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Based on the current water crisis scenario, effective water resources management can play an essential role. Reservoir operation
optimization is part of water resources management. Reservoir operation optimization is difficult as it involves a large number of
variables and constraints to achieve this goal. +e present study aims at exploring the performance of recently developed heuristic
algorithms—Rao algorithms as applied to the reservoir operation studies for the first time. Rao algorithms are metaphor-less
algorithms that require only basic parameters—population size and function evaluations. In the present study, Rao algorithms
have been applied to two case studies: discrete four-reservoir operation system problem and continuous four-reservoir operation
system problem (benchmark problems) for the assessment of their performance vis-à-vis other algorithms from the literature.+e
results showed that the Rao-1 algorithm provided the optimal solution with the least function evaluations when compared to Rao-
2, Rao-3, and other algorithms applied in the past to the same benchmark problem. Consequently, the Rao-1 model is found to be
superior to these approaches by taking less computational time. Hence, the Rao-1 algorithm can be considered suitable for
application to reservoir operation optimization problems.

1. Introduction

+e ever-rising population and change in regime towards
the accelerated demand of water have a prerequisite for the
complex optimization problems towards the global sus-
tainability of the available water resources of the earth [1].
+e sustenance for the ubiquitous natured water is very
important for the attainment of ecological balance, and also
to satisfy the rising need for water, it is important to utilize
the available water optimally for its sustenance [2–5]. +us,
reservoir operation optimization is of prime significance in
the current scenario, which overwhelms a huge number of
variables and constraints. In general, water demands from
the reservoir fulfilled are based on reservoir operating rules
with available input variables and present water storage level
along with the hydrological conditions [6–8]. Researchers
are developing various optimization methods and applying

newly developed approaches to achieve the best optimal
solutions [9–11]. However, in recent decades, the field of
populace-centered metaheuristic processes is engulfed with
several ‘new’ algorithms based on the comparison of some
natural phenomena or behavior of animals, fishes, insects,
societies, cultures, planets, musical instruments, etc. [12, 13].
Optimization techniques have been evolved from traditional
to evolutionary techniques. Sreenivasan and Vedula [14]
applied chance-constrained Linear Programming (LP) to a
multipurpose reservoir based on the reliability level the
optimal solution was obtained. To optimize the nonlinear
hydropower function using the LP method, the function was
linearized and the solution was obtained within the tolerance
limits. Kumar and Prakash [15] developed the Nonlinear
Programming (NLP) model to analyze the operation of the
multipurpose Koyna dam, India. It was analyzed for dif-
ferent dependable inflows and was found that after relaxing
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the release, it can generate more hydropower as it was the
vital importance. To incorporate the uncertainties due to
inflow, Dynamic Programming was combined with fuzzy
rule, and it resulted in the satisfying target performances for
Dez and Karoon reservoirs in Iran [16].

