
Research Article
Solving a Joint Pricing and Inventory Control Problem for
Perishables via Deep Reinforcement Learning

Rui Wang ,1 Xianghua Gan ,1 Qing Li ,2 and Xiao Yan 1

1School of Business Administration, �e Southwestern University of Finance and Economics, Chengdu, Sichuan, China
2China Construction Bank, Hengshui Branch, Hengshui, Hebei, China

Correspondence should be addressed to Xianghua Gan; ganx@swufe.edu.cn

Received 24 October 2020; Revised 6 January 2021; Accepted 12 January 2021; Published 30 January 2021

Academic Editor: Abd E.I.-Baset Hassanien

Copyright © 2021 Rui Wang et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study a joint pricing and inventory control problem for perishables with positive lead time in a finite horizon periodic-review
system. Unlike most studies considering a continuous density function of demand, in our paper the customer demand depends on
the price of current period and arrives according to a homogeneous Poisson process. We consider both backlogging and lost-sales
cases, and our goal is to find a simultaneously ordering and pricing policy to maximize the expected discounted profit over the
planning horizon. When there is no fixed ordering cost involved, we design a deep reinforcement learning algorithm to obtain a
near-optimal ordering policy and show that there are some monotonicity properties in the learned policy. We also show that our
deep reinforcement learning algorithm achieves a better performance than tabular-based Q-learning algorithms. When a fixed
ordering cost is involved, we show that our deep reinforcement learning algorithm is effective and efficient, under which the
problem of “curse of dimension” is circumvented.

1. Introduction

.e inventory control of perishables has received increasing
attention from the business community and academia.
According to a report released by the Food Market Institute
(2012) in the United States, as of 2005, the total sales of
perishables accounted for more than half of sales in su-
permarkets and grocery stores in the US, and this proportion
is still increasing. Meanwhile, losses due to the deterioration
of perishables also account for a large proportion of the total
retail cost. Besides, pricing is also an important and effective
lever for the retail industry to manage the profitability of
perishables. As shown in Karaesmen et al. [1] and Chen et al.
[2], a firm’s profit increases significantly by dynamic ad-
justment of prices of perishables according to the availability
of the inventory and the remaining lives of perishables.

In this research, we study a joint pricing and inventory
control problem for perishables in a finite planning horizon.
Demand in each period depends on the current price and
satisfies a Possion distribution. .e problem of inventory
control for perishables is usually more difficult than the one

for nonperishables, in which the inventory state can be
represented by a single variable. .e state of perishables has
to be recorded by a vector to account for items with different
lifetimes, which makes the analytical studies much more
difficult. As a fixed ordering cost can make the problem even
more difficult in a dynamic setting, few studies consider it
due to the tractability in analysis.

One main contribution in this research is that we
consider a fixed ordering cost in our model. We study both
the backlogging case and the lost-sales case and allow for
positive lead time. Our goal is to find a near-optimal or-
dering and pricing policy to maximize the expected profit in
the planning horizon. .is problem is hard to analyze by
traditional dynamic programming approach in the inven-
tory control literature. .erefore, we use a reinforcement
learning approach to solve the problem.

In the literature, there have been a few papers that study
inventory control problems with reinforcement learning,
such as Charharsooghi et al. [3], Dogan et al. [4], and
Kara et al. [5]. Unlike these papers which use Q-learning, we
take a deep reinforcement learning approach and show that

Hindawi
Complexity
Volume 2021, Article ID 6643131, 17 pages
https://doi.org/10.1155/2021/6643131

mailto:ganx@swufe.edu.cn
https://orcid.org/0000-0001-9037-1312
https://orcid.org/0000-0001-7242-9787
https://orcid.org/0000-0002-1440-428X
https://orcid.org/0000-0002-8770-4531
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6643131

it outperforms Q-learning models that do not use neural
networks. .e outperformance of deep reinforcement
learning has also been shown by Ke et al. [6] and Shihab et al.
[7] for complex problems.

In this paper, we set up deep reinforcement learning
models to study the joint pricing and inventory control
problem of perishables. We adopt a FIFO (first-in-first-out)
policy in this study. When there is no fixed ordering cost
involved, we show that the fixed pricing strategy is domi-
nated by the dynamic pricing strategy, under which the price
can be adjusted according to the availability of inventory and
the lives of remaining items. We set up a benchmark based
on realized demand for this no fixed ordering cost case and
show that our designed deep reinforcement learning
methods achieve a better performance than tabular-based
Q-learning. We also find some monotonicity properties in
our learned policies; our learned order quantity is nonin-
creasing in inventory position or on-hand inventory and
price decision is most sensitive to the oldest on-hand in-
ventory. Moreover, in order to show the expansibility of the
proposed algorithm, we extend the distribution of the de-
mand and take an additive form in Chen et al. [2] where the
customer demand depends on the price of current period
plus an additive random term; finally, we obtain a near-
optimal performance by our proposed deep reinforcement
learning models. When the fixed ordering cost is taken into
account in the joint pricing and inventory control system, we
set up a performance upper bound based on the realized
demand in each period in order to assess the performance.
.rough our proposed methods, we find convergent policies
and critical values under which orders should be placed.

2. Literature Review

We review two streams of literature which are closely related
to our research: traditional inventory control management
for perishables and inventory control management with
reinforcement learning.

2.1. Traditional Inventory Control Management for
Perishables. .ere is a considerable literature devoted to
dynamic inventory control for nonperishable products; see,
for example, Presman and Sethi [8], Caliskan-Demirag et al.
[9], Alp et al. [10], Almaktoom et al. [11], Azghandi et al.
[12], Li et al. [13], and Gan et al. [14]..e dynamic inventory
control for perishable products has not been widely studied
in the literature. .is is not to say that the literature does not
realize the importance of the study of perishable studies.

Indeed, there are a number of papers devoted to the
study of inventory decisions for perishable products. Nah-
mias and Pierskalla [15] studied a dynamic inventory control
with a fixed lifetime, zero lead time, and uncertainty demand
for perishable products. Nahmias [16], Fries [17], and
Nahmias [18] studied the same problem, with multiple
periods of lifetime and zero lead time, and their research
studies are all to satisfy the same assumption that only
products that exceed the life cycle will be abandoned, which
is known as the first-in-first-out policy (FIFO), and this

policy is widely used in the research of perishable retailing.
And they proved that the optimal order quantity under
different inventory ages is decreasing. Prastacos [19]
reviewed some important theories and practices in blood
inventory management and proposed that this kind of ap-
plication can be extended to other perishable product in-
ventory control problem. Ferguson and Koenigsberg [20]
considered a two-period joint pricing and inventory control
problem with a random lifetime, emphasizing and discus-
sing the impact of competition between new inventory and
surplus inventory over the previous period on inventory and
pricing decisions for the first time interval. Chen et al. [21]
used Pontryagin’s maximum principle method to investigate
the optimal policies for the pricing and replenishment of
fashion apparel with short product lifecycles. Heuristic al-
gorithms are also increasingly being used to address the
problem of dynamic pricing and inventory control for
perishables. Li et al. [22] proposed a base-stock/list-price
heuristic policy to solve the problem of dynamic pricing and
inventory control for a perishable product, assuming that the
demand is a function of price and zero lead time. Li and Lu
[23] studied a joint optimization of the price and order
quantity of a perishable product and proposed a Minimax
Regret algorithm. Li et al. [24] discussed a new dynamic
pricing and inventory control scenario for perishables. New
and old products cannot be sold at the same time. .e seller
can decide whether to discard the remaining inventory in the
previous period, even though the lifetime may not be over.
And they proposed a fractional programming heuristic al-
gorithm to obtain a stable structural policy.

