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Based on a nonlinear demand function and a market-clearing price, a cobweb model is introduced in this paper. A gradient
mechanism that depends on the marginal profit is adopted to form the 1D discrete dynamic cobweb map. Analytical studies show
that the map possesses four fixed points and only one attains the profit maximization. *e stability/instability conditions for this
fixed point are calculated and numerically studied. *e numerical studies provide some insights about the cobweb map and
confirm that this fixed point can be destabilized due to period-doubling bifurcation. *e second part of the paper discusses the
memory factor on the stabilization of the map’s equilibrium point. A gradient mechanism that depends on the marginal profit in
the past two time steps is adopted to incorporate memory in the model. Hence, a 2D discrete dynamic map is constructed.
*rough theoretical and numerical investigations, we show that the equilibrium point of the 2Dmap becomes unstable due to two
types of bifurcations that are Neimark–Sacker and flip bifurcations. Furthermore, the influence of the speed of adjustment
parameter on the map’s equilibrium is analyzed via numerical experiments.

1. Introduction

Different disciplines such as biology, engineering, and
economy are characterized by real-life models which possess
complex dynamic behaviors and multistability criteria.
Economists and mathematicians have reported these be-
haviors in economic models such as monopoly, duopoly,
and oligopoly models. In that direction, many studies have
reported that the equilibrium points of these models can be
destabilized due to different types of bifurcations such as flip
and Neimark–Sacker. Our contribution in this paper focuses
on further investigating on complex dynamic characteristics
of the cobweb model constructed based on the nonlinear
demand function and gradient mechanism.We follow in our
paper the nice discussions given in the seminal articles of
Ezekiel [1] and Naimzada [2]. In [1], the effects of prices in
the fluctuations of certain markets have been explained.
Some important aspects on supply and market demand have
been investigated in [1]. Ezekiel in [3] has claimed that the
quantity of production must be set based on time so that

firms’ producers can review prices and hence a time lag has
to be made between supply and demand.

*e current paper follows up the hypothesis of Ezekiel
and the discussion made by Naimzada in order to set up and
analyze the suggested cobweb model. Building this model
does not require assuming that the firms (or producers) have
no full knowledge about market information but they have
to have only knowledge about the demand. We adopt here
an irrational function that is used to represent the demand.
Using this kind of knowledge and the clearing price con-
dition, the producer can update its production due to the
variations that occurred in the marginal profit. Recalling the
bounded rationality mechanism defined elsewhere [2], the
producer may decrease or increase its outputs depending on
the decrease or increase taking place in the marginal profit.
In order to brief the outcomes of this paper, we divide the
contribution into two important parts: the first part deals
with the studies and investigations on a one-dimensional
nonlinear discrete-time map describing the change in price.
It has four nonzero real fixed points and only one of them
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attains the maximum value of the profit. *e stability
conditions of this point are calculated and some insights
about it are provided based on analytical and numerical
analysis. In the second part, we introduce the memory and
convert the 1D map into a two-dimensional map. *e 2D
map contains two important parameters; the parameter of
memory and the other for the adjustment speed. *e
memory parameter is represented by some weights that their
influences on the stability of the equilibrium point are
discussed. *rough some analytical and numerical experi-
ments, we show that low and high values for the memory
parameter affect the stabilization of the equilibrium point
due to the coexistence of Neimark–Sacker and period-
doubling bifurcations. Based on the global analysis, some
dynamic behaviors of the map such as multistability and
chaotic attractors are reported. Some of those behaviors
possess attractive basin with lobes from divergent points.
Furthermore, we study the influence of the speed of ad-
justment by assuming equal memory weights. Some dy-
namic characteristics are obtained and discussed through
pushing the global analysis towards the speed of adjustment
parameter.

