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Cooperative spreading dynamics on complex networks is a hot topic in the field of network science. In this paper, we propose a
strategy to immunize some nodes based on their degrees. -e immunized nodes disable the synergistic effect of cooperative
spreading dynamics. We also develop a generalized percolation theory to study the final state of the spreading dynamics. By using
the Monte Carlo method, numerical simulations reveal that immunizing nodes with a large degree cannot always be beneficial for
containing cooperative spreading. For small values of transmission probability, immunizing hubs can suppress the spreading,
while the opposite situation happens for large values of transmission probability. Furthermore, numerical simulations show that
immunizing hubs increase the cost of the system. Finally, all numerical simulations can be well predicted by the generalized
percolation theory.

1. Introduction

Many real-world phenomena in social and biological sys-
tems (e.g., information diffusion and epidemic spreading)
can be described as spreading dynamics on complex net-
works [1, 2]. Historically, according to the number of dy-
namics, the spread on complex networks experienced two
periods. -e first period is single spreading dynamics on
complex networks, where there is only one dynamics on the
network. Romualdo and Vespignani are the first to study the
single spreading dynamics on complex networks with het-
erogeneous degree distribution [3, 4]. -ey revealed that the
epidemic threshold vanishes if the heterogeneity of degree
distribution is strong enough. -e second period is
coevolving spreading dynamics that more than one dy-
namics are evolving in the system [5, 6]. According to the
interacting mechanisms between different spreading dy-
namics, we can divide into competing, asymmetric, and
cooperative spreading dynamics.

-e competing spreading dynamics is used to describe
two competing hosts. For successively competing spreading
dynamics of two epidemics, Newman [7] found that the
second epidemic threshold is always larger than the first one.
Brian and Newman Mark [8] further adopted a competing
percolation theory to reveal the phase diagram of competing
spreading dynamics of two epidemics and found that the
faster spreading epidemic is dominant. Recently, more
works focus on the competing spreading dynamics on
overlay and multiplex networks [9–11].

-e asymmetric spreading dynamics is widely used to
describe the coevolving spreading of awareness and epi-
demic. It shows an asymmetric interaction, the dynamics a

suppresses the dynamics b, while the dynamics b promotes
the dynamics a. Granell et al. found that the diffusion of
awareness significantly suppresses the epidemic spreading
for reversible coevolving spreading [12, 13]. Wang et al.
found that the interlayer degree correlation is beneficial for
containing epidemic spreading, and there is an optimal
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information diffusion rate to suppress the epidemic
spreading [14, 15].

-e cooperative spreading dynamics suggests that the
dynamics a and b promote each other. A significant result
revealed by Cai et al. is that the phase transition may be
discontinuous if the cooperative strength is large enough
[16]. Chen et al. further investigated the effects of network
structures and dimensions on the phase diagram of coop-
erative spreading dynamics [17–19].

-e immunization of spreading dynamics on complex
networks is a hot topic. Some successful strategies have been
proposed, such as targeted immunization, acquaintance
immunization, and information spreading-based immuni-
zation [20–26]. To our best knowledge, there is still lack of
systematic study on immunization of cooperative spreading
dynamics on complex networks. In this paper, we propose
an immunization strategy and use generalized percolation
theory to study the final state of the two dynamics coop-
eratively spreading on scale-free (SF) random networks. -e
extensive numerical simulations are performed to verify the
correctness and effectiveness of our proposed strategy.

2. Model Descriptions

-is section introduces the immunization strategy for the
cooperative spreading dynamics on complex networks. We
consider a network with size N. Its degree distribution is
P(k). We construct the network by applying the uncorre-
lated configuration model [27]. To introduce the immuni-
zation strategy, we assign each node with an immunization
probability. We suppose that the immunization probability
of each node is affected by its surrounding environment. In
the network, we consider the surrounding environment with
the number of neighbors of the node. Denoting W(ki) as the
probability of node i with degree ki that does not be im-
munized, W(ki) can be expressed as

W ki(  �
k
α
i

jk
α
j

, − ∞< α< +∞, (1)

where α is a hyperparameter. For α � 0, every node is im-
munized with the same probability. When α⟶ +∞, nodes
with a small degree have a large immunization probability; the
opposite situation happens when α⟶ − ∞. We select the
fraction 1 − p of nodes in the network according to equation
(1) and immunize them. If a node is immunized, the syn-
ergistic effect of two dynamics is disabled for the cooperative
spreading dynamics on complex networks.