Chen et al. [2] is closely related to our research. .ey
considered positive lead time and used the concept of
L-convexity/concavity to analyze the problem and proposed
a heuristic algorithm to solve the problem. However, the
traditional approach used in their research is not able to
solve the problem with a fixed ordering cost. By using neural
networks with hidden layers to approximate state-action
values, our deep reinforcement learning approach exploits
the advantages of deep learning [25] and reinforcement
learning and is shown to be effective and efficient to find the
solution.

2.2. Inventory Control with Reinforcement Learning. In the
literature, there have been few papers that study inventory
control problems with reinforcement learning.

Giannoccaro and Pontrandolfo [26] studied the coor-
dination of inventory policies adopted by different supply
chain factors which are a major issue in supply chain in-
ventory management, and they used a reinforcement
learning approach to manage inventory decisions at all
stages of the supply chain in an integrated manner and
aimed at optimizing the performance of the whole supply
chain. Chaharsooghi et al. [3] proposed an inventory control
system based on reinforcement learning methods, which
included uncertain delivery times and uncertain customer
requirements to determine the ordering policy for each
order point in the supply chain. Chaharsooghi et al. [3] used
Q-learning to solve supply chain ordering management and

2 Complexity

applied to the beer game. Jiang and Sheng [27] proposed a
case-based reinforncement learning algorithm (CRL) for
dynamic inventory control in a multiagent supply-chain
system. .ey studied a multiagent simulation of a simplified
two-echelon supply chain and showed the effectiveness of
the method they proposed. Sui et al. [28] considered a
Vendor-Managed Inventory (VMI) system where the sup-
plier makes decisions of inventory decisions of inventory
management for the retailer, and the retailer is not re-
sponsible for placing orders. .rough a methodology based
on reinforcement learning and numerical study, they show
their approach can outperform the newsvendor. Zarandi
et al. [29] presented a flexible fuzzy reinforcement learning
algorithm where the value function is approximated by a
fuzzy rule-based system and considered the problem of a
fuzzy agent (supplier), that is, how to determine the amount
of orders for each retailers based on their utility for supplier
when its supply capacity is limited. Finally, the effectiveness
of their proposed algorithm is proved by a simulation.
Dogan et al. [4] used the Q-learning method to study an
ordering and pricing policy in a multiretailer environment.
Rana and Oliveira [30] use reinforcement learning methods
to develop dynamic pricing strategies for interdependent
perishable products or service. Kara and Dogan [5] used
Q-learning and Sarsa reinforcement learning algorithms to
study a dynamic inventory control issues for perishable
products, with positive lead time and fixed lifetime. Our
research further uses deep reinforcement learning to study
this dynamic inventory control of perishable products.

.e aforementioned studies investigate the inventory
problem for nonperishable and perishable products and use
the nondeep reinforcement learning methods. Compared to
their problems, our problem focuses on the inventory
control of perishables, which makes the problemmuchmore
difficult. We use neural networks to avoid the curse of di-
mensionality and show that our deep reinforcement learning
model outperforms the traditional reinforcement learning
models without using neural networks.

3. Model

We consider a periodic-review single-product inventory
system over a finite horizon of T periods. .e whole process
can be defined as a Markov Decision Process. .e decision
maker is called the agent, and the thing it interacts with is
called the environment. At each period (step) of a sequence
of discrete time periods, t � 1, 2, . . . , T, the agent and the
environment interact; the agent selects the action denoted by
At , and the environment responds to At and presents a new
situation to the agent. At the end of the period, the agent
receives a numerical reward denoted by Rt+1, Rt+1 ∈ R, in
part as a consequence of its action. .roughout this paper,
we let superscript t denote the period. More specifically, by
superscript t, we mean the beginning of the period; we
denote the end of period t, which coincides with the be-
ginning of the next period as t + 1.

Customer demand, denoted by Dt, at the beginning of
period t, is represented by a Poisson distribution with the
parameter as dt or dt(At) if the agent’s action At at the
beginning of period t changes the demand distribution and
d(·) is a function of selling price p, strictly decreasing the
selling price p. Let the product’s finite lifetime be denoted by
l, variable cost by ct, and leadtime by Lt (0≤ Lt < l). Let the
age of an item be 0 by the time it is shipped to the agent, and
its residual lifetime be l − i when its age is i. When an item’s
age is greater than l, it has to be disposed. .e inventory
state, also known as the state of the agent, at the beginning of
period t can be represented by a (l − 1)-dimensional vector:

X
t

� x
t
1, . . . , x

t
i , . . . , x

t
l− 1􏼐 􏼑, (1)

where xt
i represents the level of inventory position of the

items at the age of i. In particular, xt
o ≡ 􏽐

l− 1
L xt

i (when L � 0,
xt

o ≡ 􏽐
l− 1
1 xt

i) is the level of on-hand inventory, and
xt ≡ 􏽐

l− 1
1 xt

i is the level of inventory position of all ages.

3.1. An Action. Here, action space At refers to the order
quantity qt and price decision pt. .e selling pricing pt is
restricted to an interval [p, p]. Based on the selling price p,
the parameter of Poisson demand d ∈ [d, d], where
d � d(p), d � d(p):

A
t

� q
t
, p

t
􏼐 􏼑. (2)

3.2. Update Rule. Update rule, denoted by h(·), describes
the update of the environment state. In our research, the
supply state remains unchanged in each period
(Mt+1 � Mt). .e demand state in each period depends on
selling price p. Last, we need to define the update rules for
the inventory state.

.e update rules for the inventory state Xt can be di-
vided into two cases according to the unmet demand
handing principle. We first consider the backlogging case. If
L � 0 and L � 1, then xt+1

i � xt
i− 1 − (Dt − (xt

i + · · · + xt
l− 1))

+

for i � 1 and xt+1
i � (xt

i− 1 − (Dt − (xt
i + · · · + xt

l− 1))
+)+ for

i � 2, . . . , l − 1; although L � 0 and L � 1 have the same state
transition rule, the reward function is different; if L> 1, then
xt+1

i � xt
i− 1 for i � 1, . . . , L − 1,

xt+1
i � xt

i− 1 − (Dt − (xt
i + · · · + xt

l− 1))
+ for i � L, and xt+1

i �

(xt
i− 1 − (Dt − (xt

i + · · · + xt
l− 1))

+)+ for i � L + 1, . . . , l − 1.
For the lost-sales case, if L � 0 and L � 1, then xt+1

i �

(xt
i− 1 − (Dt − (xt

i + · · · + xt
l− 1))

+)+ for i � 1, . . . , l − 1; if
L> 1, then xt+1

i � xt
i− 1 for i � 1, . . . , L − 1 and

xt+1
i � (xt

i− 1 − (Dt − (xt
i + · · · + xt

l− 1))
+)+ for i � L, . . . , l − 1.

3.3. Reward Function. In our study, our goal is to maximize
the accumulative expected profit in the planning horizon, so
our reward function Rt+1 can be represented by the following
form. We first consider the backlogging case. If L � 0, then

Complexity 3

R
t+1

�
p

t ∗D
t

− c∗ q
t

− h∗ x
t
o + x

t
0 − D

t
􏼐 􏼑 −]∗ x

t
l− 1 − D

t
􏼐 􏼑

+
, if x

t
o + x

t
0 ≥D

t
,

p
t ∗D

t
− c∗ q

t
− u∗ D

t
− x

t
o − x

t
0􏼐 􏼑, if x

t
o + x

t
0 <D

t
.

⎧⎪⎨

⎪⎩
(3)

If L> 0, then

R
t+1

�
p

t ∗D
t

− c∗ q
t

− h∗ x
t
o − D

t
􏼐 􏼑 −]∗ x

t
l− 1 − D

t
􏼐 􏼑

+
, if x

t
o ≥D

t
,

p
t ∗D

t
− c∗ q

t
− u∗ D

t
− x

t
o􏼐 􏼑, if x

t
o <D

t
.

