Fi

+〈gi
F, x

k+1
, αk+1

  − x
k
, αk

 〉,

t
k+1
cji

� t
k
cji

+〈gi
cj

, x
k+1

, αk+1
  − x

k
, αk

 〉.
(22)

Furthermore, gi
Hk+1
∈ zek+1

i
Hk+1(xk+1, αk+1), where

ek+1
i ≥ 0 and gi

Hk+1
are defined in (8) written with k

replaced by k + 1.
(ii) For each i ∈ B2

l , define

εk+1
i � εk

i + c
+

x
k+1

, αk+1
  − c

+
x

k
, αk

 

+ F x
k+1

, αk+1
  − F x

k
, αk

  
+

+〈gi
, x

k
, αk

  − x
k+1

, αk+1
 〉.

(23)

/en, εk+1
i ≥ 0 and gi ∈ z

ε
k+1
i

Hk+1(xk+1, αk+1).

Proof. For each i ∈ B1
l , we have, for all (y, β) ∈ Rn+1,

F(y, β)≥F y
i
, βi

  +〈gi
F, (y, β) − y

i
, βi

 〉

� F x
k
, αk

  +〈gi
F, (y, β) − x

k
, αk

 〉 − F x
k
, αk

  − s
k
Fi

 

≥F x
k+1

, αk+1
  +〈gi

F, (y, β) − x
k+1

, αk+1
 〉

− F x
k+1

, αk+1
  − s

k
Fi

+〈gi
F, x

k+1
, αk+1

  − x
k
, αk

 〉  .

(24)

Input: ε1 > 0, ε2 > 0, c> 0, μmax > μmin > 0, m ∈ (0, 1), and |Bmax|≥ 2.
Step 1: given an initial proximal parameter μ0 > 0. Choose (x0, α0) ∈ Rn+1and one component function cjof c, set (y0, β0) � (x0, α0),
and compute (F(y0, β0), cj(y0, β0), g0

F ∈zF(y0, β0), g0
cj
∈zcj(y0, β0)). Set k � 0, l � 1, s0F0

� F(y0, β0), t0cj0
� cj(y0, β0).

Define B1
1 � (s0F0

, t0cj0
, F(y0, β0), cj(y0, β0), g0

F, g0
cj

) , B2
1 � ∅.

Step 2: find the solution (yl, βl) to problem (12). Compute gl � μl((xk, αk) − (yl, βl)), εk
l � Hk(xk, αk) − ψl(yl, βl) − (1/μl)‖gl‖2, δl �

εk
l + (1/2μl)‖gl‖2, (F(yl, βl), cj(yl, βl), gl

F, gl
cj

), and (sk
Fl

, tk
cjl

) using (6) written i with l.

Step 3: if εk
l ≤ ε1and ‖gl‖2 ≤ ε2, then stop, (xk, αk) is an approximate solution to problem (2).

Step 4: compute Hk(yl, βl). If Hk(yl, βl)≤ c+
j (xk, αk) − mδl, then set (xk+1, αk+1) � (yl, βl) (serious step) and

μl+1 � max (μl/c), μmin . Otherwise, set (xk+1, αk+1) � (xk, αk) (null step) and μl+1 � min cμl, μmax .

Step 5: set B1
l+1 � B1

l , B2
l+1 � B2

l , if |Bl+1| � |Bmax|, then delete at least two elements from Bl+1, and append (εk
l , gl)to B2

l+1. Append
(F(yl, βl), cj(yl, βl), gl

F, gl
cj

, sk
Fl

, tk
cjl

) to B1
l+1.

Step 6: if a serious step is taken, choose j ∈ J(xk+1, αk+1) � j ∈ J|cjt(xk+1, αk+1)n � qch(xk+1, αk+1)  such that the function cj is the
component function of cwe choose for constructing the cutting-planes model for Hk+1(·, ·). Replace component function cj by cj and
compute tk

cji
again. Update sk+1

Fi
, tk+1

cji
for i ∈ B1

l+1 by (22) and update εk+1
i for i ∈ B2

l+1 by (23).