-e epidemics (i.e., specific dynamics) a and b spread on
the network following the susceptible-infected-recovered
(SIR) model. At any time, each node can exist in one of the
three states of each epidemic: susceptible (S), infected (I),
and recovered (R). In the susceptible state, a node is sus-
ceptible and has not been infected. In the infected state, a
node is infected by the epidemics x ∈ a, b{ } and can transmit
the epidemics to its neighbors in the network. -e recovered
state indicates that a node has recovered from the epidemics
and will not be infected again. For the coinfection epidemic
spreading, the state of a node can be divided into nine types

denoted as SaSb, SaIb, SaRb, IaSb, IaIb, IaRb, RaSb, RaIb, and
RaRb.

In the process of the spreading of the two epidemics, we
randomly select a seed node in the network for the epidemics
a and b. For a node that does not be infected by any epi-
demic, it will be infected by the epidemic a(b) with prob-
ability 1 − (1 − λ)ka (with probability 1 − (1 − λ)kb), where λ
is the infection probability of the epidemics a and b. -e
parameter ka(kb) represents the number of infected
neighbors in the network of the epidemic a(b). If a node i is
infected by one of the two epidemics, there are two situa-
tions. On the one hand, if node i does not be immunized, it
will be infected by the other epidemic with probability
1 − (1 − ϑ)kx , where kx is the number of infected nodes by
the epidemic x ∈ a, b{ }. To include the synergistic effect to
the spreading dynamics, we assume ϑ> λ. On the other hand,
if node i is immunized, it will be infected by the other
epidemic with probability 1 − (1 − λ)kx . Each infected node
recovers with probability c. -e cooperative spreading dy-
namics evolves until there are no nodes in the infected state.

In reality, immunizing a node usually costs some re-
sources. In our model, we consider node i with degree k

paying the immunizing cost as kc1 when it is immunized.
-e c1 is the cost unit. -e recovery of infected nodes also
needs some resources. If node i with degree k is infected by
the epidemic a(b), we consider that its recovery cost is
kca(kcb), where ca(cb) represents the cost unit. Moreover, if
node i is not infected with any disease, it does not need to pay
any recovery cost. -erefore, the overall cost of node i with
degree k is

Ck � Icc1 + Iaca + Ibcb( k, (2)

where Ia,b,c ∈ 0, 1{ }. Ic indicates whether node i is immunized.
Ia(Ib) indicates whether node i is infected by the epidemic
a(b). -e mean cost of all nodes in the network is

C � 
k

P(k)Ck. (3)

3. Theoretical Analysis

Previous studies revealed that the final outbreak size of the
SIR model could be mapped to solving the giant connection
cluster (GCC) of bond percolation process [28–30]. To get
the final outbreak size of the epidemics a and b simulta-
neously, we develop a generalized bond percolation theory
inspired by Refs. [31, 32]. As we know, the generating
function of a network with degree distribution P(k) can be
wrote as G(x) � kP(k)xk. To get the GCC, we define
μa(μb) as the probability, that is, a randomly selected edge
connecting to a node in the GCC infected by the epidemic a

(b).
Next, we need to write down the self-consistent equation

for μa and μb by considering whether a node is immunized.
Firstly, we analyze diseases a and b separately. If node i is
infected by the epidemic a with no coinfection, i.e., node i in
the GCC of the epidemic a with no coinfection, the prob-
ability is ]a(λ) � 1 − (1 − λμa)k− 1. Contrarily, if node i is
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infected by the epidemic a with coinfection, the probability
is ]a(ϑ) � 1 − (1 − ϑμa)k− 1. For the epidemic b, we can get
the same equations, ]b(λ) � 1 − (1 − λμb)k− 1 and
]b(ϑ) � 1 − (1 − ϑμb)k− 1. -en, we consider the synergistic
effect of the epidemics a and b. If node i is in the GCC of the
epidemic a, there are two situations. First, node i is only
infected by the epidemic a with probability ]a(λ)(1 − λμb)k.
Second, node i is infected by the two epidemics. -ere are
three subdivisions. (i) If node i is immunized with proba-
bility 1 − ℓk, there is no coinfection. It is infected by the two
epidemics with probability ]a(λ)[(1 − λμb)]b(λ) + λμb]. ℓk is
the probability that node i with degree k does not be