⎧⎪⎨

⎪⎩
(4)

For the lost-sales case, if L � 0, then

R
t+1

�
p

t ∗D
t

− c∗ q
t

− h∗ x
t
o + x

t
0 − D

t
􏼐 􏼑 −]∗ x

t
l− 1 − D

t
􏼐 􏼑

+
, if x

t
o + x

t
0 ≥D

t
,

p
t ∗ x

t
o + x

t
0􏼐 􏼑 − c∗ q

t
− u∗ D

t
− x

t
o − x

t
0􏼐 􏼑, if x

t
o + x

t
0 <D

t
.

⎧⎪⎨

⎪⎩
(5)

If L> 0, then

R
t+1

�
p

t ∗D
t

− c∗ q
t

− h∗ x
t
o − D

t
􏼐 􏼑 −]∗ x

t
l− 1 − D

t
􏼐 􏼑

+
, if x

t
o ≥D

t
,

p
t ∗x

t
o − c∗ q

t
− u∗ D

t
− x

t
o􏼐 􏼑, if x

t
o <D

t
.

⎧⎪⎨

⎪⎩
(6)

where inventory carried forward to the next period incurs a
unit holding cost h, unmet demand incurs a unit penalty cost
u, and] is unit disposal cost. When fixed ordering cost K is
considered, reward function above will subtract K if order
quantity is not 0.

.e sequence of events in period t is as follows:

(1) Based on the environment state Et,
Et ≡ (Dt, Mt, Xt), the agent selects an action At.
Note that At is a vector, including ordering and
pricing decisions. .e order will be delivered at the
beginning of period t + L; when L � 0 the order is
delivered immediately.

(2) During period t, demandDt arrives, which is discrete
and stochastic depending on the selling price pt, and
is satisfied by the on-hand inventory as much as
possible by the agent. Unsatisfied demand is either
backlogged or lost; the remaining inventory with
positive lifetime can be carried over to the next
period.

(3) At the end of period t, the agent receives a reward
Rt+1, which depends on the environment state and
action At.

(4) At the beginning of period t + 1, the agent receives
an order (if any), and the environment state is
updated to Et+1 according to the update rule.

h: E
t
, A

t
􏼐 􏼑⟶ E

t+1
. (7)

For this joint pricing inventory problem, we introduce
the notations in Table 1.

In this paper, we assume as in Chen et al. [2] that
c≤ u/1 − c, which eliminates the incentive to intentionally
carry the back orders. We also assume that items with
different lifetimes are charged the same price and that the
back orders are met at cost c at the end of each planning
period.

4. Deep Reinforcement Learning Methods

.e objective of reinforcement learning is to learn a policy π
that achieves near-optimal accumulated reward for the
agent. Q-learning [31] is one widely used value iterative
reinforcement learning method where the expected total
discount rewards of state-action pairs can be approximated
by a Q-function table based on the bellman equation, as
shown in Function 7. Q-learning also has obvious limitation,
that is, when there is a large state space, it is impractical and
inefficient to record all the states and actions. Mnih et al. [32]
extends Q-learning to Deep Q-network (DQN) which uses a
neural network to approximate the Q-function table. DQN
updates the parameters of the neural network by minimizing
the difference between the predicted Q-values and the target
Q- values, where the targetQ-values are estimated by current

4 Complexity

reward and predicted Q-values from the next state. Mean-
while, to avoid training instability caused by correlation
between training data, a replay memory pool is used:

Q(s, a)←Q(s, a) + α R + cmaxa′Q s′, a′(􏼁 − Q(s, a)􏼂 􏼃.

(8)

As mentioned before, in our joint pricing and inventory
control problem, the state of the agent is expressed by the
inventory state Xt which integrates different ages and
corresponding quantities. Here, the initial inventory state is
X0. In our proposed algorithm PAQ-DQN, there are two
same neural networks with the same structure but different
parameters θ and 􏽢θ, respectively. We adopt the fixed Q-
targets’ policy in standard DQN. .e neural network that
predicts Q-values has the latest parameters, while the neural
network that predicts target Q-values uses the old param-
eters. Each neural network has two hidden layers, and there
are 128 neurons in each layer, we use the ReLU as the ac-
tivation function. In each time period, based on Q-values
from the neural network, the ε-greedy policy will be executed
to select an action from the action space which contains a
combination of ordering and pricing. After receiving the
reward from the environment, the target Q-values are es-
timated by current rewards and discounted predicted
Q-values from the next state, as shown in equation (9). .e
parameters of the network θ are updated by minimizing the
difference between the predicted Q-values and the target Q-
values, as shown in equation (10). After a fixed number of
steps, assign the value of parameter θ to 􏽢θ. .e details of the
algorithm named perishables integrate age and quantity
deep Q-network (PAQ-DQN) are shown in Algorithm 1:

y
t

�
R

t+1
, if epoch terminates at step t + 1,

R
t+1

+ c
∗maxA′

􏽢Q X
t+1

, A′; 􏽢θ􏼐 􏼑, otherwise,

⎧⎨

⎩

(9)

L(θ) � EXt
i
,At

i
,Rt+1

i
,Xt+1

i
y

t
− Q X

t
, A

t
; θ􏼐 􏼑􏼐 􏼑

2
􏼔 􏼕.

(10)

.e second reinforcement learning algorithm named
perishables integrate age and quantity advantage actor-
critic (PAQ-A2C). A2C is a method combining policy

gradient and function approximation. Actor-critic (A2C)
has two networks, one policy network, known as actor and
used to output policy, and one value network, known as
critic and used to evaluate the policy from actor. In our
algorithm, both the policy network and value network have
two hidden layers, and there are 128 neurons in each layer
with the ReLU activation function. Especially, the activa-
tion function of the policy network output layer is the
Softmax, which outputs the probability of each action being
executed in the current state. In each time period, based on
the current inventory state, an action will be executed by
the policy network. After receiving the reward from the
environment, the value network will evaluate this policy
and output a td_error. .e parameters of value network θv

can be updated by Equation (11), where yt is the target
value calculated by equation (12). .e policy network is
updated by θp←θp + α∗▽θp

J(θp), where α is learning rate,
and gradient ▽θp

J(θp) is shown in equation (13) where
advantage function is estimated by equation (14). .e
details of the algorithm of proposed perishables integrate
age and quantity advantage actor-critic (PAQ-A2C) are
shown in Algorithm 2:

L θv(􏼁 � y
t

− V
π

X
t
; θv􏼐 􏼑􏽨 􏽩, (11)

y
t

� R
t+1

+ c∗V
π

X
t+1

; θv􏼐 􏼑, (12)

▽θp
J θp􏼐 􏼑 ≈ ▽θp

log πθp
A

t
|X

t
􏼐 􏼑􏽢A X

t
, A

t
􏼐 􏼑, (13)

􏽢A X
t
, A

t
􏼐 􏼑 � R

t+1
+ c∗V

π
X

t+1
; θv􏼐 􏼑 − V

π
X

t
; θv􏼐 􏼑. (14)

5. Experiments

In this section, we conduct simulation studies to evaluate the
performance of our proposed reinforcement learning al-
gorithms and investigate the positive effects of the proposed
algorithms on the profit of dynamic pricing and the impacts
of the key parameters. Ordering and pricing policy are also
discussed in situation involving fixed ordering cost. In this
experiment, we only show the discussions on the back-
logging case, the discussions of the lost-sales case is carried
out in Appendix.

.e values of various parameters are set in Table 2. For
simplicity, the value range of the price p and order
quantity q are restricted to [32, 37] and [0, 31],
respectively.

In the reinforcement learning method, the effect of
hyperparameters on final performance is very important, so
we need to set the variation rules for relevant parameters,
exploration rate ε and learning rate α. We adopt ε-greedy
policy here; ε is decreasing linearly, that is, search-then-
convergence form in Darken et al. [33]:

εepoch �
ε0

1 + y
, (15)

where y � epoch2/εdecay, ε0 is the initial value of the ε, and
εdecay is the decay parameter.