One of the earliest review research conducted on the
implementation of traditional models such as Discrete Dif-
ferential Dynamic Programming (DDDP), LP, NLP, and
stochastic models for the reservoir operation optimization
and management, was carried out [17]. +e study described
the pros and cons of these techniques. +e review findings
evidenced the difficulty of obtaining a generalized model that
can be applied for all real-world optimization problems. +e
traditional models have certain shortcomings like conver-
gence depends upon the initial solution, inefficient in han-
dling discrete search space, and sometimes get stuck in local
optima. To overcome the shortcomings of the traditional
approaches, evolutionary approaches were developed. Jalali
et al. [18] proposed one of the well-established
nature-inspired optimization algorithms called Ant Colony
Optimization (ACO) to be statistically implemented at the
Dez reservoir, Iran. +e authors concluded that with proper
tuning of parameters global optimal solution is achieved.
Labadie 2015 [17] developed and implemented Bat Algorithm
to Karoun-4 reservoirs and hypothetical systems and pre-
sented its excellence over the traditional approaches. Bioge-
ography Based Optimization Algorithm was validated using a
mathematical function and was further applied to the single
and multireservoir system [19]. Asadieh and Afshar [20]
presented a comparative analysis of the Charged System
Search Algorithm (CSSA) with Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), gradient-based NLP, and
ACO for benchmark problem and Dez reservoir in Iran.
CSSA is found to be superior in comparison to othermethods.
Crow algorithm outperformed other techniques when applied
to the multireservoir system in China [21]. +e optimal
cropping pattern for the Bilaspur project, Rajasthan, India,
was developed using the Differential Evolution technique
[22]. Garousi-Nejad et al. [23] tested the Firefly Algorithm on
mathematical benchmark functions and operation optimi-
zation of the reservoir with irrigation and hydropower as the
purposes. Firefly was found to be superior to GA in terms of
convergence rate and variance. Rule curves for the Pechiparai
reservoir, Tamil Nadu, India, were derived [24] using a re-
liability-based GA model. +e harmony Search method was
found to have potential when tested on the benchmark
problem and effectively solved the flood management
problem of the Narmab reservoir in Iran [25]. Afshar et al.
[26] concluded that HBMO results comparable to LP and
other well-developed optimization techniques. Hybrid Al-
gorithm (HA) of Particle Swarm Optimization (PSO) Algo-
rithm and Artificial Fish Swarm Algorithm (AFSA) was
developed and implemented by Yaseen [27] for the analysis of
the Karun-4 hydropower system. Hybridization overcomes
the drawback of AFSA and PSO when assessed based on
reliability, resilience, and vulnerability indices. Janga Reddy
and Nagesh Kumar [28] applied Particle SwarmOptimization
(PSO), Elitist Mutated PSO (EMPSO), and GA to the Bhadra
reservoir system, India. EMPSO outperformed standard PSO

and GA. Shark Algorithm (SA) was found to produce good
results when applied to complex reservoir problems [29].
Another hybrid AI-based model was proposed in [30], which
predicted water level prediction and uncertainty analysis at
Urmia lake in Iran. +is model was based on hybridization of
improved adaptive neurofuzzy inference system (ANFIS) and
multilayer perceptron (MLP) models are hybridized with a
sunflower optimization (SO) algorithm and shown a signif-
icant improvement in improving lake’s water level.

+e applications of recently explored evolutionary algo-
rithms, such as the Water Cycle Algorithm (WCA) [31],
Weed Optimization Algorithm (WOA) [32], andWolf Search
Algorithm (WSA) [33], have been remarkably established
over the past decade. +e recent review research was con-
ducted on the feasibility of evolutionary computing algo-
rithms for reservoir operation modeling [34]. +e review
research confirmed the capacity of the evolutionary algo-
rithms as advanced computer aid models owing to their
capability to improve the stochastic complexity and for a
better understanding of simulated reservoir operation. +ese
approaches are adopted mostly from nature like Particle
Swarm Optimization, Crow Algorithm, Weed Optimization,
Shark Algorithm, and many more mimicking the behavior of
particular species from nature; hence, are called Metaphor
algorithms. +ese optimization algorithms need regulation of
system explicit parameters. Subsequently, these are descrip-
tions that proliferate the exertions in tweaking as well as the
phase. +e algorithm-specific parameter fewer optimization
applications can be embarked upon by metaphor-less algo-
rithm as introduced by Rao.+e metaphor-less algorithm has
an advantage over metaheuristic techniques in that it does not
require algorithm-specific parameters to tune the algorithm.
+e metaphor-less algorithms applied so far in reservoir
operation studies are Teaching Learning Based Optimization
(TLBO) and Jaya Algorithm (JA). Kumar and Yadav [35]
reported the satisfactory performances of TLBO and JA when
applied to the benchmark studies. Paliwal et al. [36] tested JA
on the benchmark problem and found it to result better than
other approaches in the past and was also applied to a real case
of Mula reservoir, Maharashtra, India. Chong et al. [37]
applied JA for hydropower operation optimization to a res-
ervoir system in Malaysia. In this study, the uncertainty of
inflows is handled using the +omas–Fiering model. Results
obtained are compared with the results obtained from various
metaheuristic approaches, and performance indices are cal-
culated, which indicated JA is efficient in handling reservoir
operation optimization problems. Motevali Bashi Naeini and
Soltaninia [38] combined branch and bound (BB) with a
hybrid of PSO-LP and applied it to benchmark problems to
obtain a computationally efficient operation optimization
algorithm at the dam design stage. Recently, Rao algorithms
have been developed [39] and were tested on 23 benchmark
functions along with 25 unconstrained and 2 constrained
optimization problems. Wang et al. [40] applied the Rao-1
algorithm to parameter estimation of the photovoltaic cell
model and found it to be suitable for such problems. Rao and
Pawar [41] applied the Rao algorithm to mechanical system
problems which are constrained in nature and found Rao
algorithms to be superior to other algorithms.
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+e need for water resources management can be
achieved by optimizing the existing reservoir operation
[42, 43]. Various approaches have been adapted to achieve
this goal in the past and still, researches are going on in view
of achieving a better strategy [44, 45]. From the literature
review, it is found that Rao algorithms have never been
applied to the reservoir operation optimization problems,
albeit having shown enough promise in the other areas of
engineering optimization problems. +is led to the thought
of the application of these algorithms to the complex res-
ervoir operation optimization problem to assess its appli-
cability in such problems.