Both local and global analyses regarding bifurcation
analysis and chaotic attractors within this paper have been
carried out based on similar investigations and discussions.
For instance, Shabbir et al. in [4] have introduced a new
discrete-time system based on cannibalism in the prey
population with the addition of Allee effects. *ey have
calculated the system’s fixed points and have discussed their
stability that becomes unstable due to period-doubling and
Neimark–Sacker bifurcation. In [5], the dynamic charac-
teristics such as topological classification, Lyapunov expo-
nents, and manifold theory have been investigated for the
Goodwin model. Din and Haider in [6] have studied the
complex dynamic characteristics of the discrete-time version
of the Schnakenberg model. In [7], a deterministic oligopoly
model whose players are heterogeneous has been introduced
and its dynamic behaviors that are formed based on best
responders and imitators have been discussed. Agliari et al.
in [8] have given an intensive dynamic analysis for a
Cournot duopoly game with differentiated goods whose
players are homogenous and have adopted a gradient-based
mechanism in order to update their outputs. Other inter-
esting studies that have adopted discrete dynamic systems
and their complex dynamic characteristics in different ap-
plications such as engineering have been reported in Bao
et al. [9], Li et al. [10], and Bao et al. [11].

Briefly, the paper consists of six sections.*e first section
introduces the main contribution of the paper. In Section 2,
the literature review is reported. In Section 3, the 1D cobweb
map is given and studied. *e influence of memory is in-
vestigated in Section 4. *e influence of the speed of ad-
justment is analyzed in Section 5. Finally, we conclude the
obtained results in Section 6.

2. Literature Review

Several economic contexts have reported in literature dif-
ferent studies and investigations on the cobweb model. We

highlight in this section some of those studies. For example,
different sectors in the economic market have reported the
cobweb model where there are academia [2], real estate [12],
nurses [13], potatoes [14], and bioenergy crops [15]. Based
on nonlinear demand and supply functions the equilibrium
points of cobweb mode have been calculated and their
stability conditions have been investigated in [16]. In [17],
the adaptive expectation was used to form complex cobweb
models. In [18], the traditional cobweb model has been
constructed using a nonlinear supply function and it has
been reported that period-doubling cycles can be found
when firms adopt the adaptive expectation mechanism. In
[19], the authors have detected chaotic behaviors for a
standard cobweb model whose players adopted adaptive
expectations using monotonic demand and supply func-
tions. Based on linear demand and nonlinear supply
functions, the dynamics of the cobweb map have been in-
vestigated under adaptive expectations in [20].

*e studies mentioned above have proposed certain
assumptions about the producers (or firms). *ey have
assumed that those producers possessed somehow the cost
function and hence they can calculate the profit which
depends on produced quantity and its price. Indeed, this
gives producers some knowledge on the determination of
quantities sent to the economic market as price-based
functions. Such hypotheses have given rise to many
mechanisms such as the bounded rationality mechanism to
model the dynamic economic behaviors behind these hy-
potheses. For example, a cobweb model has been con-
structed and described by a nonlinear discrete dynamical
system using a gradient mechanism in [2]. *e authors in
this study assumed that producers have no complete
knowledge of demand and they instead perform empirical
estimations on marginal profit. *e bounded rationality
approach is an effective mechanism adopted when dealing
with such economic systems and information about it has
been reported elsewhere in the literature ([3, 21–30]).
Furthermore, the bounded rationality has been adopted in
many studies in the literature that require knowledge and
computational experiments. For instance, in [31], a cobweb
model whose supply and demand are nonlinear functions
has been investigated. In that study, the producers have
recalled the mechanism of backward expectation to make
prices forecasting in the future evolution. *is mechanism
adopted in [31] depended on prices given in the last two
periods. In [32], another mechanism that is called naive
expectation has been used by producers with more general
demand and cost functions in a cobwebmodel. Other studies
in the literature have suggested rational producers in [33],
heterogeneous producers in [34], and replicator dynamics in
[35].