immunized. (ii) -e node i is not immunized with proba-
bility ℓk, and there may be coinfection. If the coinfection
happens in the epidemic a, in other words, node i is infected
by the epidemic b first and then reinfected by the epidemic a;
the probability is ℓk]a(ϑ)[(1 − λμb)]b(λ) + λμb]s. (iii) If the
coinfection happens in disease b, the probability is
ℓk]a(λ)[(1 − ϑμb)]b(ϑ) + ϑμb](1 − s). -e parameter s is the
probability that node i is first infected by the epidemic b and
reinfected by the epidemic a. -at is, s is corrected to the
transmission rate of the two epidemics. Considering the
abovementioned situations, we have

μa � 
k

kP(k)

〈k〉

1 − ℓk( ]a(λ) 1 − λμb( ]b(λ) + λμb  + ]a(λ) 1 − λμb( 
k

+ ℓk

ℓk]a(ϑ) 1 − λμb( ]b(λ) + λμbs + ℓk]a(λ) 1 − ϑμb( ]b(ϑ)

+ ϑμa(1 − s)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (4)

By using G(x), we rewrite equation (4) as

μa � 1 − 1 − ℓks( G1 1 − λμa(  + 1 − λμb( 

· ℓk(1 − s)G1 1 − λμb(  − ℓkG1 1 − λμa(  · 1 − λμb( (  

− ℓksG1 1 − ϑμa(  − 1 − λμb( G1 1 − ϑμa( (

· 1 − λμb(  − ℓk(1 − s) 1 − ϑμb( G1 1 − ϑμb( 

− G1 1 − λμa(  · 1 − ϑμb( ( ,

(5)

where G1(x) � (G′(x)/G′(1)) � (1/〈k〉)kkP(k)xk− 1 is
the generating function for the excess degree distribution of
the network. Similarity, we can get the μb as

μb � 1 − 1 − ℓk + ℓks( G1 1 − λμb(  + 1 − λμa( 

· ℓksG1 1 − λμa(  − ℓkG1 1 − λμa(  · 1 − λμb( (  

− ℓks 1 − ϑμa( G1 1 − ϑμb(  − G1 1 − ϑμa( (

· 1 − λμb(  − ℓk(1 − s)G1 1 − ϑμb( 

− 1 − λμa( G1 1 − λμa(  · 1 − ϑμb( ( .

(6)

Note that the value of ℓk is still unknown in equations (5)
and (6). We will solve it inspired by Refs. [33, 34]. Defining
Af(k) as the number of immunized nodes with degree k and
Pf(k) as the degree distribution in the residual network, in
which all nodes are immunized, here, f is the current
fraction of immunized nodes. We get

Pf(k) �
Af(k)

fN
. (7)

Once another node is assigned without immunization
according to equation (1), Af(k) changes as

A(f− 1/N)(k) � Af(k) −
Pf(k)k

α

〈kα(f)〉
, (8)

where 〈kα(f)〉 � kPf(k)kα. In the limit N⟶∞,
equation (8) can be presented in terms of derivative of Ap(k)

with respect to p,

dAf(k)

df
≈ N

Pf(k)k
α

〈kα(f)〉
. (9)

Differentiating equation (7) with respect to
dAf(k)/df ≈ N(Pf(k)kα/〈kα(f)〉) and using equation (9),
we obtain

− f
dPf(k)

dp
� Pf(k) −

Pf(k)k
α

〈kα(f)〉
. (10)

Define Hα(g) � kP(k)gkα , and let g � H− 1
α (f). We

find by direct differentiation that

Pf(k) � P(k)Hα(g)g
kα

�
1
f

P(k)g
kα

, (11)

〈kα(f)〉 �
gHα′(g)

Hα(g)
. (12)