Table 1: Notations grouped by the elements of the RL problem.

pt Price charged by the agent for each item
qt Order quantity
Dt Customer demand (Dt(pt) if depending on pt)
l Lifetime of the product, 0< l<∞
L Order lead time, L< l

K Fixed order cost
c Variable cost per item
u Penalty cost per unmet item
h Holding cost for per item left
] Cost for each item disposed
xt

i Inventory position of age i, 0≤ i≤ l − 1
xt Inventory position of all ages
xt

o On-hand inventory
Rt+1 .e reward function of the agent

Complexity 5

5.1. Experiments onDynamic Pricing with Positive Lead Time.
Firstly, we conduct experiments for perishables’ joint or-
dering and pricing with positive lead time (where L � 1). In
order to examine the positive impact of dynamic pricing, we
consider a fixed-price policy where the agent always takes
the fixed best price which achieves the highest revenue. Let

MEP andMEPFP be the expected mean epochs profits for the
dynamic ordering and pricing policy and the fixed-price
ordering policy, respectively, and MDC and MDCFP be the
mean epochs disposal cost. After ten thousand simulations,
we get the results in Table 3. Table 3 shows that PAQ-DQN
achieves better performance than PAQ-A2C when lifetime is

(1) Initialize replay memory pool D to capacity N

(2) Use random weights θ to initialize the action-value function Q

(3) Initialize target action-value function 􏽢Q with weights 􏽢θ � θ
(4) For epoch � 1 to number of epochs do
(5) Reset the environment and initialize state X0

(6) for t � 1, T do
(7) With probability ε, select a random action At, otherwise select At � argmaxAt Q(Xt, At; θ) (ϵ-greedy policy)
(8) Execute action At and observe reward Rt+1 and Xt+1

(9) Store transition (Xt, At, Rt+1, Xt+1) in the replay memory pool D

(10) Set Xt+1 � Xt

(11) Sample a minibatch of transitions (Xt
i , At

i , Rt+1
i , Xt+1

i), ∀i � 1, . . . , N from replay memory pool D

(12) Calculate the target Q-value by equation (9)
(13) Update the parameters of network θ by equation (10)
(14) Every C steps reset 􏽢Q � Q

(15) end for
(16) end for

ALGORITHM 1: Perishables integrate age and quantity deep Q-network.

(1) Use random weights θp and θ] to initialize the policy network and value network
(2) for epoch � 1 to number of epochs do
(3) Reset the environment and initialize state X0

(4) For t � 1, T do
(5) Take action At based on action probability πθp

(·|Xt)

(6) Execute action At and observe reward Rt+1 and Xt+1

(7) Update the parameters θ] of the value network by minimizing the loss function equation (11)
(8) Estimate advantage function by equation (14)
(9) Update the policy network parameters θp←θp + αp▽θp

J(θp), where ▽θp
J(θp) is calculated by equation (13)

(10) Set Xt+1 � Xt

(11) end for
(12) end for

ALGORITHM 2: Perishables integrate age and quantity advantage actor-critic.

Table 2: .e parameter values.

Parameter Values Description
T 30 Periods of the planning horizon
l {2,3,4} Lifetime of perishables
xl 0 Initial inventory position of all ages
c 0.9 Discount factor
L {0, 1, 2} Lead time
K {25, 50} Fixed ordering cost
c 22.5 Unit variable cost
h 0.22 Unit holding cost
u 10.78 Unit penalty cost
] 10 unit disposal cost
dt 84 − 2p Function of selling price
ε0 1 Initial exploration rate
α {0.01, 0.001, 0.0001} Learning rate
εdecay 1 × 103, 1 × 104, 1 × 105􏼈 􏼉 Exploration rate decay parameter

6 Complexity

2 and 3, but when lifetime is 4, they achieve almost the same
results. Mean epochs profits and mean epochs disposal cost
for two algorithms are almost all increasing and decreasing
with lifetimes, which are in line with expectations, because
the longer the lifetime is, the more similar it is to ordinary
goods and perishables have more lifetime to sell out under
the FIFO policy. From Table 3, it is easy to find out that it is
better to adjust the price in a dynamic way so that the price
can be adjusted according to the availability of inventory and
the remaining life of the product and maximize the profits.

Table 4 shows the comparison between the tabular
Q-learning and reinforcement learning methods on mean
epoch profits and mean epoch disposal cost. From the table,
we can see our proposed PAQ-DQN and PAQ-A2C obvi-
ously performs better than the Q-learning method. As we
have mentioned before, Q-learning is a tabular method; it
stores every state-action value in a table, but in our per-
ishables inventory system, we considered the different ages,
so the state space increases exponentially with lifetime,
which is inefficient and impractical. Moreover, the amount
of computing power and time required increase greatly with
lifetime for the Q-learning method.

5.2. Experiments on the Performance of Proposed Algorithms.
In this case, we compute the mean epoch profits for the
optimal policy and proposed PAQ-DQN and PAQ-A2C with
zero lead time. In particular, we set up an upper bound
benchmark for this computation and define it as the optimal
policy. .e optimal policy takes the same price action as the
PAQ-DQN and PAQ-A2C in each period, and its order
quantity is always equal to the real demand Dt in each period,
whichmeans there is always no holding cost, penalty cost, and
disposal cost for the planning horizon. Although there may be
still some unreasonable place, this can be a useful metric to
gauge the performance of the agent. Table 5 shows the
computed results after twenty thousand simulations and
MEPaverage, MEPaverage � (MEPoptimal − MEP)/T, where T

denotes the mean difference between the mean epochs profits
from deep reinforcement learning methods and the mean
epoch profits from the optimal policy. From the table, we can
see our proposed algorithms achieve a good performance for
three different lifetimes, where the benchmark is a loose upper
bound from the real demand Dt and the difference from the
average optimal profit is almost always less than the highest
possible profit per unit, that is, MEPaverage ≤p − c. And the
algorithm PAQ-A2C is slightly better than algorithm PAQ-
DQN. Figure 1 shows the real epoch profits for the proposed
PAQ-DQN and PAQ-A2C (in order to show the variation, we

let the initial negative values as zero); from the figure, we can
see that two methods quickly reached a relatively flat of
profitability and PAQ-A2C showed more stable properties at
the beginning of the learning process.

Figures 2–4 show the scatter plots of the profits difference
between the optimal policy and the proposed PAQ-DQN al-
gorithm for three different lifetimes. To better show the con-
vergence rate, the figure is drawn on a log-log scale. From three
figures, we can see three MEP differences begin to decrease
rapidly after about fifty simulations; this demonstrates our deep
reinforcement learning method works, the agent gradually
learns how to order, and price is near optimal. Besides, the
fitting lines in the figures are used to depict the convergence
rate, and the following fitting line functions are for lifetime 2, 3,
and 4. Here, we also carry out sensitivity analysis to investigate
the effects of learning rate α and exploration parameter εdecay for
the training of the proposed deep reinforcement learning
methods, respectively. Figure 5 demonstrates theMEP for three
different learning rates on PAQ-DQN and the learning rate α at
0.001 is the best for three different lifetimes, and α at 0.01 is very
close to the best performance. Figure 6 shows the effects of
exploration parameters εdecay on PAQ-DQN, and when the
exploration parameter εdecay is 1 × 103, the agent gets a higher
reward than the other two parameters. And the difference
between the three parameters is very obvious. From the above
two sensitivity analysis cases, the importance of hyperparameter
is verified, and this is a common problem in deep learning. To
show the expansibility of the algorithm, we also extend the
distribution of the demand into an additive form in Chen et al.
[2], where random term has a zeromean. By setting the random
term which satisfies a uniform distribution in [A, B], where A
and B are symmetric and the absolute value is 2, we get a near-
optimal performance with optimal rate 96.344%:

log MEPdiff(􏼁 ≈ − 0.609 log(epochs) + 11.794 r
2

� 0.963􏼐 􏼑,

(16)

log MEPdiff(􏼁 ≈ − 0.737 log(epochs) + 12.445 r
2

� 0.986􏼐 􏼑,

(17)

log MEPdiff(􏼁 ≈ − 0.575 log(epochs) + 11.278 r
2

� 0.956􏼐 􏼑.