In this paper, this novel approach for reservoir operation
optimization using the three Rao algorithms is presented.
Rao algorithms are recently developed metaphor-less heu-
ristic algorithms which just need mathematical operators in
their equations and do not depend upon algorithm-specific
parameters. Hence, it is considered highly suitable for
problems such as reservoir operation that involve a large
number of variables and constraints. To assess the potential
of the proposed algorithms, it has been tested on two
benchmark problems (discrete-four reservoir operation
(DFRO) problem and continuous four-reservoir operation
(CFRO) problem) from the literature. +e performance
comparison of proposed algorithms with the other existing
optimization algorithms for reservoir operation optimiza-
tion is also presented, referring to the past studies.

2. Materials and Methods

2.1. Description of the Rao Algorithms. Rao algorithms are
metaphor-less algorithms and only need common control
parameters like that in TLBO and JA.+e update equation in
Rao algorithms is inherited from JA. Similar to JA, they also
require only mathematical operators to upgrade the solution
based on the best and the worst solution. In JA, interactions
were made between the candidate solution to be updated
with the best and with the worst solution. In the Rao-1
algorithm, interaction is between the best and the worst
values. In the other two algorithms, along with the inter-
action between the worst and the best value, there is random
interaction between the candidate solutions based on their
performances. +e reservoir operation optimization process
for the four-reservoir system problems using Rao algorithms
has been demonstrated in Figure 1.

2.2.Methodology of the Proposed Algorithms: RaoAlgorithms.
+e independent variables are initialized using minimum,
maximum bounds of the particular variable and random
number, as shown in the following equation:

Xb,c � Xb(  + r∗ Xb(  − min Xb( ( , (1)

where (Xb) is the minimum bound for the bth variable, r is a
random number ([0, 1]), (Xb) is the maximum bound for
the bth variable, Xb,c �Value of bth variable for cth candidate
solution. Dependable variable values are generated using the
values of independent variables.+en, the objective function
is computed further, considering constraint violation. +e

function value is obtained considering penalties for the
violation. Penalties are added to the objective function value
for a minimization problem to obtain the function value and
vice versa.

