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)e probability ranking conclusion is an extension of the absolute form evaluation conclusion. Firstly, the random simulation
evaluation model is introduced; then, the general idea of converting the traditional evaluation method to the random simulation
evaluation model is analyzed; on this basis, based on the rule of “further ensuring the stability of the ranking chain on the basis of
increasing the possibility of the ranking chain,” two methods of solving the probability ranking conclusion are given. Based on the
rule of “further guaranteeing the stability of the ranking chain on the basis of improving the likelihood of the ranking chain,” two
methods are given to solve the likelihood conclusion. )is paper argues that this absolute form of conclusion hinders the
approximation of the theory to the essence of the actual problem and is an important reason for the problem of “non-consistency
of multi-evaluation conclusions.” To address this problem, a stochastic simulation-based comprehensive evaluation solution
algorithm based on the idea of “Monte Carlo simulation” is proposed, and the corresponding ranking method is investigated,
which is characterized by generating evaluation conclusions with probability (reliability) information, and thus has more ad-
vantages than the absolute conclusion form in terms of problem interpretability. )emethod is characterized by the generation of
evaluation conclusions with probabilistic (reliability) information and thus has more advantages than the absolute conclusion
form in terms of problem interpretation. Because of the independence of the stochastic simulation solutionmethod, it is applied to
the “bottom-up” evaluation model as an example, and a novel autonomous evaluation method is constructed. Finally, the
application of the stochastic simulation evaluation model is illustrated by an example and compared with the absolute form
evaluation. )e evaluation model is an extension of the traditional evaluation model, which can further broaden the practical
application of comprehensive evaluation theory.

1. Introduction

)e traditional physical education teaching mode is that the
physical education teacher repeatedly explains and dem-
onstrates, and the students imitate and practice the move-
ment skills explained by the physical education teacher, so as
to accomplish the learning objectives [1]. )is traditional PE
(physical education) teaching model has many drawbacks
and can no longer meet the needs of PE teaching in today’s
era [2]. )e new curriculum reform requires students to be
the center and the main body of the classroom, and the
traditional physical education teaching mode certainly
cannot fulfill the requirements of the new curriculum re-
form. )e traditional PE teaching model is unable to fulfill
the requirements of the new curriculum reform [3]. )e

informationization of PE teaching can improve the problems
in PE teaching, making the PE classroom revolve around
students and teachers play a coaching role. As the reform of
physical education continues to deepen, it is an inevitable
trend for the development of physical education curriculum
to replace the traditional physical education teaching mode
with information-based physical education teaching [4–9].
On this basis, to find out the shortcomings of the current
development of information-based physical education and
solve them is an important measure to promote the reform
of traditional physical education curriculum [10].

Comprehensive evaluation is the scientific and reason-
able use of differential information on the premise that the
evaluation information is known, to give a stable and reliable
ranking of the program (evaluated object) that is in line with
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the objective reality [11]. Comprehensive evaluation is an
important part of scientific decision-making and has a wide
range of applications in many fields such as engineering
design, economic management, and politics and military,
attracting the interest of scholars at home and abroad, and
has achieved fruitful research results so far [12]. At present,
most of the evaluation methods tend to make a one-time
absolute judgment on the evaluated object based on the
evaluation information, regardless of whether the evaluation
information is in the form of precise value or fuzzy number
(such as interval, fuzzy number, and linguistic information)
[13]. However, for the evaluation problem like “team
strength” comparison, it is usually difficult to directly
conclude that “team A is absolutely better than team B” from
the result of one match, because, either due to equal strength
or small probability events, it is very likely that, in the next
matches, the team will be better than the team. In the next
match, it is likely that “B wins and A loses” [14]. If you think
about it, the above questions are also common in reality,
such as the comparison of “general ability” and “develop-
ment potential,” which are collectively referred to as “relative
evaluation questions” in this paper [15]. In this paper, we
refer to these problems as “relative evaluation problems.”