(18)

5.3. Experiments on Dynamic Ordering and Pricing with No
FixedOrderingCost. In this case, when the real epoch profits
gradually become stable (stable means the real epoch profits

Table 3: Results for dynamic pricing with positive lead time.

Method Lifetime MEP MEPFP MDC MDCFP

PAQ-DQN
2 3242.104 2911.139 254.905 291.997
3 4734.766 4455.814 40.439 110.146
4 4840.443 4714.712 34.066 28.642

PAQ-A2C
2 3081.546 2305.394 232.000 573.749
3 4513.786 4474.915 207.470 130.278
4 4919.332 2278.324 49.802 748.916

Complexity 7

Table 4: Results.
Method lifetime Lead time MEP MDC

PAQ-DQN 2 0 5377.021 18.747
1 3242.104 254.905

PAQ-A2C 2 0 5385.653 21.222
1 3081.546 232.000

Q-learning 2 0 4800.622 31.376
1 592.721 151.462

6000

5000

4000

3000

2000

1000

0

0 1000 2000 3000 4000 5000
Epochs

Re
al

 ep
oc

h
pr

of
it

PAQ-DQN_4
PAQ-A2C_4

(a)

0 1000 2000 3000 4000 5000
Epochs

PAQ-DQN_3
PAQ-A2C_3

6000

5000

4000

3000

2000

1000

0

Re
al

 ep
oc

h
pr

of
it

(b)

Figure 1: Real epoch profits for PAQ-DQN and PAQ-A2C, where the lifetime 3 and lifetime 4 are shown.

0 2 4 6 8 10
Logarithm of epochs

Fitting_line
MEP_difference

11

10

12

9

8

7

6

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 2

Figure 2: Log-log scale MEP difference.

Table 5: MEP for proposed algorithm and optimal policy.

Method Lifetime MEP MEPoptimal MEPaverage MEP/MEPoptimal ∗ 100%

PAQ-DQN
2 5377.021 5691.355 10.477 94.477
3 5514.710 5691.253 5.884 96.898
4 5409.587 5664.803 8.507 95.495

PAQ-A2C
2 5385.653 5662.379 9.224 95.113
3 5590.559 5674.625 2.802 98.519
4 5428.072 5677.201 8.304 95.612

8 Complexity

0 2 4 6 8 10
Logarithm of epochs

Fitting_line
MEP_difference

11

12

10

9

8

7

5

6

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 3

Figure 3: Log-log scale MEP difference.

0 2 4 6 8 10
Logarithm of epochs

Fitting_line
MEP_difference

11

10

9

8

7

6

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 4

Figure 4: Log-log scale MEP difference.

Lifetime 2 Lifetime 3 Lifetime 4

7000

6000

5000

4000

3000

2000

1000

0

5292.4 5377.0

3954.5

5474.5 5294.8 5409.6 5220.4
5514.7

4898.2

α = 0.01
α = 0.001
α = 0.0001

Figure 5: MEP for learning rates α.

Complexity 9

always go up and down in a small fixed range over time) with
the number of epochs, it indicates that the agent has learned
a relatively stable state-to-action mapping relationship. In
this section, we first extract the latest n epochs with stable
mapping, denoted by dataset p � [xi1, Ai1, . . . , xit, Ait,􏼈

. . . , xiT, AiT]n
i�1}, where xit is the inventory state vector for

epoch i and period t. To facilitate discussion, we will use the
fragment 􏽥pt � [xit, Ait]

n

i�1􏼈 􏼉 (t � 1, . . . , T) extracted from p.
Chen et al. [2] has discussed the properties of optimal

policies in the joint pricing and inventory system without
fixed ordering cost. From the above settings and through our
proposed reinforcement learning methods, when there is no
fixed ordering cost, we get that the learned order quantity is
nonincreasing in both outstanding and on-hand inventory
levels. When L � 0, the learned price is always equal to the
price that achieves highest expected revenue, and when
L> 0, the learned price is most sensitive to the oldest on-
hand inventory.

Figure 7 shows that the order quantity decreases with the
inventory position and on-hand inventory. In order to show
the sensitivity, we extract the fragment 􏽥P5 from P as an
example, where l � 4, L � 2, and n � 1000. In the inventory
state X5 � (x1, x2, x3), where x1 is the outstanding order
and x3 is the oldest on-hand inventory, we find that x1 and
x2 are equal to a fixed value happens more than 500 times
out of 1000, and when x1 � x2, the price decreases with the
oldest on-hand inventory. .e same results can be obtained
from other fragments. In this setting, Figure 8 shows that the
price decreases with the oldest on-hand inventory, which
means when the oldest inventory increases, the agent tends
to set a lower price.

5.4. Experiments onDynamicOrdering and Pricing with Fixed
Ordering Cost. In this part, we will consider the case when
there is a fixed ordering cost in this joint pricing and in-
ventory system. We use our propose deep reinforcement
learning algorithms to solve this case, and in order to
measure the final performance, we set up a loose upper
bound as our benchmark. In this benchmark, there are

trade-offs between different costs. .e price decision is
supplied by algorithms. For ease of discussion and sim-
plicity, we assume zero penalty costs and zero disposal costs
to be achieved, which mean each demand will be met and
each order will be sold within l period. We also assume that
the initial inventory is zero; thus, the first order will always
be placed at the beginning of the planning horizon. In
particular, when L> 0, there may be a penalty cost at the
beginning. Dt is the real demand in period t,
t � 1, . . . , l, . . . , T. It is obviously unwise to order every
period in this setting.

When L � 0, taking into account the width of finite
lifetime l and the minimization of total cost, it is easy to see
that the agent needs to place at least one order every l term
and every order is just consumed by the next one. In the first
l term, if [(D2 + · · · + Dl) + (D3 + · · · + Dl)

+ · · · + (Dl− 2 + Dl− 1) + Dl− 1]∗ h≤K, it only needs one or-
der at the beginning of the first period and ordering quantity
q � D1 + · · · + Dl. Morover, at some point to, whether to
order depends on the time of last order tn, to − tn ≤ l, if
[(Dtn+1 + · · · + Dto− 1) + (Dtn+2 + · · · + Dto− 1) + · · · + Dto− 1]

∗ h≤K and [(Dtn+1 + · · · + Dto) + (Dtn+2 + · · · + Dto) + · · · +

Dto]∗ h>K, it should order at point to and the order
quantity for tn is q � Dtn + · · · + Dto− 1. When L> 0, taking
into account the width of finite lifetime l and the minimi-
zation of total cost, it is easy to see that the agent needs to
place at least one order every l term. In the first l term, there
is a penalty cost, (D1 + · · · + DL)∗ u, due to the lag of the
order. At some point to (to ≠ 1), whether to order depends on
the time of last order tn and in order to make the subsequent
penalty cost zero, to − tn ≤ l − L. If
[(Dtn+L+1 + · · · + Dto+L− 1) + (Dtn+L+2 + · · · + Dto+L− 1) + · · · +

Dto+L− 1]∗ h≤K and [(Dtn+L+1 + · · · + Dto+L)

+(Dtn+L+2 + · · · + Dto+L) + · · · + Dto+L]∗ h>K, it should or-
der at point to, and when tn � 1, the order quantity for tn is
q � Dtn + · · · + Dto+L− 1; when tn ≠ 1, the order quantity for tn

is q � Dtn+L + · · · + Dto+L− 1.
We consider two different fixed ordering costs K,

K ∈ 25, 50{ }, two different penalty costs u, u ∈ 10.78, 4.18{ }

(corresponding, u/(h + u) ∈ 98%, 95%{ }), and two different

7000

6000

5000

4000

3000

2000

1000

0

ε = 103

ε = 104

ε = 105

Lifetime 2 Lifetime 3 Lifetime 4

5377.0 5514.7

4861.1
5409.6

4538.9

2161.7

3875.4

4656.9

1655.5

Figure 6: MEP for εdecay.