Set k � k + 1.
Step 7: set l � l + 1, go to Step 2.
End of Algorithm 1.

ALGORITHM 1: Infeasible incremental bundle method for CVaR portfolio.
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It follows from (22) and gi
F∈F(xk,αk)− sk

Fi

F(xk+1, αk+1) that

F x
k+1

, αk+1
 ≥F x

k
, αk

  +〈gi
F, x

k+1
, αk+1

  − x
k
, αk

 〉 − F x
k
, αk

  − s
k
Fi

 

� s
k
Fi

+〈gi
F, x

k+1
, αk+1

  − x
k
, αk

 〉 � s
k+1
Fi

.
(25)

,erefore, F(xk+1, αk+1) − sk+1
Fi
≥ 0 and gi

F∈
F(xk+1 ,αk+1)− sk+1

Fi

F(xk+1, αk+1). Similarly,
we have gi

cj
∈cj(xk+1 ,αk+1)− tk+1

cji

cj(xk+1, αk+1). ,e remaining
proof can be finished by imitating the proof of Lemma 2.3 in
[9], where the quantities (l, k, sk

Fi
, tk

cji
) are replaced by

(l + 1, k + 1, sk+1
Fi

, tk+1
cji

), respectively.
For each i ∈ B2

l , the update pattern is just the one in [9],
so we omit the proof.

To sum up, no matter whether the l th iteration produces
a null step or a serious step, as long as,

B
1
l+1 ⊆∪ i<l+1 F y

i
, βi

 , cj y
i
, βi

 , s
k+1
Fi

, t
k+1
cji

, g
i
F, g

i
cj

  ,

B
2
l+2 ⊆∪ i<l+1 εk+1

i , g
i

  ,

(26)

the model

ψl+1(y, β) � c
+

x
k+1

, αk+1
  + max maxi∈B1

l+1
 − e

k+1
i +

〈gi
Hk+1

, (y, β) − x
k+1

, αk+1
 〉,

maxi∈B2
l+1

− εk+1
i +〈gi

, (y, β) − x
k+1

, αk+1
 〉

(27)

satisfies condition (a) in (21) written with l replaced by l + 1
and k replaced by k + 1, and the point (xk+1, αk+1) indicates
the (k + 1)th stability center which may be (xk, αk) if a null
step is executed. Furthermore, if (εk

l , gl)⊆B2
l+1, then ψl+1

satisfies condition (b) in (21), and if (F(yl, βl),

cj(yl, βl), sk+1
Fl

, tk+1
cjl

, gl
F, gl

cj
)⊆B1

l+1, then ψl+1 satisfies condi-
tion (c) in (21).

3. Infeasible Incremental Bundle Algorithm for
Problem (2)

Remark 1. If a serious step is declared, we have

F x
k+1

, αk+1
  − F x

k
, αk

 ≤ c
+
j x

k
, αk

  − mδl, (28)

c x
k+1

, αk+1
 ≤ c

+
j x

k
, αk

  − mδl. (29)

4. Convergence Analysis

In this part, we discuss the convergence of Algorithm 1 by
borrowing the main idea from [9]. From now on we assume
that Algorithm 1 produces an infinite sequence of iterate

points. As usual in the convergence analysis of bundle
methods, we consider two cases: the number of serious steps
is infinite and the number of serious steps is finite, and the
last serious step is followed by infinitely many null steps. Let
Ls � l|(yl, βl)t is a serious step  be the set which collects the
indices of serious steps in the sequence (yl, βl) .

Proposition 1. For any iteration index k0 ≥ 0 of serious step,
it holds that

x
k
, αk

  ∈ (x, α) ∈ R
n+1

| c(x, α)≤ c
+

x
k0 , αk0  ,

∀k≥ k0.
(30)

In particular, if (xk1 , αk1) ∈ D for some k1 ≥ 0, then
(xk, αk) ∈ D, for all k≥ k1.