In the relative evaluation problem, it is not possible to
directly conclude the superiority or inferiority of a solution
by only one evaluation run, but it is necessary to statistically
analyze the relationship between the superiority and infe-
riority of solutions on the basis of large-scale comparisons
and then to conclude the probability ranking that reflects the
relative superiority of solutions [16].)erefore, first of all, we
need to randomize the traditional evaluationmethod, so that
each evaluation run becomes a random sampling of the
large-scale run, so that we can get a more stable probability
of comparison between the superiority and inferiority of the
solutions with sufficient number of simulations. From the
above analysis, it is clear that the operation of traditional
evaluation method is actually information processing of
relative evaluation problem, so the randomization setting of
traditional evaluation method should be reflected in the
setting of relevant parameters in the evaluation process [17].
As mentioned above, the indicator values of the relative
evaluation problem are usually not fixed, which provides the
possibility of “random sampling” of the indicator values. In
addition, the parameters that can be set randomly are also
commonly used for indicator weights, expert authority
(group evaluation), information variation treatment
(methodological properties measurement), and so on [18].

Based on the randomization setting of the traditional
evaluationmethod, a computer simulation program needs to
be developed for large-scale simulation, and the random
information extracted each time is solved in the set
according to the selected traditional comprehensive evalu-
ation model. )e probability information of “better than” or
“worse than” between solutions is formed. )is paper argues
that this absolute form of conclusion hinders the closeness of
theory to the essence of the actual problem and is an im-
portant reason for the problem of “non-consistency of
multiple evaluation conclusions.” To address this problem, a
stochastic simulation-based comprehensive evaluation

solution algorithm based on the idea of “Monte Carlo
simulation” is proposed, and the corresponding ranking
method is investigated, which is characterized by generating
evaluation conclusions with probabilistic (reliability) in-
formation and thus has more advantages than the absolute
conclusion form in terms of problem interpretability. )e
method is characterized by the generation of evaluation
conclusions with probabilistic (reliability) information and
thus has more advantages than the absolute conclusion form
in terms of problem interpretation. Because of the inde-
pendence of the stochastic simulation solution method, it is
applied to the “bottom-up” evaluation model as an example,
and a novel autonomous evaluation method is constructed.
Finally, the application of the stochastic simulation evalu-
ation model is illustrated by an example and compared with
the absolute form evaluation. )e evaluation model is an
extension of the traditional evaluation model, which can
further broaden the practical application of comprehensive
evaluation theory.

2. Related Work

Relative evaluation problem is a kind of extended definition
compared with the traditional evaluation of the object being
evaluated in a specific situation (such as examination results
and sales performance) and obviously has important the-
oretical and practical application value for the solution of
this kind of problems. However, the “either/or” conclusion
form of the traditional evaluation model cannot provide
credible conclusions for relative evaluation problems. Based
on the idea of “Monte Carlo simulation,” the paper gives an
idea of how to transform the autonomous evaluation
problem into a stochastic evaluation problem and introduces
the concept of “likelihood ranking conclusion” for the first
time. )e “likelihood ranking conclusion” breaks the ab-
solute superiority status of “either-or” among the evaluated
objects and is the first exploration of the “relative evaluation
problem.” Usually, in the relative evaluation problem, the
performance (value) of the evaluated object in various as-
pects (indicators) is not always fixed, but more often fluc-
tuates within a certain range and according to a certain
distribution, such as a student’s good performance in lan-
guage, but not always 100 points; the definition of “good”
may be above 90 or above 85, etc. [19]. Similarly, this
variability in values can be extended to the weighting of
indicators and other parameter settings for the evaluation. In
addition, because the stochastic simulation solution algo-
rithm has a high degree of independence, it can be added to
the evaluation in a “component” way to form a new eval-
uation method. Based on this, this paper integrates the
stochastic simulation solution algorithm with the relative
evaluation problem and proposes a new evaluation model,
namely, the stochastic simulation evaluation model, and
investigates the transformation ideas and solution algo-
rithms between it and the traditional evaluation model [20].