10 Complexity

price-demand functions dt, and the first one is shown in
Table 2 and another one is dt � 380 − 10p. Lifetime l � 4,
lead time L � 0, 1, and a larger order action space is con-
sidered for dt � 380 − 10p.

Under all of the above setting, we find that when L � 0, the
convergent price is always the price thatmaximizes the expected
revenue. .is is in line with expectations. Same as the no fixed
ordering cost case, the order quantity is nonincreasing in both
outstanding and on-hand inventory levels. Table 6 shows the
MEP results from PAQ-DQN and PAQ-A2C when the fixed
ordering cost is 25 and 50 and price-demand function dt �

380 − 10p after thirty thousand simulations. From the table, we
can see that, under the same conditions, the mean epoch profits
MEP decreases with the lead time and the fixed ordering cost.
When L � 0, algorithm PAQ-A2C performs better than PAQ-
DQN, and when L> 0, our proposed PAQ-DQN performs
better than PAQ-A2C. More interestingly, in our learned
convergent policies, we find there exist one or two critical values

in the inventory position in each period in each casewhen L � 0
and L � 1.We denote cvt as the critical value in each period for
the one critical value cases and cvt

1 and cvt
2 in each period for the

two critical value cases, cvt
1 < cvt

2. In the one critical value case,
when xt < cvt, there will be a fixed order quantity q1; when
xt ≥ cvt, the fixed order quantity is q2. In the case of two critical
values, when xt < cvt

1, the fixed order quantity is q1; when
cvt

1 ≤xt < cvt
2, the fixed order quantity is q2; when xt ≥ cvt

2, the
fixed order quantity is q3. For more details about obtaining the
critical values, see Appendix.

Table 7 shows the MEP of learned policies from algo-
rithm PAQ-DQN; from the table, we can see our learned
policies achieve a higher optimal rate and are closer to the
upper bound, compared to Table 6. Table 8 shows the MEP
comparison between the learned policies and the algorithm
PAQ-DQN; from the table, we can see our learned policies
achieve a higher MEP and lower MDC, which means our
learned policies are working well.

40 50 60302010
Inventory position

14

16

18

20

22

24

26

28

O
rd

er
 q

ua
nt

ity

Ordering policy

(a)

14

16

18

20

22

24

26

28

O
rd

er
 q

ua
nt

ity

403020 500 10
On-hand inventory

Ordering policy

(b)

Figure 7: .is statistic results are from 􏽥p5, where l � 4 and L � 2. When L � 2, xit is a vector and order quantity is the mean from the same
inventory value.

251510 2050
Oldest inventory

33.0

33.5

34.0

34.5

35.0

35.5

Pr
ic

e

Pricing policy

Figure 8:.is statistic results are from 􏽥p5, where l � 4 and L � 2. When L � 2, xit is a vector and price is the mean from the same inventory
value.

Complexity 11

.e above discussion is mainly based on the current
inventory state. Next, we will try to add the historical in-
ventory states and action information to the state to discuss
its impact on the final performance. Here, we define the new
state to be St � (Xt− L, At− L, Xt− L+1, . . . , Xt) when L> 0, and
when L � 0, we also discuss the gradual influence of the

addition of information in the state on the final perfor-
mance. At the same time the dimension of the state ac-
companying the increase in information will also increase.

Table 9 shows the results after ten thousand simulations
and there we add the inventory state and action from the
previous period for the new state when L � 0. From the table,

Table 6: MEP with fixed ordering cost.

Method Lifetime Lead time K u/h + u (%) MEP MEPbenchmark MEP/MEPbenchmark ∗ 100%

PAQ-DQN

4 0 50 98 15041.55 16172.39 93.01
1 50 98 14484.18 15576.99 92.98
0 25 98 15753.94 16507.79 95.43
1 25 98 14544.00 15436.53 94.22

PAQ-A2C

4 0 50 98 15116.77 16178.22 93.44
1 50 98 14223.13 15423.03 92.22
0 25 98 15813.49 16502.16 95.83
1 25 98 14896.70 15858.32 93.94

Table 7: MEP for the learned policies.

Lifetime Lead time K MEPpolicies MEPbenchmark MEPpolicies/MEPbenchmark ∗ 100%

4 0 25 16013.56 16525.75 96.90
1 25 14911.06 15540.62 95.95

4 0 50 15421.45 16197.45 94.10
1 50 14771.21 15583.89 94.79

Table 8: Comparison for PAQ-DQN.

Lifetime Lead time K MEP MEPpolicies MDC MDCpolicies

4 0 25 15753.94 16013.56 2.45 0
1 25 14544.00 14911.06 36.87 0

4 0 50 15041.55 15241.45 1.92 0
1 50 14484.18 14771.21 97.67 56.97

Table 9: MEP for new state forms.

Lifetime Lead time K u/h + u (%) MEPPAQ− DQN MEPPAQ− A2C MEPnew− state

3
0 50 98 15052.747 15126.553 15465.963
1 50 98 13685.987 13544.115 13842.541
2 50 98 8310.238 7018.234 9633.665

3
0 50 95 14937.285 14996.444 15604.507
1 50 95 13894.832 13847.474 14317.453
2 50 95 10470.134 9989.935 10299.061

Table 10: MEP for new state forms.

Lifetime Lead time K u/h + u (%) MEPPAQ− DQN MEPPAQ− A2C MEPS1 MEPS2

3 0 50 95 14937.285 14996.444 15604.507 15309.898
98 15052.747 15126.553 15465.963 15117.522

Table 11: Results for dynamic pricing with positive lead time.

Method Lifetime MEP MEPFP MDC MDCFP

PAQ-DQN
2 2761.297 2648.036 371.397 371.135
3 4832.157 4624.937 51.167 73.137
4 4917.960 4787.649 28.737 42.665

PAQ-A2C
2 2739.912 2492.352 330.639 329.539
3 4647.317 4490.300 94.006 102.618
4 4807.079 4638.502 84.877 84.269

12 Complexity

0 2 4 6 8 10
Logarithm of epochs

Fitting_line
MEP_difference

10

9

8

7

6

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 2

Figure 9: Log-log scale MEP difference for lifetime 2.

Table 12: Results.
Method lifetime Lead time MEP MDC

PAQ-DQN 2 0 5394.735 21.519
1 2761.297 371.397

PAQ-A2C 2 0 5367.027 16.139
1 2739.912 330.639

Q-learning 2 0 4437.220 87.911
1 <0 0

Table 13: MEP for proposed algorithm and optimal policy.

Method Lifetime MEP MEPoptimal MEPaverage MEP/MEPoptimal ∗ 100%

PAQ-DQN
2 5349.735 5670.955 10.707 94.336
3 5574.282 5693.097 3.960 97.913
4 5435.068 5685.511 8.348 95.595

PAQ-A2C
2 5367.027 5695.111 10.936 94.239
3 5627.395 5686.337 1.964 98.963
4 5504.487 5694.402 6.330 96.665

0 2 4 6 8 10
Logarithm of epochs

Fitting_line
MEP_difference

11

10

9

8

7

6

5

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 3

Figure 10: Log-log scale MEP difference for lifetime 3.