3. The Cobweb Model

Let D(p) be the consumer demand, where p refers to price.
*is demand function may be linear or nonlinear depending
on the preferences of the consumer. In this paper, we
consider throughout this paper the following nonlinear
demand:
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qD(t) � D(p(t)) � a −

����

p(t)

􏽱

, a> 0, p(t)> 0, (1)

where t represents the time. It is clear that qD(t) � 0 means
the market is not supported by quantities and then the
consumer is willing to buy a unit of production with a
maximum price that is a2. From (1) we get

p(t) � D
− 1

qD(t)( 􏼁 � a − qD(t)( 􏼁
2
, (2)

that represents the inverse of demand. In order to provide
the market with produced quantities at time t + 1, producers
make the estimation of some factors raised at time t. Of these
factors are the production volume and gained profit. *ey
receive lack of market information and then performmarket
experiments so that they can decide the market state. Based
on these factors, producers decide to supply the market with
quantities demanded. *ey increase the amount of pro-
duction in the next period of time if the profit increases and
they reduce the amount if the profit is decreased. *e profit
of quantity supplied to the market may be given by

π qS(t)( 􏼁 � p(t)qS(t) − TC qS(t)( 􏼁, (3)

where qS(t)≥ 0 represents supplied quantity at time t and
TC(qS(t)) denotes the total cost. *is total cost is taken as a
linear function as follows:

TC qS(t)( 􏼁 � cqS(t), (4)

where c is the marginal cost (c � (dTC/dqS)> 0). *e
cobweb theory states that attaining market equilibrium can
be obtained by assuming qD(t) � qS(t) � q(t) at any time t.
*erefore, (3) can be rewritten as follows:

π(q(t)) � q(t) a − qD(t)􏼂 􏼃
2

− cq(t). (5)

From (5), one gets a positive profit if a>
�
c

√
. *is in-

dicates that the maximum price a2 paid for buying a unit of
commodity must be greater than the value c. On the other
hand, if a<

�
c

√
, the profit becomes negative that has no

economic meaning. Differentiating (5) gives the following
marginal profit:

ψ(q(t)) �
dπ(q(t))

dq(t)
� (a − q(t))

2
− 2q(t)(a − q(t)) − c.

(6)

Now, the quantity supplied to the market at t + 1 can be
stated as follows:

qS(t + 1) � q(t) + k(q(t))ψ(q(t))

� q(t) + k (a − q(t))
2

− 2q(t)(a − q(t)) − c􏼐 􏼑,

(7)

where we take k(q(t)) � k as a positive parameter known as
the speed of adjustment. Using (1) in (7), one can simplify
the supply in the form

qS(t + 1) � S(p(t)) � a −

����

p(t)

􏽱

+ k[

����

p(t)

􏽱

(3
����

p(t)

􏽱

− 2a) − c],

(8)

and then market-clearing price gives

qD(t + 1) � qS(t + 1). (9)

From (1) and (8), we get

a −

�������

p(t + 1)

􏽱

� a −

����

p(t)

􏽱

+ k[

����

p(t)

􏽱

(3
����

p(t)

􏽱

− 2a) − c].

(10)

After some simple calculations, the price at time t + 1 can
be expressed by the following one-dimensional discrete
dynamic map:

p(t + 1) � f(p(t)) � (

����

p(t)

􏽱

− k[

����

p(t)

􏽱

(3
����

p(t)

􏽱

− 2a) − c])
2
.

(11)

It possesses four fixed points given by

p1 �
1
3

c +
2a

3
a +

������

a
2

+ 3c

􏽱

􏼠 􏼡􏼢 􏼣,

p2 �
1
3

c +
2a

3
a −

������

a
2

+ 3c

􏽱

􏼠 􏼡􏼢 􏼣,

p3 �
1
9k

2 2 + 4ak + 3ck
2

+ 2a
2
k
2

+(2 + ak)

������������������

1 + 2ak + 3ck
2

+ a
2
k
2

􏽱

􏼢 􏼣,

p4 �
1
9k

2 2 + 4ak + 3ck
2

+ 2a
2
k
2

− (2 + ak)

������������������

1 + 2ak + 3ck
2

+ a
2
k
2

􏽱

􏼢 􏼣.