)e stochastic simulation-based comprehensive evalu-
ation model is oriented to the relative evaluation problem, as
shown in Figure 1, but it is still an information processing
method based on the traditional comprehensive evaluation
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method, so the stochastic simulation-based comprehensive
evaluation model can be regarded as a structured meth-
odological framework, which consists of two parts: one part
is the randomized setting of the traditional evaluation
method; the other part is the relative evaluation problem
based on the stochastic simulation algorithm. )e other part
is based on stochastic simulation algorithms for solving
relative evaluation problems [21].

3. Ideas for Transformation of Traditional
Evaluation Models

3.1. Indicator Information Collection. )e collection of in-
dicator information, determination of weight coefficients,
and selection of information aggregation model are the three
main steps in the operation process of traditional com-
prehensive evaluation (in addition to the clarification of
evaluation purpose, determination of evaluation indexes,
solution, and analysis of evaluation conclusion), which are
also the key to the transformation of traditional compre-
hensive evaluation mode to stochastic simulation evaluation
mode. In this paper, we will introduce the relevant pa-
rameters and their setting ideas in the process of trans-
forming the traditional evaluation model to the stochastic
simulation evaluation model in accordance with the idea of
“expanding from the classical multi-criteria evaluation to its
branch areas,” and the specific transformation methods will
be discussed separately due to the limitation of space. In the
relative evaluation problem, the collected evaluation index
information is usually not in the form of exact values, but

more in the form of mixed data consisting of exact values,
interval numbers, and fuzzy numbers. In the stochastic
simulation type evaluation model, the above mixed data
should be transformed into the form of random data.

One possible idea is to first determine the range of
evaluation indexes, then transform the data into the cor-
responding range and determine the distribution of the data
in the range, and randomly sample the data in the corre-
sponding range according to the distribution. A simple
example can be given to illustrate the idea: to evaluate the
academic performance of students, the range of values for
each subject is between [0, 100], and the physical education
score of student A is usually distributed steadily between 75
and 85 and more often between 80 and 85. At this point, we
can judge that the range of student A’s physical education
score is [75, 85], and the density of the distribution between
[80, 85] is greater than that between [70, 75]. At this point, it
can be assumed that student A’s sports performance between
[75, 85] obeys normal distribution, and the expected value is
between 80 and 85, so the data can be obtained randomly
between 75 and 85 according to the normal distribution
based on the accurate calculation of the distribution func-
tion. It should be pointed out that, in order to eliminate the
influence of inconsistency in the evaluation data scale and
magnitude on the evaluation results, the original evaluation
data should be dimensionless. Generally, there are two kinds
of processing ideas: one is to make the whole range of the
original evaluation information dimensionless before ran-
dom sampling; the other is to make the randomly obtained
data after random sampling dimensionless in the same way.
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Figure 1: Stochastic simulation-based integrated evaluation model.
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)e latter approach is recommended to avoid the
damage to the internal structure of the original data that may
result from the overall dimensionless processing of the range
of values of the original evaluation information. )e above
transformation ideas can be further extended to the fol-
lowing evaluation problems: ① uncertainty evaluation
problems, such as evaluation information in the form of
interval, triangular fuzzy number, and linguistic informa-
tion; ② evaluation method nature test problems, such as
measuring the structural stability of an evaluation method,
which can usually observe the degree of interference in the
process of a sudden change of an index from normal to
abnormal values; ③ the comparative analysis of multiple
evaluation methods, such as comparing multiple evaluation
methods. (3) Comparative analysis of multiple evaluation
methods, such as comparing the sensitivity of several in-
formation aggregation patterns, generally cannot be con-
cluded from only one set of data, but need to draw a more
stable comparative conclusion based on a large number of
randomly obtained data.