+e best and the worst solutions are selected amongst the
candidate solutions for the ath iteration. Let c be the can-
didate solution for ath iteration, then the updated value of bth

variable is obtained using equation (2a) for Rao-1, (2b) for
Rao-2, and (2c) for Rao-3, respectively:

X
’
b,c,a � Xb,c,a + rb,a Xb,best,a − Xb,worst,a , (2a)

X
’
b,c,a � Xb,c,a + r1,b,a Xb,best,a − Xb,worst,a 

+ r2,b,a Xb,c,a orXb,d,a


 − Xb,d,a orXb,c,a


 ,

(2b)

X
’
b,c,a � Xb,c,a + r1,b,a Xb,best,a − Xb,worst,a


 

+ r2,b,a Xb,c,a orXb,d,a


 − Xb,d,a orXb,c,a


 ,

(2c)

where, Xb,c,a � value of bth variable for cth candidate solution
for ath iteration, Xb,best,a � value of bth variable for the best
candidate solution for ath iteration, Xb,worst,a � value of bth
variable for the worst candidate solution for ath iteration,
Xb,c,a
′� updated value of bth variable for cth candidate so-

lution for ath iteration, and r1,b,a and r2,b,a � random
numbers for bth variable during ath iteration. In equations
(2b) and (2c), the terms Xb,c,a and Xb,d,a represents the
variable values corresponding to cth and dth candidate so-
lution and random interaction between them. If the value
corresponding to cth is better than dth then the term
“Xb,c,a orXb,d,a” becomes Xb,c,a and “Xb,d,a orXb,c,a” be-
comes Xb,d,a and vice versa in the opposite case.

New function values that are computed using updated
variable values are compared to the respective function
values. +e adopted function is the best one, and the worst
was rejected. +e best values for the respective candidate
solution are now the preliminary set for the following it-
eration. +e same process continues until the termination
criterion is reached.

2.3. Case Study 1: Discrete Four-Reservoir Operation (DFRO)
System Problem. A hypothetical discrete four-reservoir
system introduced by Larson [46] has been used as the case
study: a benchmark problem to test the potential of Rao
algorithms.+e schematic view of this case study is shown in
Figure 2. +is system was also used as a benchmark in past
studies to test other optimization techniques in the field of
reservoir operation studies. +e system is a series and
parallel combination of four reservoirs. Reservoirs 1–3
produce hydropower, while reservoir 4 is a multipurpose
reservoir serving irrigation as well as hydropower produc-
tion. For maximization of the profits from this system, a
twelve-hour operating period is considered in the objective
function.

Data for the benchmark problem are shown in Table 1.
+e objective function (F) is the maximization of net

profit obtained from all four reservoirs. Mathematically, it
can be expressed as follows:
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MaxF � 
4

i�1


12

t�1
bi(t) · Ri(t) + 

12

t�1
b5(t) · R4(t), (3)

where bi (t)� 4∗ 12 matrices of benefit from hydropower
production from all the four reservoirs. +e benefit function
matrix is as follows:

bi(t) �

1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4

1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8

1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1

1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

b5 (t) is the benefit from irrigation for reservoir 4, and b5
(t)� [1.61.71.81.92221.91.81.71.61.5].

+e objective function is subjected to the following
constraints.

2.3.1. Continuity Constraint. +e continuity constraints for
each reservoir over each operating period “t” are as follows:

Si(t + 1) � Si(t) + Ii(t) + M.Ri(t), (5)

where Si (t+ 1) denotes the reservoir storage at period “t”
and for reservoirs i� 1 to 4. Si(t) presents the reservoir
storage at the beginning of period “t” and for reservoirs i� 1
to 4. Ii(t) indicates the reservoir inflows during the period
“t” and for the reservoirs i� 1 to 4. Ri(t) denotes the res-
ervoirs releases during the period ‘t’ and for the reservoirs
i� 1 to 4. M� 4× 4 matrix of indices of reservoir connec-

tions, M �

−1 0
0 −1

0 0
0 0

0 1
1 0

−1 0
1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.3.2. End Storage Constraint. End storage (Si(13)) should
be at least 5, 5, 5, and 7 units for reservoirs 1, 2, 3, and 4,
respectively, to maintain the continuity of the operation.+e

Initialize population size and max FEs

Initialize releases using equation 1 and storage using equation 5

Calculate the objective function value with penalty consideration for constraint violation

Identify the best and the worst solution

Update the solution using equation 2

Is the solution
better?