(12)

Since the parameters a, c, and k are positive, then both p1
and p3 are positive. *e other two points are positive under
certain conditions. Before we discuss the stability conditions
for these fixed points and detect their complex dynamic

behaviors, we investigate the relation between the demand
and supply depicted in Figures 1(a) and 1(b). One can see
that both qD and qS intersect in the equilibrium price p1. It
must not exceed the maximum price a2 that is guaranteed
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based on the condition a2 > c; otherwise, a negative price
may be raised if a2 < c. Starting at po while 0<po < a2 and
moving vertically until reaching qS which is represented by
the blue curve, we get the quantity in the next period that is
denoted by q1 in Figure 1(a). Since our model is in an
equilibrium state at each period of time, we have equal
demand and supply and consequently, we move horizontally
to qD (represented by the red curve in Figure 1(a)) to get the
price p1 that is being used to set q2 in the next period. After
setting q2, we move horizontally to p2 (represented by the
red curve in Figure 1(a)). *is procedure is repeated till
reaching the equilibrium of market price p1. Figure 1(b)
shows this procedure for an initial price po > a2. From this
discussion, we conclude that the trajectories of cobweb will
not approach negative values.

Now, we begin discussing the dynamics of map (11)
around the fixed points which depend on the parameters a

and c. *e profit represented by (5) can be rewritten as
follows:

π(p) � (p − c)(a −

����

p(t)

􏽱

) (13)

Differentiating (13), we get (dπ/dp)|p�p1 ,p2
� 0 but the

profit attains its maximum value at the equilibrium price p1.
Furthermore, we have π(c) � 0 and π(p)> 0 if c<p< a2.
*is means that when we increase the price p in the interval
(c, p1], the profit variations become positive while they get
negative for p1 <p< a2. *is may be explained due to the
monotonic or nonmonotonic way of the production level
carried out by producers and the way they deal with the
change in profit. Figure 2 confirms that the marginal profit
intersects the abscissa axis exactly in p1 (the market equi-
librium price).

Proposition 1. *e stability/instability of market equilib-
rium price p1 is constrained by the following possibilities:

(i) *e equilibrium price is locally stable if
(1/2Φ)< k< (1/Φ)

(ii) *e equilibrium price is unstable if k> (1/Φ)

where

Φ �

������������������

2a

������

a
2

+ 3c

􏽱

+ 3c + 2a
2

􏽲

− a. (14)

Proof. Recalling the marginal demand and marginal supply
at p1 gives

S
�

p1( 􏼁

D
�

(p)

� 1 + 2k a −

�������������������

2a

������

a
2

+ 3c

􏽱

+ 3c + 2a
2

􏽲

⎛⎝ ⎞⎠ (15)

Using the conditions given in [36], we get

(i) *e equilibrium price is locally stable if
− 1< (S

�

(p)/D
�

(p))< 0
(ii) *e equilibrium price is unstable if

(S
�

(p)/D
�

(p))< − 1

So, the proof is completed after substituting (15) in the
above conditions.

Now, we study the influences of the parameters a, c, and
k on the dynamics of the map. We perform some numerical
experiments to investigate more these dynamics. *e in-
fluence of the speed of adjustment parameter k while fixing
the other parameters is given in Figure 3(a). We assume the
following parameters’ values a � 1, c � 0.2, 0.5. Figure 3(a)
shows two situations: the first one presents the period-
doubling diagram with respect to k at a � 1 and c � 0.2. It
shows that the equilibrium point becomes locally stable;
then, it becomes unstable. For this situation, several nu-
merical experiments have been carried out using low
marginal cost and we have concluded that such lowmarginal
cost guarantees stable situation for the equilibrium price. On
the other hand and as shown in Figure 3(b), the increase in
marginal cost causes a reduction in the region of stability for
the equilibrium price. It would be a stability region as long as
the condition a2 > c that preserves nonnegative price and
stability of the equilibrium market price too. For the pa-
rameters a and c, we fix the speed of adjustment parameter k