3.2. Weighting Factor Determination. Similarly, when the
collected index weight information is incomplete, such as
w1 >w2, w3 ∈ [0.3, 0.5], it is necessary to further negotiate to
determine the range of the corresponding weight coefficients
and their distribution states and to randomly obtain the data
with the corresponding distribution states in the range of
values. )e idea of random transformation of weight co-
efficients can be further extended to the following:

(1) Defining expert authority in group evaluation.
(2) Determination of the importance level of various

evaluation methods in portfolio evaluation.
(3) Determination of time weighting coefficients in dy-

namic evaluation. Another way of randomization of
the weight coefficients is that when the weight coef-
ficients are given by certain expressions, the relevant
parameters in the expressions can be set according to
certain rules to achieve the measurement of the effect
of satisfying a specific evaluation objective, such as the
problem of setting the weight coefficients to highlight
their advantages in autonomous evaluation.

After clarifying the evaluation purpose and collecting the
evaluation information, it is usually difficult to choose the
evaluation method (mainly the information aggregation
model), such as whether to choose the WGA or WAA al-
gorithm for information aggregation. One feasible idea is to
test the evaluation methods on the premise of clarifying the
evaluation purpose and the degree of satisfaction of the
evaluation purpose. )e test should be based on the com-
prehensive simulation of the number of evaluation indexes,
dimensionless methods, and relevant parameters in the
expressions of weight coefficients, etc., to obtain the stable
measure of the satisfaction degree of the evaluation purpose
of the method.

3.3. Stochastic Dynamic Simulation Algorithm. Relative
evaluation problems cannot directly determine the superi-
ority or inferiority of a solution in a specific assessment, but
it is necessary to analyze statistically the relationship be-
tween superiority and inferiority of the solution on the basis
of a large comparison. )en close probability rankings that
reflect the relative advantages of the solution. )e concept of
“superiority matrix” is to count the number of “better than”
and “worse than” comparisons between two solutions
during the stochastic simulation and divide the number of
superiority and inferiority by the total number of simula-
tions at the end of the simulation to obtain the probability of
“better than” and “worse than” comparisons between two
solutions. )e probability of “better than” and “worse than”
is obtained by dividing the number of better and worse by
the total number of simulations at the end of the simulation,
and the probability ranking with probability characteristics
between the solutions is derived. In general, the general form
of the superiority matrix for the comparison between n
solutions (denoted by o1, o2, ..., on), provided that the
simulation is sufficient, is

Q �

q11 q12 . . . q1n

q21 q22 . . . q2n

. . . . . . . . . . . .

qn1 qn2 . . . qnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

)eoretically, if all elements of the matrix S are not zero,
then n! sorting chains can be derived from the matrix S, and
each sorting chain can occur with different probabilities.)e
probability of each chain is different, and the stability of each
chain is also different. Here, we refer to the probability of
occurrence of the chains as the “likelihood factor” and the
overall stability of the chains as the “stability factor.” If sij � 0
holds for a certain chain, it is obvious that the chain does not
hold; i.e., the chain cannot occur.)erefore, the minimum sij
in a chain can be used to represent the probability coefficient
of the chain. )e probability and stability coefficients of the
chain are denoted by p and t, respectively, and we have the
following.

Definition 1. For a sorted chain o1⟶
s1′2′

o2⟶
s2′3′

. . . on, call

p � min qij􏽮 􏽯, i< j; i � 1, 2, . . . , (n − 1), (2)

the likelihood coefficient of the sorted chain, with p ∈ (0, 1].

Definition 2. For a sorted chain o1⟶
s1′2′

o2 ⟶
s2′3′

. . . on, call

t � 􏽙
n−1

i�1
􏽙

n

j�i+1
qij, (3)

the stability coefficient of the sorted chain, with t ∈ (0, 1].
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4. Establishment of Comprehensive
Evaluation Algorithm

4.1. Inverted Sorting Method. Based on the rule of “further
guaranteeing the stability of the sorting chain by increasing the
probability of its occurrence,” we propose an algorithm for
solving the conclusion of the probability sort, which is called
“reverse sorting,” which can be referred to as in Figure 2.