Update the solution Keep the previous solution

Is termination
criteria satisfied?

Obtain the solution

Yes

Yes No

No

Figure 1: Flowchart of Rao-1 algorithm.
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penalty function applied for this constraint violation is the
same as that applied by the other researches and is as follows:

gi Si 13, di(   � 40 Si(13) − di 
2
, for Si(13)≤ di,

gi Si 13, di(   � 0, for Si(13)>di.
(6)

Hence, the modified function is represented as follows:

MaxF � 
4

i�1


12

t�1
bi(t) · Ri(t)

+ 
12

t�1
b5(t) · R4(t) − gi Si 13, di(  .

(7)

2.4. Case Study 2: Continuous Four-Reservoir Operation
(CFRO) SystemProblem. CFRO was introduced by Te Chow
and Cortes Rivera [47] in 1974. +e schematic sketch of the

CFRO is shown in Figure 2. +e CFRO problem has sim-
ilarities with the DFRO problem. +e difference is in the
inflows and bounds. +e connections between the reservoirs
in the system and benefits functions are the same as DFRO.
Hence, the continuity equation and objective function are
the same.

+e minimum releases for time period t� 1 to 12 for
reservoir 1, 2, 3, and 4 are 0.005, 0.0005, 0.0005, and 0.005,
respectively. +e maximum releases for periods t� 1 to 12
for reservoirs 1, 2, 3, and 4 are 4, 4.5, 4.5, and 8, respectively.
+e initial and final storages for reservoirs 1, 2, 3, and 4 are 6,
6, 6, and 8, respectively. +e minimum storages for t> 1 to
t� 12 are 1 for all 4 reservoirs. +e inflows for t� 1 to 12 are
shown in Table 2. +e maximum storages for t� 2 to 12 are
given in Table 3. +e penalty factor was 40 for DFRO and 13
for CFRO based on past studies.

3. Results and Discussion

3.1. DFRO. Rao algorithms were applied to the DFRO
system optimization: the first considered benchmark
problem.+e population size is set to 50, 40, and 40 for Rao-
1, Rao-2, and Rao-3 algorithms, respectively, after con-
ducting the sensitivity analysis. +e population size was
initially set as 50 based on past studies (Kumar and Yadav
[35]). Rao-1 resulted in the optimal solution for a population
size of 50, while Rao-2 and Rao-3 did not. Rao-2 and Rao-3
yielded the optimal solutions for a population size of 40 in
both cases. +e global optimal solution with the objective
function value of 401.3 has been achieved for the DFRO
problem using the Rao-1 algorithm with a population size of
50 and maximum Function Evaluations (FEs) of 1,50,000.
For Rao-2, the optimal value of 401.23 is achieved at a
population size of 40 and Max FEs of 11,00,000 and that for
Rao-3, the optimal value achieved is 401.4 at a population
size of 40 and Maximum FEs of 12,51,000. Rao-3 led to a
higher value of an objective function with a slight violation
of constraints. According to the past studies also 401.3 is the
global optimal solution for the provided benchmark prob-
lem without constraint violation, which is achieved in the
case of the Rao-1 algorithm model. +ese algorithms result
in three values-the best, the mean, and the worst for a
particular solution. Runs represent the number of times the
same model is operated for the same given set of conditions.
Generally, it is preferred to be selected as 10. It can have a
higher value also like 15 or 20, depending upon the variation
observed in the results for the same set of conditions. In the
present study, it has been adopted for runs as 10. For 10 runs,
the best, the mean, and the worst values for these algorithms
corresponding to their particular solution along with the
standard deviation are shown in Table 4. Rao-1 showed the
least standard deviation of 0.45, and the higher standard
deviation is in the case of Rao-3. From Table 4, it can also be
observed that there is less variation in the best and the worst
values of the function. Hence, it can be said that Rao-1 has
less standard deviation as it has confined the exploration of
the updated value between the worst and the best. In the
updated equation of Rao-1, it shows the random interaction
between the best and the worst values rather than with the