and study the impact of a and c. As given in Figure 3(b), the
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Figure 1: Dynamic steps for price and quantity for different initials of price. Parameters’ values are a � 1, c � 0.2, k � 1.
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Figure 2: *e shapes of the functions π′(p), f(b), and π(p) along with a line with 45o. It is obvious that π(c) and π(a2) are vanished while
max π(p) is obtained at p1. *e other parameters’ values are a � 1, b � 0.2, k � 1.
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Figure 3: Continued.
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parameter a affects the stability of the equilibrium point and
makes it loses its stability via period-doubling bifurcation for
low and high marginal cost. *e same discussion is given for
the parameter c as depicted in Figure 3(c). *ese numerical
experiments confirm the impact of the map’s parameters on
the local stability of the equilibrium price. *is urges us to
investigate more some of the global investigation of the
dynamics of the map. We begin with the set of parameters
values, k � 0.2, a � 1, c � 0.2. Figure 3(d) shows that there is
a monotonic convergence to the equilibrium market price
p1. Further increase in the parameter k to the value 0.9525
gives rise to a sequence of period-doubling whose attractive
basin is given in Figure 3(e). As k increases further and the
other parameters are fixed, higher cycles are obtained until
k � 1.11 where a chaotic behavior of the map is born in

Figure 3(f). Other numerical experiments have been carried
out for different values of k and have shown that the
attracting set of any period cycles or chaotic behavior will
have an attractive basin that is bounded within the box
[0, a2] × [0, a2]. *erefore, any initial prices that are chosen
out of this box will lead to negative or unbounded trajec-
tories that have no meaning in economy. □

4. Memory Effect on the Cobweb Model
(2D Map)

*is section introduces the memory in the map (11). *e
memory here means that producers decide whether they
increase or decrease the production in the next period of
time. It is given by [37]

qS(t + 1) � q(t) + k ω
zπ(q(t))

zq(t)
+(1 − ω)

zπ(q(t − 1))

zq(t − 1)
􏼢 􏼣, ω ∈ [0, 1] (16)

*is memory is estimated by producers based on the
marginal profits at two periods, the previous period t − 1 and
the current period t with weight ω in order to provide the
market with the supplied quantity at t + 1. Using (6), we get

qS(t + 1) � a −

����

p(t)

􏽱

+ k[ω(

����

p(t)

􏽱

(3
����

p(t)

􏽱

− 2a) − c)

+(1 − ω)(

�������

p(t − 1)

􏽱

(3
�������

p(t − 1)

􏽱

− 2a) − c)]

(17)

Imposing the market clearing qS(t + 1) � qD(t + 1) gives

p(t + 1) � (

����

p(t)

􏽱

− k[ω(

����

p(t)

􏽱

(3
����

p(t)

􏽱

− 2a) − c) +(1 − ω)(

�������

p(t − 1)

􏽱

(3
�������

p(t − 1)

􏽱

− 2a) − c)])
2
. (18)

1po p−

p (t)

1

p (t + 1)

a = 1, c = 0.2, k = 0.9525

(e)

1.1po p−

p (t)
0.01

0.01

1.1

a2

a2

p (t + 1)

(f )

Figure 3: Bifurcation shape of p versus (a) k at a � 1, c � 0.2, 0.5, (b) a at k � 0.5, c � 0.2, 0.5, and (c) c at a � 1, k � 0.5, 0.7. Basins of
attraction of different attracting set for the map (11) at the parameters set: (d) k � 0.2, (e) k � 0.9525, and (f) k � 1.11. Other parameters’
values are a � 1, c � 0.2.
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Setting p(t) � xt and p(t − 1) � yt in (18), a two-di-
mensional (2D) map is obtained:

T:
xt+1 �

��
xt

√
− k ω

��
xt

√
3

��
xt

√
− 2a( 􏼁 − c( 􏼁 +(1 − ω)

��
yt

√
3

��
yt

√
− 2a( 􏼁 − c( 􏼁􏽨 􏽩􏼐 􏼑

2
.

yt+1 � xt.