Step 1.)e smallest element (set to qij) of the superiority
matrix Q is selected, and to avoid the possibility coef-
ficient of the sorting chain qij, ojoi can be assumed, which
reverses the possibility of oioj represented by qij to in-
crease the possibility coefficient of the sorting chain;
when the matrix S is more than one smallest element in
the matrix S, the corresponding scheme can be similarly
inversely sorted according to the previous assumption.
Step 2. )e next smallest element of the superiority
matrix Q (set to qkm) is selected, and similarly, to avoid
the probability factor of the sorting chain to be qkm, it
can be assumed that om> ok.
Step 3. )e inverse sorting process is similar to the
inverse sorting process in Step 1 and Step 2, until a
circular sorting chain appears or all solutions are
sorted. When there is a circular sorting chain, the
sorting among the solutions corresponding to the
largest element selected in the first 3 steps is reversed
again, and the solution of the reversed sorting process is
selected based on the highest probability coefficient of
the reversed sorting chain, and if there are multiple
acyclic sorting chains with the same probability coef-
ficient after reversal, the sorting chain with the highest
stability coefficient prevails.
Step 4. If the obtained ranking chain is the overall ranking
of all solutions, the whole ranking process is finished, and
the probability and stability coefficients of the ranking
chain can be obtained according to Definition 1 and
Definition 2; otherwise, on the basis of Step 3, the cor-
responding solutions are sorted in reverse order from the
smallest to the largest elements of the superiority matrix,
until the overall ranking of all solutions is obtained. )e
overall ranking of all solutions is obtained.

)e inverse sorting method starts with the smallest
superiority element and finds the inverse order between the
two solutions, so that, regardless of whether there is a cir-
cular chain between the remaining solutions, the possibility
of the corresponding sorting chain between the remaining
solutions is always greater than c. )erefore, the probability
factor of the probability of termination of the probability
gradient is equal to the maximum value of the elements of
the superiority matrix between solutions that are not re-
versed when the first circular chain is displayed. )e con-
clusion was proven.

4.2. Inverted Sorting Method to Solve. If there is a circular
chain, the probability coefficient of the solution is equal to
the maximum value of the elements of the superiority matrix

between the solutions without reversal when the first circular
chain occurs, as shown in Figure 3.

Let the first cyclic chain consist of m schemes, where
q2′1′� a, qm′(m−1)′� b, qm′1′� c, and a< b< c.

(1) If a� b� c� 0.5, then the probability of occurrence of
any sorting chain is the same and is 0.5. In this case,
the probability coefficient of the conclusion of the
possibility sort is equal to the maximum value of 0.5
of the elements of the superiority matrix corre-
sponding to the uninverted sort between the solu-
tions when the first cyclic chain occurs.

(2) If a, b, c≠ 0.5, we have a, b, c< 0.5 because the inverse
sorting method starts from the smallest superiority
element to find the inverse order between two
solutions.

If we break the chain from①, we have o1′ > o2′ > ...om′,
because a< b< c, so 1 - a> 1—b> 1—so the probability factor
of the sorted chain is c.

If we break the chain from ②, we have o2′...om′o1′, and
since s2′1′� a minimum, the probability factor of the sorted
chain is a.

If the circular chain is broken from ③, we have
om′o1′...o(m−1)′, since sm′(m−1)′� b is the smallest, so the
probability factor of the sorted chain is b.

From the viewpoint of improving the possibility of the
sorting chain, we should choose to break the circular chain
from①, and the possibility coefficient of the sorting chain of
m solutions is c. Since the inverse sorting method starts from
the smallest superiority element to find the inverse order
between two solutions, the possibility of the corresponding
sorting chain between the remaining solutions is always
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greater than c, regardless of whether there is a circular chain
between the remaining solutions. )erefore, the probability
coefficient of the conclusion of the possibility ranking is
equal to the maximum value of the elements of the supe-
riority matrix between the solutions that are not reversed
when the first circular chain appears. )e conclusion is
proved.