1 3

2

4

I1
I3

I4

R1

R2

R3

R4

I2

Figure 2: Four reservoir systems. 1, 2, 3, and 4: number of res-
ervoirs; I1, I2, I3, and I4: inflows to reservoirs 1, 2, 3, and 4, re-
spectively; R1, R2, R3, and R4: releases from reservoirs 1, 2, 3, and 4,
respectively.

Table 1: Data for the DFRO system (benchmark problem) [46].

Parameters Reservoir
1

Reservoir
2

Reservoir
3

Reservoir
4

Inflow 2 3 0 0
Minimum
releases 0 0 0 0

Maximum
releases 3 4 4 7

Minimum
storage 0 0 0 0

Maximum
storage 10 10 10 15

Initial storage 5 5 5 5
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random variable value or specific value, thereby reducing the
range. Hence, fewer changes of deviation in the solution,
which may further lead to faster convergence in the case of
the Rao-1 algorithm. On the other hand, Rao-2 and Rao-3
algorithms involve the interaction between the best and the
worst along with random interactions between the variable
of different candidate solutions, which may again need some
more time (FEs) but involves a more random nature. +is
results in a higher standard deviation and the requirement of
more number function evaluations. Figure 3 demonstrates
the resulting release pattern for the four reservoirs using
Rao-1, Rao-2, Rao-3, JA, and LP algorithms. +e release
pattern for reservoir 1 is found to be the same for Rao al-
gorithms and JA but is different for LP at time step 1. Rao-1
and JA have 2 units’ higher releases than LP, while at Step 4
of the period, LP has 2 units’ higher releases for nearly the
same benefit function in both cases, which shows the balance
of net benefit for reservoir 1. For reservoir 2, Rao-2 and Rao-

3 algorithm models have produced the same releases till 10
time steps and for the last 2 time steps showed different
trends, thereby balancing the releases in this case. While
Rao-1 synchronized with JA except for 3 time steps but both
the models have led to an equal quantity of releases for this
reservoir. Similarly, LP showed a different trend with these
algorithms but has led to some amount of release for res-
ervoir 2. In the case of reservoir 3, the releases obtained from
the Rao-1 algorithm varied from those obtained from the
other approaches; however, the net benefits achieved are the
same, leading to the same optimal solution. Rao-1 and Rao-2
resulted in the optimal solution with releases varying from
those of the other approaches at 1 and 2 time steps, re-
spectively. Rao-2 released nearly the same quantity as that by
other approaches while Rao-1 released a bit higher than the
others. Since it is a multipurpose multireservoir operation,
the releases for different reservoirs obtained from different
approaches can be different, leading to the same optimal
solution as the single objective function has been framed by
using the benefit function associated with the releases from
each reservoir.

+e performance comparison of these algorithms with
other approaches developed and applied to this system in the
past has been shown in Table 5. From Table 5, it can be
observed that Rao-1 results in the optimal value of 401.3 for
150,000 FEs while Rao-2 and Rao-3 resulted in the optimal
value of 401.23 and 401.4 for the Max FEs of 1,100,000 and
1,251,000, respectively. From Table 5, it can be seen that JA
has obtained the optimal value of 401.4 with FEs� 350,000
(Kumar and Yadav [35]) and 325,000 [36], while Rao-1
resulted in the optimal solution with FEs� 150,000, which is
nearly 50% of the FEs in JA and a way better than Rao-2 and
Rao-3 algorithms in terms of the number of function
evaluations. Hence, it can be said that the Rao-1 algorithm
model achieved the optimal solution in less computational
time, indicating the faster convergence of the Rao-1 algo-
rithmmodel.+us, the Rao-1 algorithmmodel is found to be
superior to other optimization algorithms and as well as to
its parent algorithm for this case study.