⎧⎨

⎩ (19)

For the map (19), we get four fixed points and we focus
only on the one in the form O � (p1, p1) where p1 is given
by (11).*e following propositions are used in discussing the
stability/instability conditions of this point.

Proposition 2. Suppose that λ1and λ2 are two eigenvalues for
the Jacobian matrix of (19) at O; then,

(i) O is an attracting node and is locally stable if
|λ1,2|< 1.

(ii) O is repelling node and unstable if |λ1,2|> 1.
(iii) O is a saddle point and is unstable if |λ1|< 1 and

|λ2|> 1 (or |λ1|> 1 and |λ2|< 1).
(iv) O is a nonhyperbolic point if |λ1| � 1 and |λ2|≠ 1 (or

|λ1|≠ 1 and |λ2| � 1).

Proposition 3. *e point O is local stable if the following
conditions are satisfied:

1 − 1 + 2k a − 3
��

p1

􏽱

􏼒 􏼓􏼔 􏼕 1 + 2ak +
ck
��
p1

􏽰 − 3k

��

p1

􏽱

􏼠 􏼡> 0,

1 + 1 − 2k(1 − 2ω) a − 3
��

p1

􏽱

􏼒 􏼓􏼔 􏼕 1 + 2ak +
ck
��
p1

􏽰 − 3k

��

p1

􏽱

􏼠 􏼡> 0,

1 + 2k(1 − ω) a − 3
��

p1

􏽱

􏼒 􏼓 1 + 2ak +
ck
��
p1

􏽰 − 3k

��

p1

􏽱

􏼠 􏼡> 0.

(20)

Proof. Proof. We recall Jury conditions [38] that are given
by

g(1) ≔ 1 − τ + δ > 0,

g(− 1) ≔ 1 + τ + δ > 0,

Δ ≔ 1 − δ > 0,

(21)

where τ and δ represent trace and determinant of the Ja-
cobian matrix of the map (19) at O and are given by

τ � 1 + 2akω − 6kω
��

p1

􏽱

􏼒 􏼓 1 + 2ak +
ck
��
p1

􏽰 − 3k

��

p1

􏽱

􏼠 􏼡

δ � 2k(1 − ω) 3
��

p1

􏽱

− a􏼒 􏼓 1 + 2ak +
ck
��
p1

􏽰 − 3k

��

p1

􏽱

􏼠 􏼡

(22)

We should highlight here the types of bifurcations that
may have occurred based on these conditions. If g(1) � 0
while g(− 1)> 0 and Δ> 0, then O becomes unstable due to
transcritical or fold bifurcation. If g(− 1) � 0 while g(1)> 0
and Δ> 0, then O becomes unstable due to period-doubling
bifurcation. But if Δ � 0 and g(1)> 0 and g(− 1)> 0, then O

can be destabilized due to Neimark–Sacker bifurcation
([8, 29]). Substituting (22) in (21) completes the proof.

Hence, the conditions in (20) are used to detect the
conditions of stability/instability of O. Because of the

complicated form of the equilibrium point O, some nu-
merical simulations are performed in order to get more
insights about the conditions given in (20). It is clear that
both g(− 1) and Δ contain the parameter ω that represents
the memory. *erefore, we analyze the effects of ω on the
stability of the equilibrium point O. We begin with the set
a � 1.4, c � 0.55, k � 0.68, and ω � 0.62. It gives
O � (1.21, 1.21) and then the Jacobian becomes

JO ≈
− 0.60210 − 0.98192

1 0
􏼠 􏼡. (23)