When the number of solutions is large, it is tedious to
determine the ranking of solutions one by one using the
above procedure, which requires high endurance of the
evaluator. Based on this, we adopt the idea of “random
simulation to find the most probable and stable ranking
chain among the n! ranking chains derived from the su-
periority matrix” to solve the probability ranking conclusion
as follows.

Step 1. Set the total number of simulations sum (initial
value is 0; in general, the higher the number of sce-
narios n, the higher the value of sum should be), the
count variable r (initial value is 0), and the statistical
variables p0 � 0, t0 � 0, X0 � [0]1×n, X∗ � [0]1×n.
Step 2. )e random series generation function rand-
perm(n) is used to generate a random series of length,
denoted as X.
Step 3. IfX≠X0, let r� r+ 1 and use the elements inX as
subscripts of the solutions and determine the “better
than” order among the solutions based on the positions
of the elements in X.
Step 4. LetX0 �X. Calculate the probability and stability
coefficients of the sorting chain in Step 3, denoted as p
and t, respectively.
Step 5. If p> p0 or p� p0 and t> t0, then p0 � p, t0 � t, and
X∗ �X. Go to Step 2; otherwise, go to Step 6.
Step 6. If r� n!, then save the values of p0, t0,X∗ and end
the program; otherwise go to Step 2.

)e “better-than” order among the solutions with the
elements in X∗ as subscripts and the positions of the ele-
ments in X∗ is the required probability ranking conclusion.
Based on the above simulation steps, the program is written
to solve the probability ranking conclusion for the superi-
ority matrix in example 1, and the obtained ranking chain is
o2> o1> o3> o4, and the probability coefficient of this

ranking chain is 0.4 and the stability coefficient is 0.0645,
which is consistent with the conclusion of the “inverse
ranking method.” )e stability coefficient is 0.0645, which is
consistent with the conclusion of the “inverse sorting
method.” )is works by generating several classifiers from
which everyone learns and predicts independently. )ese
predictions are eventually combined into a single prediction,
so they are better than a single classification to make pre-
dictions. As a new and flexible integrated learning algorithm,
it cuts sharply in many specific issues and is widely used in
sectors ranging from finance, finance, and health care, both
in the assessment of financial risk and in the forecasting of
sports ratings for listed companies.

4.3. StochasticDynamicForestAlgorithm. Random forest is a
subclass of integrated learning, which solves a single pre-
diction problem by building a combination of several
models. Its basic unit is a decision tree, an algorithm that
integrates multiple decision trees through the idea of inte-
grated learning, relying on the voting choice of the decision
trees to determine the final classification result. It works by
generating multiple classifiers, each learning and making
predictions independently. )ese predictions are finally
combined into a single prediction and therefore outperform
any single classification to make a prediction. As an
emerging and highly flexible integrated learning algorithm,
it has shown powerful performance in many specific
problems and has been widely used in various industries,
from finance to health care, both for assessing the financial
risk of listed companies and for predicting sports evaluation
probabilities. )e implementation process of the random
forest algorithm is divided into the following 3 main steps.

(1) A random forest withmany decision trees is built in a
random way, where individual decision trees are
generated randomly and there is no specific asso-
ciation between two different decision trees. Assume
that the training set size is N. For each tree, the
bootstrap sample method is used to randomly and
releasingly draw N training samples from the total
training set as the training set of the tree, and the
training set of each tree is different and contains
duplicate training samples.

(2) During the growth of each tree, the features are
randomly selected to split the internal nodes of the
decision tree. Commonly used decision tree splitting
algorithms include C4.5 algorithm, ID3 algorithm,
and CARTalgorithm. Suppose the feature dimension
of each sample is M. According to the principle of
exponential minimum, a constant m<<M is spec-
ified, and a subset of m features is randomly selected
from the M features, and the optimal one is chosen
from these m features each time the tree is split.
)ese selected features are called random feature
variables.