Complexity 13

10

9

8

7

6

0 2 4 6 8 10
Logarithm of epochs

Lo
ga

rit
hm

 o
f t

he
 d

iff
 b

et
w

ee
n

tw
o

m
ea

n
ep

oc
h

pr
of

its

Lifetime 4

Fitting_line
MEP_difference

Figure 11: Log-log scale MEP difference for lifetime 4.

Table 14: Critical values for L � 0.
(K, L) cv 1 2 3 4 5 6 7 8 9 10 11 12

(25, 0)

cv1 − 6 − 6 − 5 − 6 − 6 − 6 − 6 − 7 − 6 − 6 − 5 − 5
cv2 22 23 23 24 23 22 24 23 24 23 23 24

13 14 15 16 17 18 19 20 21 22 23 24
cv1 − 6 − 6 − 6 − 6 − 5 − 5 − 6 − 6 − 5 − 5 − 7 − 6
cv2 24 23 23 24 23 22 22 23 23 24 23 24

25 26 27 28 29
cv1 − 5 − 6 − 5 − 4 − 5
cv2 23 24 23 24 23

(K, L) cv 1 2 3 4 5 6 7 8 9 10 11 12

(50,0)

cv1 − 9 − 10 − 10 − 11 − 10 − 9 − 10 − 10 − 11 − 10 − 9 − 11
cv2 12 13 13 13 14 13 12 13 13 13 13 13

13 14 15 16 17 18 19 20 21 22 23 24
cv1 − 10 − 10 − 10 − 11 − 10 − 11 − 10 − 11 − 9 − 11 − 11 − 8
cv2 13 13 13 13 13 13 13 12 13 13 13 13

25 26 27 28 29
cv1 − 9 − 13 − 10 − 10 − 10
cv2 13 13 13 13 12

Table 15: Critical values for L � 1.
(K, L) cv 1 2 3 4 5 6 7 8 9 10 11 12

(25, 1)

cv1 121 100 121 100 121 103 121 102 121 106 121 105
13 14 15 16 17 18 19 20 21 22 23 24

cv1 121 108 121 110 121 114 121 116 121 116 121 118
25 26 27 28 29

cv1 121 121 121 121 121
(K, L) cv 1 2 3 4 5 6 7 8 9 10 11 12

(50, 1)

cv1 62 62 63 63 64 65 63 64 63 64 64 64
13 14 15 16 17 18 19 20 21 22 23 24

cv1 64 64 65 64 63 64 64 63 64 64 64 64
25 26 27 28 29

cv1 64 63 64 64 64

14 Complexity

we can see that the new state contains more information
almost all performs better than the single current inventory
state, which means the current decisions of the agent are
influenced by not only the current inventory state but also the
inventory states of the previous periods. In Table 10, MEPS1

and MEPS2 , respectively, represent the inventory state and
action information of the previous period and the previous
two periods added to the current state. From the table, we find
that the final performance did not get better and better with
the continuous addition of the historical information, which
also confirms that the dimensions of the state mentioned
above continue to increase with the addition of information,
which may have a negative impact on learning.

6. Conclusions

In this paper, we investigate a joint pricing and inventory
control problem and obtain near-optimal pricing and re-
plenishment policies for stochastic perishable inventory
systems with positive lead time by deep reinforcement
learning algorithms. .rough our designed algorithms, we
show that, in a perishable inventory control problem, the
expected profit is maximized by adjusting the price
according to the availability of inventory and the remaining
lives of the items. We consider the case of no fixed ordering
cost and the one involving a fixed ordering cost and find
near-optimal policies for both cases. Our findings when a
fixed ordering cost is involved contribute to the literature of
inventory control for perishables, which has not been
studied before. In this paper, we only focus on a single
agent’s joint pricing and inventory control problem.
However, multiple agents are usually involved in supply
chains, and their interactions may have a big impact on each
agent’s pricing and inventory decisions. .erefore, the study
of the competition and cooperation of participants under
complete and incomplete information is an interesting topic
for future research.

Appendix

.is section is for the discussion about lost-sales case in
Section 5.

A.ExperimentonDynamicPricingwithPositive
Lead Time

Table 11 shows that it is better to adjust the price in a
dynamic way so that the price can be adjusted according to
the availability of inventory and the remaining life of the
product and maximize the profits. From Table 12, we can
also see our proposed method PAQ-DQN achieves better

performance than PAQ-A2C when lead time is positive and
our proposed deep reinforcement learning methods obvi-
ously perform better than the Q-learning method.

B. Experiments on the Performance of
Proposed Algorithms

In this case, we compute the mean epoch profits for the
optimal policy and proposed PAQ-DQN and PAQ-A2C with
zero lead time. Table 13 shows the computed results after
twenty thousand simulations. From the table, we can see our
proposed algorithms achieve a good performance for three
different lifetimes, where the benchmark is a loose upper
bound from the real demand Dt and the difference from the
average optimal profit is almost always less than the highest
possible profit per unit. And the algorithm PAQ-A2C is
slightly better than algorithm PAQ-DQN. Figures 9–11 show
the scatter plots of the profits’ difference between the optimal
policy and the proposed PAQ-DQN algorithm for three
different lifetimes. To better show the convergence rate, the
figure is drawn on a log-log scale. From three figures, we can
see three MEP differences all begin to decrease rapidly after
about ninety simulations; this demonstrates our deep rein-
forcement learning method works, the agent gradually learns
how to order, and price is optimal. Besides, the fitting lines in
the figures are used to depict the convergence rate, and the
following fitting line functions are for lifetime 2, 3, and 4:

log MEPdiff(􏼁 ≈ − 0.401 log(epochs) + 9.862 r
2

� 0.960􏼐 􏼑,

(B.1)

log MEPdiff(􏼁 ≈ − 0.677 log(epochs) + 11.531 r
2

� 0.982􏼐 􏼑,

(B.2)

log MEPdiff(􏼁 ≈ − 0.429 log(epochs) + 9.973 r
2

� 0.960􏼐 􏼑.

(B.3)

B.1. Experiments on Dynamic Ordering and Pricing with no
FixedOrdering Cost. In this section, under the same settings
as the backlogging case, we get the same results where the
learned order quantity is nonincreasing in both outstanding
and on-hand inventory levels. When L � 0, the learned price
is always equal to the price that achieves highest expected
revenue, and when L> 0, the learned price is most sensitive
to the oldest on-hand inventory.

B.2. Experiments onDynamicOrdering andPricingwith Fixed
Ordering Cost. Firstly, we introduce the steps to get the
critical values mentioned in the backlogging case. We first

Table 16: MEP with fixed ordering cost.

Lifetime Lead time K u/h + u (%) MEP MEPbenchmark MEP/MEPbenchmark ∗ 100%

4 0 50 98 15378.025 16127.167 95.355
1 50 98 14484.18 15576.99 92.98

4 0 25 98 15753.94 16507.79 95.43
1 25 98 14844.676 15622.779 95.019

Complexity 15

extract the latest n epochs with stable mapping, denote by
dataset p � [xi1, Ai1, . . . , xit, Ait, . . . , xiT, AiT]

n

i�1􏽮 􏽯, where xit

is the inventory state vector for epoch i and period t. To
facilitate discussion, we will use the fragment
􏽥pt � [xit, Ait]

n

i�1􏼈 􏼉 (t � 1, . . . , T) extracted from 􏽥p. Based on
the fragment 􏽥pt � [xit, Ait]

n

i�1􏼈 􏼉 (t � 1, . . . , T), we can ob-
serve the relationship between the inventory level and the
order quantity and price. In the backlogging case, when
l � 4, L ∈ [0, 1], K ∈ [25, 50], and u/h + u � 98%, we get the
following ordering and pricing policies. In each epoch, we
set the first period as a zero initial inventory, so we cannot
observe the critical values, and the following values are
obtained from the second period. Tables 14 and 15 show the
critical values in the different settings. When L � 0 and
K � 25, the price is always 32 and q1 � 80, q2 � 65, and
q3 � 35. When L � 0 and K � 50, the price is always 32 and
q1 � 95, q2 � 65, and q3 � 50; when L � 1 and K � 50, the
price is 32 except for the first period and q1 � 120 and q2 � 0;
when L � 1 and K � 25, when inventory position is less than
the critic value cv1, the price is 32; otherwise, the price is 33,
q1 � 75, and q2 � 45. In the lost-sales case, Table 16 shows
the MEP for the different settings. And the same learned
convergent policies structure as backlogging case can be
obtained from this lost-sales case.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

References

[1] I. Z. Karaesmen, A. Scheller-Wolf, and B. Deniz, “Managing
perishable and aging inventories: review and future research
directions,” in Planning Production and Inventories in the
Extended Enterprise, pp. 393–436, Springer, Berlin, Germany,
2011.