For JO, we get two complex conjugate eigenvalues, λ1,2 �

− 0.30104 ± 0.94408i with |λ1,2| ≈ 0.99092< 1, and hence O

is locally stable point. Furthermore, we have τ � − 0.60210
and δ � 0.98192 and hence δ < 1 means that the map (19) is
dissipative. It is easy to see that the conditions in (20) are all
satisfied and then O is locally asymptotically stable. In
Figure 4(a), we depict how the parameter ω affects the
equilibrium point O. It shows the bifurcation diagram and
that there are two types of bifurcations found between ω and
the variable x. *e assumed set of parameters’ values shows
that the equilibrium point O becomes unstable because of
the coexisting of Neimark–Sacker bifurcation for values ω in
the interval 0≤ω≤ωns while, in the interval ω ∈ [ωf, 1], the
equilibrium point becomes unstable due to flip bifurcation.
Now, we perform some numerical experiments in order to
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Figure 4: Continued.
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investigate more the global dynamic behavior of the map
(19) around O. Keeping the parameters’ values fixed and
changing ω to 0.323, the dynamics of the map around the
equilibrium are converted into four closed rings. *e phase
portrait for those closed rings is given in Figure 4(b). In-
creasing ω to 0.33254 gives rise to a period-4 cycle (denoted
by squares) with a disconnected chaotic attractor (red)
around the unstable equilibrium O for the same set used for
the bifurcation diagram. It is plotted in Figure 4(c) with its
basins of attraction that it consists of two colors: yellow and
cyan. A further increase in the memory parameter to ω �

0.387 makes the map becomes more chaotic and we get a
chaotic behavior around O as shown in Figure 4(d). At
ω � 0.4313, the attractive basins of period-9 cycle (denoted
by squares) together with the basin of a closed chaotic
attractor (red) that surrounds the unstable O are displayed in
Figure 4(d). *is period-9 cycle (as shown in Figure 4(e))
disappears when we increase ω to 0.5. At ω � 0.5, we get a
period-4 cycle together with a closed invariant curve sur-
rounding the point O. *is dynamic situation is given in
Figure 4(f ) where the yellow and cyan colors refer to the
attractive basins of the period-4 cycle. For further increase in
ω, the previous dynamic situation is disappeared and we get

instead a spiral point. We give in Figure 4(g) different dy-
namic behaviors for the map at ω � 0.61, 0.612, 0.613 and
ω � 0.614. In Figure 4(h), we depict the stability region for
the point O at the parameters set, a � 1.4, c � 0.55 in the
(k,ω) − plane. It is clear that when ω � 0 and
k≥ 0.2631578947, the point O becomes unstable via the
Neimark–Sacker bifurcation as k increases. As ω becomes
close to a uniform distribution, the stability region of O is
extended as k increases. For values of ω above 0.75, this
stability region of O is reduced with respect to k and then O

becomes unstable through flip bifurcation. *is investiga-
tion makes us analyze in the (k,ω) − plane the 2D bifur-
cation diagram.*is bifurcation diagram is given in Figure 5
at the set of parameters values, a � 1.44 and c � 0.55. We
give at the end of this section a dynamic situation of chaotic
attractor that is formed by four disconnected bands around
O for a value of ω near to 1 as shown in Figure 6. □

5. The Speed of Adjustment and Its Effect

We assumeω � (1/2) that represents a symmetric case in the
map (19) as follows:

T:
xt+1 �

��
xt

√
− k 0.5

��
xt

√
3

��
xt

√
− 2a( 􏼁 − c( 􏼁 + 0.5

��
yt

√
3

��
yt

√
− 2a( 􏼁 − c( 􏼁􏽨 􏽩􏼐 􏼑

2
,

yt+1 � xt.

⎧⎨

⎩ (24)
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Figure 4: (a) Bifurcation diagram of ω at k � 1.4. (b) Phase plane for four disconnected closed rings at ω � 0.323 and k � 0.68. (c) *e
attractive basins of period-4 cycle and chaotic attractor at ω � 0.33254 and k � 0.68. (d) *e phase plane of strange attractor around O at
ω � 0.387 and k � 0.68. (e) *e attractive basins of period-9 cycle with chaotic attractor at ω � 0.4313 and k � 0.68. (f )*e attractive basins
of period-4 cycle with a closed invariant curve at ω � 0.5 and k � 0.68. (g) Different dynamic behaviors at ω � 0.6.1, 0.612, 0.613, 0.614 and
k � 1.4. (h) *e stability region and chaos routes via the Neimark–Sacker and flip bifurcations. *e other values of parameters are a � 1.4
and c � 0.55.
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It means that producers adopt the average in marginal
profits at the time steps t − 1 and t. Now, the map (24)
contains the parameters a, k, and c and we study in this
section the effect of k on the dynamics of the map. As-
suming a � 0.4 and c � 0.11, Figure 7(a) shows the 1D
bifurcation diagram when varying the bifurcation pa-
rameter k. It shows that the equilibrium point O becomes
stable for the values of k until k approaches the value 1.353
where the point O becomes unstable due to the Nei-
mark–Sacker bifurcation. Increasing k to 1.423, the equi-
librium point O converts into an unstable spiral point as
shown in Figure 7(b). A further increase in k to 1.58 gives
rise to a period-4 cycle. *e basins of attraction of this cycle