Proof. In Algorithm 1, the descent test is designed as
follows: Hk(yl, βl)≤ c+

j (xk, αk) − mδl. Since function c is the
pointwise maximum of finite convex functions cj(j ∈ J), it
follows that c+(xk, αk)≥ c+

j (xk, αk). If a serious step is de-
clared, we haveHk(yl, βl)≤ c+(xk, αk) − mδl. Next, we adopt
the techniques similar to [9], and the desired conclusions can
be obtained. □

Proposition 2. Suppose F is bounded below on D and Al-
gorithm 1 generates an infinite number of serious steps. /en
εk

l 
l∈Ls

⟶ 0 and gl 
l∈Ls

⟶ 0.

Proof. It follows from (29) and c(xk, αk) �

max cj(xk, αk)|j ∈ J  that if a serious step is declared,

c x
k+1

, αk+1
 ≤ c

+
j x

k
, αk

  − mδl(k+1) ≤ c x
k
, αk

  − mδl(k+1).

(31)

Hence, the sequence c(xk, αk)  is decreasing. Notice the
update pattern of proximal parameter sequence μl  in
Algorithm 1, we have μl ≤ μmax for all l, i.e., the condition
μl ≤ μ for some μ> 0 holds. Following the thinking of [6], we
can prove εk

l 
l∈Ls

⟶ 0 and gl 
l∈Ls

⟶ 0.
Next proposition discusses the conditions which ensure

the boundedness of sequence of serious steps (xk, αk) .

Proposition 3. Suppose that problem (2) has a solution
(x, tα) and Algorithm 1 produces an infinite number of se-
rious steps. If the feasible set D is bounded or there exists some
iteration index k1 such that F(x, tα)≤F(xk, αk) + c+

j (xk, αk)

for all k≥ k1 and for some j ∈ J, then the sequence (xk, αk)  is
bounded.
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Proof. For the first case that the feasible set D is bounded,
sinceD is the level set of function c, the convexity of function
c implies that all the level sets of function c are bounded.

,en, the boundedness of (xk, αk)  follows from the con-
clusion of Proposition 1. For the second case, since
gl ∈ z

ε
k

l

Hk(xk, αk) and δl � εk
l + (1/2μl)‖gl‖2, we have

x
k+1

, αk+1
  − (x, α)
�����

�����
2

� x
k
, αk

  − (x, α)
�����

�����
2

−
2
μl

〈gl
, x

k
, αk

  − (x, α)〉 +
1
μ2l

g
l

�����

�����
2

≤ x
k
, αk

  − (x, α)
�����

�����
2

+
2
μl

Hk(x, α) − Hk x
k
, αk

  + δl .

(32)

Observe that F(x, α)≤F(xk, αk) + c+
j (xk, αk)≤

F(xk, αk) + c+(xk, αk) for all k≥ k1 and cj(x, α)≤ 0,

c+(xk, αk)≥ 0, we have

Hk(x, α) − Hk x
k
, αk

  � max F(x, α) − F x
k
, αk

 , c(x, α)  − c
+

x
k
, αk

 ≤ 0. (33)

By combining (32) and (33), it follows that

x
k+1

, αk+1
  − (x, α)
�����

�����
2
≤ x

k
, αk

  − (x, α)
�����

�����
2

+
2
μl

δl,

∀k≥ kl.

(34)

By [19], l∈Ls
δl <+∞, and the conclusion we have just

proved in Proposition 2, the sequence
‖(xk+1, αk+1) − (x, α)‖  is convergent, and hence the se-
quence (xk, αk)  is bounded. □

Theorem 1. Suppose that problem (2) satisfies the Slater
constraint qualification and its solution set is nonempty.
Assume that Algorithm 1 generates an infinite number of
serious steps, which is bounded. /en, all the accumulation
points of the sequence (xk, αk) are solutions to problem (2).
And, if there exists some iteration index k1 such that
F(x, α)≤F(xk, αk) + c+

j (xk, αk)for all k≥ k1 and for some
j ∈ J, the whole sequence (xk, αk)  converges to a solution to
problem (2).

Proof. Since the proof is very similar to the one in [9], we
omit it.