We iterate these equations until f � 1 − p. By using
equation (11), the probability ℓk is that a node with degree k

without immunization is ℓk � 1 − Pf(k).
Inserting the value of ℓk into equations (5) and (6), we

obtain the probabilities μa and μb. We can further get the
coinfection outbreak size of two epidemics denoted as Pab. If
node i is in the GCC of the epidemics a and b simulta-
neously, it must be infected with the two epidemics. -ere
are three possible situations. (i) (1 − ℓk)[(1 − λμa)]a(λ) +

λμa][(1 − λμb)]b(λ) + λμb] means node i is immunized and
infected by the epidemics a and b independently. (ii)
ℓks[(1 − ϑμa)]a(ϑ) + ϑμa][(1 − λμb)]b(λ) + λμb] means node
i without immunization, and first is infected by the epidemic
b and reinfected by the epidemic a. (iii) ℓk(1 − s)[(1−

λμa)]a(λ) + λμa][(1 − ϑμb)]b(ϑ) + ϑμb] means node i
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without immunization, and first is infected by the epidemic
a and reinfected by the epidemic b. We obtain

Pab � 
k

P(k)

1 − ℓk(  1 − λμa( ]a(λ) + λμa  1 − λμb( ]b(λ) + λμb 

+ ℓk

1 − ϑμa( ]a(ϑ) + ϑμa  1 − λμb( ]b(λ) + λμb s

+ 1 − λμa( ]a(λ) + λμa  1 − ϑμb( ]b(ϑ) + ϑμb (1 − s)
 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (13)

By using G(X), we can transform equation (13) into

Pab � 1 − 1 − ℓk + ℓks( G1 1 − λμb(  − 1 − ℓks( G1 1 − λμa( 

+ + 1 − ℓk( G1 1 − λμa(  · 1 − λμb( ( 

− ℓks G11 − ϑμa − G11 − ϑμa · 1 − λμb  − ℓk1

− s G11 − ϑμb − G11 − λμa · 1 − ϑμb .

(14)

When we get the nodes which infected with the epi-
demics a and b, we can get the mean cost of all nodes in the
network as

C � 
k

P(k) 1 − ℓk( c1k + Pa(k)cak + Pb(k)cbk , (15)

where Pa(k) is the probability that a node with degree k is
infected with the epidemic a. Similarity, Pb(k) is the
probability for the epidemic b. Similar to equation (13), the
Pa(k) is

Pa(k) � 1 − ℓk(  1 − λμa( ]a(λ) + λμa  1 − λμb( ]b(λ) + λμb 

+ ℓk 1 − ϑμa( ]a(ϑ) + ϑμa 1 − λμb( ]b(λ)

+ λμbs + 1 − λμa( ]a(λ) + λμa 1 − ϑμb( ]b(ϑ)

+ ϑμb(1 − s)

+ 1 − λμa( ]a(λ) + λμa  1 − λμb( 
k
,

(16)

and Pb(k) is

Pb(k) � 1 − ℓk(  1 − λμa( ]a(λ) + λμa 

· 1 − λμb( ]b(λ) + λμb 

+ ℓk 1 − ϑμa( ]a(ϑ) + ϑμa  1 − λμb( ]b(λ) + λμb s

+ 1 − λμa( ]a(λ) + λμa 

· 1 − ϑμb( ]b(ϑ) + ϑμb (1 − s)

+ 1 − λμb( ]b(λ) + λμb 1 − λμa( 
k
.

(17)

Considering all possible values of k, we obtain the
probability of the fraction of nodes infected by the epidemics
a and b as

Pa � 
k

P(k)Pa(k), Pb � 
k

P(k)Pb(k), (18)

respectively.

Another important question is that when the two epi-
demics will globally outbreak? Taking the epidemic a as an
example, in the bond percolation theory, equation (5) always
has a trivial solution of ua � 0. When there is a nontrivial
solution, μa < 1 indicates a global outbreaks. To determine
the value of outbreak threshold λc, we rewrite equations (5)
and (6) inspired by Ref. [35],

Fa μa, μb(  � μa − fa μa, μb(  � 0,

Fb μa, μb(  � μb − fb μA, μB(  � 0,
(19)

respectively, where fa(μa, μb) and fb(μa, μb), respectively,
represent the right hands of equations (5) and (6). At the
point of outbreak threshold λc, the following condition

zfa μa, μb( 

zμb

zfb μa, μb( 

zμa

|λ�λc
� 1, (20)

is fulfilled. By numerically solving equation (20), we can
obtain the outbreak threshold λc.