(3) )e samples to be processed are input into the
random forest, and each decision tree in the forest
makes a classification judgment separately to decide
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which category the input samples should belong to,
then aggregates the judgment results of allN decision
trees, votes on each record according to the N
classification results, and finally takes the classifi-
cation result with the largest number of records as
the final output of the algorithm.

According to the idea and implementation process of
random forest algorithm, the grade early warning model
designed in this paper takes a large number of previous
students’ grade data in the academic affairs system as the
total training set, adopts bootstrap sample method, extracts
N training samples as the training set, forms N unrelated
decision trees, and then selects relevant course scores as
random feature variables; each decision tree makes a pre-
diction of students’ grades according to its own training set
and finally integrates the prediction results of each decision
tree to form a judgment on the final direction of students’
future grades. Each decision tree makes a prediction of
students’ performance based on its own training set and
finally integrates the prediction results of each decision tree
to form a judgment on the final direction of students’ future
performance. )e model is shown in Figure 4.

5. Application of Evaluation Scores Based on
Stochastic Dynamic Models

Suppose the student to be predicted is Zhang San, a 2017
student of automation in a university, and the course to be
predicted is “Physical Education” in the next academic
year. According to the predicted course grades, there are
three warning risk levels: predicted grades below 60 are
high risk, predicted grades between 60 and 75 are medium
risk, and predicted grades above 75 are low risk. In this
paper, 4,540 grades of 65 students in the university are used
as the total training set, and the random forest early
warning model proposed in this paper is used to model the
students’ grades and finally generate the early warning risk
level for Zhang San’s major course “System Integration
Technology.”

A random total structure with four decision trees is
formed by using Bootstrap sample methods to extract a
sample of four classes progressively as a training set and then
to determine the number of random features of each de-
cision tree as 1, depending on the actual situation. )en
select a note for the current note as a random feature variable
for each decision structure. Decision Tree 1 uses “basketball”
as a random feature variable, Decision Tree 2 uses “football”
as a random feature variable, Decision Tree 3 uses “bad-
minton” as a random feature variable, and Decision Tree 4
uses “Running” as a random. Decision Tree 4 uses “Run-
ning” as a random feature variable. After the calculation, the
risk distribution for each decision tree of the target course
“System Integration Technology” is shown in accordance
with the initial training set above. )e training sessions and
training results for the four decision trees above represent a
specific random selection, which is used as the core of the
performance warning model and as a result as sample input
for four main courses for pupil Zhang San for the current

school year. As shown in Figure 5, the likelihood of a
student’s performance in the eligible course “Physical Ed-
ucation” for the next school year is low, with a high and low
risk of 4.9%, respectively. 24.0%. )e probability of medium
risk is greater with 66.2%.

In this paper, we propose a college student grade
warning model based on random forest algorithm in the
context of big data to address the lag and limitation of
existing college student grade warning, as shown in Figure 6.
By deeply analyzing the existing grades of students of the
same majors in colleges and universities, mining the po-
tential patterns of the grade data, forming different training
sets from a large number of grade data, then forming several
decision trees to predict students’ grades separately, and
finally combining the prediction results of all decision trees
to arrive at the risk level of students’ grades. )e early
warning model has been proven to be effective in improving
the existing performance warning mechanism, enabling
early warning to be generated, providing technical support
for early intervention in students’ poor academic perfor-
mance and improving the quality and effectiveness of stu-
dents’ learning.)e physical education class itself is based on
physical exercises, and students have to finish a class in
constant movement, but teachers often repeatedly explain
the technical movements in order to make students un-
derstand them better, which defeats the original purpose of
physical education class. In the process of physical educa-
tion, the teaching content of the demonstration of the use of
information technology teaching means, first, through in-
formation technology means to explain the teaching content
more detailed, so that students are more intuitive, accurate
mastery of the important points of the action skills. Second,
through repeated action demonstration to help students in
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Figure 4: Principles of random forest algorithm.
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Figure 5: Decision tree predictions for basketball, soccer, badminton, and running performance.
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Figure 6: Student performance alert in higher education.
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the mind to more accurately establish the concept of action,
save the time of physical education teachers in the expla-
nation and demonstration, improve teaching efficiency, but
also to a certain extent to ensure the teaching of the practice
density, to achieve precision lectures more practice.