3.2. CFRO. Rao algorithms have also been applied to the
second case study, i.e., CFRO system optimization: another
benchmark problem. +e population size was initially set as
50, based on past studies (Kumar and Yadav [35]). +e
optimal solution with the objective function value of 308.8
has been achieved for the CFRO system problem using the
Rao-1 algorithm with a population size of 50 and maximum
Function Evaluations (FEs) of 155,000. For Rao-2, the op-
timal value of 304.64 is achieved at a population size of 50
and Max FEs of 725,000 and that for Rao-3, the optimal
value achieved is 307 at a population size of 50 and Max-
imum FEs of 700,000. +e LP model has obtained the value
of 308.3 as the optimal objective function value. +e ob-
jective function is the maximization of benefits which has
better been achieved by the Rao-1 algorithm. Rao algorithms
result in three values—the best, the mean, and the worst for a
particular solution. Runs represent the number of times the
same model is operated for the same given set of conditions.

Table 2: Inflows for the CFRO system.

Time Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
1 0.5 0.4 0 0
2 1 0.7 0 0
3 2 2 0 0
4 3 2 0 0
5 3.5 4 0 0
6 2.5 3.5 0 0
7 2 3 0 0
8 1.25 2.5 0 0
9 1.25 1.3 0 0
10 0.75 1.2 0 0
11 1.75 1 0 0
12 1 0.7 0 0

Table 3: Maximum storages for the CFRO system.

Time Reservoir 1 Reservoir 2 Reservoir 3 Reservoir 4
2 12 15 8 15
3 12 15 8 15
4 10 15 8 15
5 9 12 8 15
6 8 12 8 15
7 8 12 8 15
8 9 15 8 15
9 10 17 8 15
10 10 18 8 15
11 12 18 8 15
12 12 18 8 15

Table 4: Best, mean, and worst objective function values obtained
corresponding to the optimal solution using Rao algorithms for the
DFRO system problem.

Algorithm Runs Best Mean Worst Standard deviation
Rao-1 10 401.3 401.01 400.69 0.45
Rao-2 10 401.23 397.2 395.07 1.83
Rao-3 10 401.4 398.34 395.74 1.97
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In the present study, it has been adopted for runs as 15. For
15 runs, the best, the mean, and the worst values for these
algorithms corresponding to their particular solution along
with the standard deviation are shown in Table 6. +e
highest standard deviation is observed for the Rao-3 algo-
rithm. Figure 4 demonstrates the resulting release pattern for
the CFRO using Rao-1, Rao-2, Rao-3, and LP algorithms.
Releases obtained from Rao-1, LP, Rao-3 are the same for 12

time steps, while Rao-2 shows different releases at 2 time
steps for reservoir 1. While, for reservoir 2, release patterns
are different in the case of all the optimization algorithms.
Variation in releases obtained from Rao algorithms and LP
at few time steps is observed in the case of reservoirs 3 and 4.

+e performance comparison of these algorithms with
other approaches developed and applied to this system in the
past has been shown in Table 7. From Table 5, it can be
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Figure 3: Release pattern for the DFRO system problem obtained through Rao algorithms. (a) Reservoir 1. (b) Reservoir 2. (c) Reservoir 3.
(d) Reservoir 4.

Table 5: +e benchmark models and the proposed new algorithm of the current research performance for the DFRO system problem.