[2] X. Chen, Z. Pang, and L. Pan, “Coordinating inventory
control and pricing strategies for perishable products,” Op-
erations Research, vol. 62, no. 2, pp. 284–300, 2014.

[3] S. K. Chaharsooghi, J. Heydari, and S. H. Zegordi, “A rein-
forcement learning model for supply chain ordering man-
agement: an application to the beer game,” Decision Support
Systems, vol. 45, no. 4, pp. 949–959, 2008.

[4] I. Dogan and A. R. Güner, “A reinforcement learning ap-
proach to competitive ordering and pricing problem,” Expert
Systems, vol. 32, no. 1, pp. 39–48, 2015.

[5] A. Kara and I. Dogan, “Reinforcement learning approaches
for specifying ordering policies of perishable inventory sys-
tems,” Expert Systems with Applications, vol. 91, pp. 150–158,
2018.

[6] J. Ke, F. Xiao, H. Yang, and J. Ye, “Optimizing online
matching for ride-sourcing services with multi-agent deep
reinforcement learning,” 2019, http://arxiv.org/abs/1902.
06228.

[7] S. A. M. Shihab, C. Logemann, D.-G. .omas, and P. Wei,
“Autonomous airline revenue management: a deep

reinforcement learning approach to seat inventory control
and overbooking,” 2019, http://arxiv.org/abs/1902.06824.

[8] E. Presman and S. P. Sethi, “Inventory models with contin-
uous and Poisson demands and discounted and average
costs,” Production and Operations Management, vol. 15, no. 2,
pp. 279–293, 2006.

[9] O. Caliskan-Demirag, Y. Chen, and Y. Yang, “Ordering
policies for periodic-review inventory systems with quantity-
dependent fixed costs,” Operations Research, vol. 60, no. 4,
pp. 785–796, 2012.

[10] O. Alp, W. Tim Huh, and T. Tan, “Inventory control with
multiple setup costs,” Manufacturing & Service Operations
Management, vol. 16, no. 1, pp. 89–103, 2013.

[11] A. T. Almaktoom, “Stochastic reliability measurement and
design optimization of an inventory management system,”
Complexity, vol. 2017, Article ID 1460163, 9 pages, 2017.

[12] R. Azghandi, J. Griffin, andM. S. Jalali, “Minimization of drug
shortages in pharmaceutical supply chains: asimulation based
analysis of drug recall patterns and inventory policies,”
Complexity, vol. 2018, Article ID 6348413, 14 pages, 2018.

[13] C. Li, H. Guo, Y. Zhang, S. Deng, and Y.Wang, “An improved
differential evolution algorithm for a multicommodity loca-
tion-inventory problem with false failure returns,” Com-
plexity, vol. 2018, Article ID 1967398, 2018.

[14] X. Gan, S. P. Sethi, and L. Xu, “Simultaneous optimization of
contingent and advance purchase orders with fixed ordering
costs,” Omega, vol. 89, pp. 227–241, 2019.

[15] S. Nahmias and W. P. Pierskalla, “Optimal ordering policies
for a product that perishes in two periods subject to stochastic
demand,” Naval Research Logistics Quarterly, vol. 20, no. 2,
pp. 207–229, 1973.

[16] S. Nahmias, “Optimal ordering policies for perishable in-
ventory-II,” Operations Research, vol. 23, no. 4, pp. 735–749,
1975.

[17] B. E. Fries, “Optimal ordering policy for a perishable com-
modity with fixed lifetime,”Operations Research, vol. 23, no. 1,
pp. 46–61, 1975.

[18] S. Nahmias, “Perishable inventory theory: a review,” Opera-
tions Research, vol. 30, no. 4, pp. 680–708, 1982.

[19] G. P. Prastacos, “Blood inventory management: an overview
of theory and practice,” Management Science, vol. 30, no. 7,
pp. 777–800, 1984.

[20] M. E. Ferguson and O. Koenigsberg, “How should a firm
manage deteriorating inventory?,” Production and Operations
Management, vol. 16, no. 3, pp. 306–321, 2007.

[21] Q. Chen, Q. Xu, and W. Wang, “Optimal policies for the
pricing and replenishment of fashion apparel considering the
effect of fashion level,” Complexity, vol. 2019, Article ID
9253605, 12 pages, 2019.

[22] Y. Li, A. Lim, and B. Rodrigues, “Note-pricing and inventory
control for a perishable product,” Manufacturing & Service
Operations Management, vol. 11, no. 3, pp. 538–542, 2009.

[23] C. Li and M. Lu, “Joint price and inventory optimization
under minimax regret,” SSRN Electronic Journal, 2017.

[24] Y. Li, B. Cheang, and A. Lim, “Grocery perishables man-
agement,” Production and Operations Management, vol. 21,
no. 3, pp. 504–517, 2012.

[25] S. Bhattacharyya, V. Snasel, A. Hassanien, S. Saha, and
B. Tripathy, Deep Learning: Research and Applications, De
Gruyter Frontiers in Computational Intelligence, De Gruyter,
Berlin, Germany, 2020, https://books.google.com/books?
id=yEj2DwAAQBAJ.

[26] I. Giannoccaro and P. Pontrandolfo, “Inventory management
in supply chains: a reinforcement learning approach,”

16 Complexity

http://arxiv.org/abs/1902.06228
http://arxiv.org/abs/1902.06228
http://arxiv.org/abs/1902.06824
https://books.google.com/books?id=yEj2DwAAQBAJ
https://books.google.com/books?id=yEj2DwAAQBAJ

International Journal of Production Economics, vol. 78, no. 2,
pp. 153–161, 2002.

[27] C. Jiang and Z. Sheng, “Case-based reinforcement learning for
dynamic inventory control in a multi-agent supply-chain
system,” Expert Systems with Applications, vol. 36, no. 3,
pp. 6520–6526, 2009.

[28] Z. Sui, A. Gosavi, and L. Lin, “A reinforcement learning
approach for inventory replenishment in vendor-managed
inventory systems with consignment inventory,” Engineering
Management Journal, vol. 22, no. 4, pp. 44–53, 2010.

[29] M. H. F. Zarandi, S. V. Moosavi, and M. Zarinbal, “A fuzzy
reinforcement learning algorithm for inventory control in
supply chains,” International Journal of Advanced
Manufacturing Technology, vol. 65, no. 1–4, pp. 557–569, 2013.

[30] R. Rana and F. S. Oliveira, “Dynamic pricing policies for
interdependent perishable products or services using rein-
forcement learning,” Expert Systems with Applications, vol. 42,
no. 1, pp. 426–436, 2015.

[31] C. J. C. H. Watkins, Learning from delayed rewards, Ph.D.
thesis, 1989.

[32] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[33] C. Darken, J. Chang, and J. Moody, “Learning rate schedules
for faster stochastic gradient search,” in Proceedings of the
1992 IEEEWorkshop on Neural Networks for Signal Processing
II, pp. 3–12, IEEE, Helsingoer, Denmark, 1992.

Complexity 17