Now we consider the second case that the Algorithm 1
generates finite serious steps followed by infinitely many null
steps, i.e., there exists an index last � max l|lt ∈ nLs , and
the corresponding last serious step index is denoted by klast.
Notice that the improvement function is fixed for k≥ klast,
that is, Hk(·, ·) � Hklast

(·, ·), ∀k≥ klast.

Theorem 2. Suppose that problem (2) satisfies the Slater
constraint qualification and Algorithm 1 produces a finite
number of serious steps, then (xklast , αklast ) is a solution to
problem (2).

Proof. We consider the case l≥ llast and denote
H(·, ·) � Hklast

(·, ·). By imitating the proof of ,eorem 4.5 in
[9], we obtain

H(y, β) +
μmax

2
(y, β) − x

klast , αklast 
�����

�����
2
≤H x

klast , αklast ,

(35)

ψli
y

li, βli ⟶ H(y, β), i⟶ +∞, (36)

where (y, β) is an accumulation point of (yl, βl),
i.e.,(yli, βli )⟶ (y, β) as i⟶ +∞. Since we assume that
klast is the last index for serious step, the descent test is not
satisfied for l≥ last:

H y
l
, βl

  − c
+
j x

klast , αklast > − mδl

≥ − m H x
klast , αklast  − ψl y

l
, βl

  .
(37)

From Step 6 in Algorithm 1, we know if a serious step is
declared, we choose j from J(xk+1, αk+1) �

j ∈ J|cj(xk+1, αk+1) � c(xk+1, αk+1)  such that the function
cj is the component function of c we chose for constructing
the cutting-planes model for Hk+1(·, ·). ,erefore, according
to (37),

H y
l
,βl

  − H x
klast ,αklast ≥ − m H x

klast ,αklast  − ψl y
l
,βl

  .

(38)

Taking the limits along the specified subsequence as
i⟶ +∞, by using (36), we obtain
0≤ (1 − m)(H(xklast , αklast ) − H(yl, βl)). Since m ∈ (0, 1), we
have H(xklast , αklast )≤H(yl, βl). Taking into account (36), we
have (xklast , αklast ) � (y, β). It follows from (35) that (y, β) is
the optimal solution to the following problem:
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min(y,β)∈Rn+1H(y, β) +
μmax
2

(y, β) − x
klast , αklast 

�����

�����
2
. (39)

According to the optimality condition, 0 ∈ z H(yl, βl) �

zH(xklast , αklast), where H(·, ·) � Hklast
(·, ·). By Lemma 3,

(xklast , αklast ) is a solution to problem (2). □

5. Conclusions

We present an infeasible incremental bundle method for the
CVaR portfolio nonsmooth optimization problem; the al-
gorithm is easier to implement since it only employs the
information of the objective function and one component
function of constraint functions. ,e algorithm does not
enforce the feasibility of iterate points and the monotonicity
of objective function, but the global convergence is estab-
lished under mild conditions.

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

,is work was supported by the National Nature Science
Foundation of China (grant nos. 61877032 and 11601061),
the Foundation of Educational Committee of Liaoning
Province (LQ2019019), and the PhD Research Startup
Foundation of Liaoning Normal University (203070091909).

References

[1] Y. Song, D. Wu,W. Deng et al., “Multi-population parallel co-
evolutionary differential evolution for parameter optimiza-
tion,” in Energy Conversion and Management, Elsevier,
Amsterdam, Netherlands, 2020.

[2] W. Deng, J. Xu, Y. Song, and H. Zhao, “Differential evolution
algorithm with wavelet basis function and optimal mutation
strategy for complex optimization problem,” Applied Soft
Computing, vol. 23, Article ID 106724, 2020.

[3] C. Wu, X. Xu, Q. Li et al., “Performance assessment and
optimization of a novel geothermal combined cooling and
power system integrating an organic flash cycle with an
ammonia-water absorption refrigeration cycle,” Energy
Conversion and Management, vol. 227, no. 2021, Article ID
113562, 2020.
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