Source Model +e best objective function value Function evaluations required
[46] DPSA 401.30 NA
[48] DDDP 401.3 NA
[49] FDP 399.0 NA

[50]
GA 401.3 2,279,500
PSO 399.7 748,000

EMPSO 401.3 325,400
[32] WOA 401.30 400,000

[35] TLBO 401.3 350,000
JA 401.4 350,000

[36] JA 401.4 325,000

Present study
Rao-1 401.3 150,000
Rao-2 401.23 1,100,000
Rao-3 401.4 1,251,000
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observed that Rao-1 results in the optimal value of 308.8 for
155,000 FEs while Rao-2 and Rao-3 resulted in the optimal
value of 304.64 and 307 for the Max FEs of 725,000 and
700,000, respectively. From Table 7, it can be seen that JA has
obtained the optimal value of 308.4 withFEs� 350,000
(Kumar and Yadav [35]), which is the highest objective
function value in the past, while Rao-1 resulted in the op-
timal solution of 308.8 with FEs� 155,000, which is nearly
50% of the FEs in JA and a way better than Rao-2 and Rao-3
algorithms in terms of the number of functions evaluations.
+e objective function is maximization which is better
achieved by Rao-1 with slight constraint violation leading to
the highest objective function value with a considerable
range of violations and lesser FEs. Hence, it can be said that
the Rao-1 algorithm model achieved the optimal solution in
less computational time, indicating the faster convergence of
the Rao-1 algorithm model. +us, the Rao-1 algorithm

model is found to be suitable for its application the complex
reservoir operation problems.

4. Conclusions

+eRao Algorithms are similar to the Jaya Algorithm (JA) as
these are also metaphor-less algorithms and do not need any
algorithm-specific parameter. +ese algorithms just need
mathematical operators in the update equation along with
the best and the worst values. +e complexity of JA has been
examined empirically in terms of big-O notations using the
GuessCompx tool [53, 54]. +e complexity is compared with
the metaheuristic technique (GA) and both methods showed
linear complexity (Paliwal et al. [36]). Hence, these algo-
rithms reduce the computational complexity. +ey are also
found to be easy in application and efficient too. +e pa-
rameters in the update equation of JA are shuffled to prepare

Table 6: Best, mean, and worst objective function values obtained corresponding to the optimal solution using Rao algorithms for the CFRO
system problem.

Algorithm Runs Best Mean Worst Standard deviation
Rao-1 15 308.8 304.04 295.07 4.43
Rao-2 15 304.64 295.6 288.19 4.34
Rao-3 15 307 299.74 279.32 7.76

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

1 2 3 4 5 6 7 8 9 10 11 12

Re
le

as
es

Time period

LP
Rao-1

Rao-2
Rao-3

(a)

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

1 2 3 4 5 6 7 8 9 10 11 12

Re
le

as
es

Time period

LP
Rao-1

Rao-2
Rao-3

(b)

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 2 3 4 5 6 7 8 9 10 11 12

Re
le

as
es

Time period

LP
Rao-1

Rao-2
Rao-3

(c)

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

1 2 3 4 5 6 7 8 9 10 11 12

Re
le

as
es

Time period

LP
Rao-1

Rao-2
Rao-3

(d)

Figure 4: Release pattern for the CFRO system obtained through Rao algorithms. (a) Reservoir 1. (b) Reservoir 2. (c) Reservoir 3.
(d) Reservoir 4.
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the update equations for Rao algorithms. In this study,
outcomes from Rao Algorithms have been compared to
other approaches applied in the past and also to its parental
algorithm (JA). Rao-1 Algorithm is found to be superior to
other algorithms for these case studies. Rao-1 Algorithm
leads to the global optimal solution with the least FEs as
compared to all other optimization models found in the
literature for DFRO and higher objective function value with
fewer FEs with considerable constraint violation for CFRO
system problem. Rao-1 Algorithm model outperformed
every other model in terms of computational time. Hence, it
can be concluded that the Rao-1 Algorithm model can be
utilized in the field of reservoir operation optimization as it
can lead to near global optimal solution with much fewer
function evaluations. Future research studies can be adopted
on the investigation of the proposed optimization algorithm
for other water resources management and operation.
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