For the sake of simplicity, the values of the 10 students in
the range of subject scores are assumed to be uniformly
distributed. )e random number generator is used to
generate random data in the range of the subject scores
(note: the random data are taken as integers to better fit the
reality), and then the total scores of the 10 students are
calculated, and the number of times they are superior or
inferior to each other is counted and the probability of
superiority or inferiority is calculated to obtain the supe-
riority matrix of the 10 students as follows:

Q �

0.125804 0.127064 0.144957 0.19672 0.20123 0.3612

0.151384 0.148653 0.141916 0.3908 0.3944 0.2432

0.178983 0.194305 0.193044 0.161088 0.118208 0.24353

0.077786 0.070116 0.055056 0.4439 0.4859 0.1541

0.448766 0.441147 0.443487 0.42608 0.44439 0.0757

0.017277 0.018715 0.021541 0.47727 0.50217 0.05673

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

)e probability chains obtained by the “inverse ranking
method” and the stochastic simulation method are
o5> o8> o7> o6> o4> o9> o1> o2> o3> o10, and the
probability coefficient of this ranking chain is 0.5406, and the
stability coefficient is 0. 0529, as shown in Figure 7.

If the results of each candidate are aggregated directly
according to the traditional evaluation model (choosing the
midpoint of the interval as the evaluation data), the total

results of each candidate (expressed as yi) are y1 � 540,
y2 � 537.5, y3 � 526, y4 � 574.5, y5 � 599.5, y6 � 575.5, y7 � 593,
y8 � 596, y9 � 540.5, y10 � 521.5. 5, y7 � 593, y8 � 596,
y9 � 540.5, and y10 � 521.5, resulting in the ranking of can-
didates as o5> o8> o7> o6> o4> o9> o1> o2> o3> o10, in
which the position of each candidate in this ranking is the
same as the position of each candidate in the possibility
ranking, but the absolute superiority of each candidate in
this ranking is compared. Looking at the values of y9 and y1,
we can see that the total score of o9 is only 0.5 points higher
than that of o1, so there is no guarantee that o9 will out-
perform o1 in the final exam. )is ranking conclusion is
more realistic and acceptable.

6. Conclusion

)e random simulation evaluation model is an extension of
the traditional evaluation model, providing a structural
framework for various forms of information and evaluator
preferences, so that the evaluation process is no longer
limited by a single or limited form of data and information
structure, which can further enhance the practical appli-
cation of comprehensive evaluation methods. )e con-
clusions of probability ranking with probability
characteristics are more explanatory and acceptable for
relative evaluation problems. Specifically, the stochastic
simulation-based evaluation method has the following
three main features: (1) the evaluation problem is fully
solved by simulation, avoiding the situation that the
conclusion is not fully solved by one evaluation; (2) in the
simulation process, the probability of superiority and in-
feriority among the solutions is counted in the way of the
superiority matrix, which lays the foundation for the
conclusion of the likelihood ranking. In the simulation
process, the superiority matrix is used to calculate the
probability of superiority among the solutions, so as to lay
the foundation for the solution of the probability ranking
conclusion, which is an extension of the absolute ranking
conclusion and avoids the “either-or” conclusion among
the solutions. )rough the setting of relevant parameters,
the traditional evaluation methods are integrated into the
solution process of the stochastic simulation, especially to
provide a convenient way for the comparison of multiple
similar evaluation methods. (3) )e traditional evaluation
methods are integrated into the solution process of sto-
chastic simulation by setting the relevant parameters, es-
pecially for comparing multiple similar evaluation
methods.
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