consist of yellow and cyan colors (as shown in Figure 7(c))
while the white color refers to the nonconvergent points.
*is cycle occurs as k increases until k � 2.18 where this
cycle is converted into a chaotic attractor consisting of four
disconnected bands (see Figure 7(d)). At k � 2.36, a period-
5 cycle is born which has attractive basins with yellow and
cyan colors. *e dark gray refers to divergent points as
given in Figure 7(e). After that, the dynamic of the map
becomes chaotic for any increase in the parameter k.
Figure 7(f ) gives an example of the chaotic situation when
k � 2.76. Regarding the parameters a and c numerical
experiments show that increasing both parameters affect
the stability region of O with respect to k.

2

3
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0.5 1 1.50
k

0

0.2

0.4

0.6

0.8

1

ω

Figure 5: *e 2D bifurcation diagram in the (k,ω) − plane. Different types of periodic cycles are numbered with different colors. *e other
parameters are a � 1.4 and c � 0.55.

O
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20
xt
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2

Figure 6: *e phase plane of a chaotic attractor consisting of four bands at the parameters’ values, a � 1.4, c � 0.55, k � 0.68, and
ω � 0.9982.
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Figure 7: (a) *e bifurcation diagram with respect to k at a � 0.4, c � 0.11. Different attracting sets. (b) A spiral at a � 0.4, c � 0.11, and
k � 1.423. (c) Period-5 cycle at a � 0.4, c � 0.11, and k � 1.58. (d) Chaotic attractor at a � 0.4, c � 0.11, and k � 2.18. (e) Period-5 cycle at
a � 0.4, c � 0.11, and k � 2.36. (f ) Chaotic attractor at a � 0.4, c � 0.11, and k � 2.76.
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6. Conclusion

In this work, we have investigated a cobweb model whose
producers do not possess complete knowledge about the
market and update their outputs according to the mecha-
nism of bounded rationality. *e producers have estimated
their marginal profit by observing profit variations that
might have occurred at the beginning of production. In the
first part of this paper, we have studied the complex and
chaotic behaviors of a one-dimensional discrete cobweb
model. Our obtained results have shown that any increase in
marginal cost leads to an unstable equilibrium price. Fur-
thermore, we have shown that the equilibrium price for the
1D map becomes locally stable when the adjustment speed
parameter takes low values. Higher values of that parameter
have given rise to unstable price and therefore periodic
cycles or chaotic attractors for the dynamics of price have
coexisted.

*e second part of this paper contains other contribu-
tions that are the inclusion of memory in the 1D model and
converting it into a 2D discrete dynamic model. Based on a
convex combination of marginal profit at the past two pe-
riods, the memory parameter has been incorporated
([31, 37]). Our investigations have analyzed the influence of
the memory parameter on the equilibrium price and found
that it has a qualitative effect on its stability. Using both
analytical and numerical analysis we have discussed the
stability/instability conditions of the equilibrium price. We
have found that the equilibrium price may be unstable
through period-doubling and Neimark–Sacker bifurcations
when the memory parameter is used as the bifurcation
parameter. *rough simulation, we have reported multi-
stability situations. Furthermore, the qualitative impact of
the adjustment parameter has been analyzed in a symmetric
case on which the average change in marginal profits has
been considered.
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