4. Results

In this section, we study the cooperative spreading dynamics
of two epidemics on SF random networks. Specifically, we
set the SF random network with power-law degree distri-
bution P(k) ∼ k− cA , where cA represents the degree expo-
nent. -e smaller the cA, the stronger the heterogeneity of
degree distribution will be. In our model, we set c1 � ca �

cb � 1 to include the immunization cost of a node and the
recovery cost of an infected node, s � 0.5, by assuming an
equal transmission rate of the epidemics a and b, and the
recovery probability c � 1. All numerical simulations are
averaged over 100 times.

In Figure 1, we study the cooperate epidemic spreading
on a SF random network with different p and α. We set
ϑ � 0.99 and cA � 2.7.When we fix p � 0.5, that is, fixing the
number of unimmunized nodes, the outbreak threshold
increases with the decreasing α. As the propagation prob-
ability λ increases, the propagation range increases. -e
reason is that when α is large, the synergy acts on the nodes
with a large degree. -ese nodes are more likely to be in-
fected preferentially, so that the epidemics will be more likely
to break out under the coinfection. When the α is small, the
synergy acts on the nodes with a small degree. At this time,
the coinfection leads to a large outbreak size. When we fix
α � 3, p � 0.2 and p � 0.5 have the same outbreak threshold.
Importantly, we find that immunizing large degree nodes
suppresses the cooperate epidemic spreading when λ is
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small, while promoting the spreading when λ is large. We
explain the phenomenon as follows. -e hubs are easy to be
infected for any values of λ. If the epidemic a infects the hubs
first, the epidemic b can hardly infect them when immu-
nizing large degree nodes (e.g., α � − 3) and λ is small. As a
result, the epidemic spreading size decreases. When λ is
large, the epidemic b can infect the nodes with small degrees.
As those small degree nodes have synergistic effect, the
epidemic spreading is promoted.

We further investigate the effects of the heterogeneity of
degree distribution on the epidemic spreading in Figure 2.
We set ϑ � 0.99, p � 0.5, and α � 3. On the one hand, we
find that strong heterogeneity of degree distribution de-
creases the global outbreak threshold of the epidemics

because of the existence of some hubs. On the other hand, we
find that Pa, Pb, and Pab decrease with the decreasing cA

when λ is small while increases with cA when λ is large.
Furthermore, we can see that the theoretical analysis well

predicts the numerical simulation results in both Figures 1
and 2. Note that the values of Pa and Pb are approximately
equal since the two SF networks have the same statistical
characteristic. However, the values of Pab are smaller than
those of Pa and Pb because a node infected by two epidemics
is more difficult than that infected by only one of them.

Finally, we study the cost of cooperate epidemic
spreading on SF random networks. In Figure 3, we present
the effectiveness of p and α on the mean cost C of all nodes
versus the spreading probability λ. When we fix p � 0.5 and
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Figure 1: -e coinfection outbreak size of the epidemic a (a), epidemic b (b), and two epidemics (c) versus the spreading probability λ with
different p and α. -e inset panels enlarge the results when λ is small. We set ϑ � 0.99 and the SF random network with N � 104, 〈k〉 � 10,
and cA � 2.7.
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different cA. -e inset panels enlarge the results when λ is small. We set p � 0.5, α � 3, and ϑ � 0.99. -e other parameter of SF random
network is set to be N � 104, 〈k〉 � 10.
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c � 1, the immunizing cost is large in α � − 3. In this case, the
synergy acts on the nodes with small degree. -e immu-
nizing cost of large degree nodes is also large. But with the λ
increase, the outbreak size increases and the recovery cost
increases. When λ ≈ 0.06, the mean cost of all nodes is
almost the same. When we fix α � 3, with p increase, the
immunizing cost decreases. -e recovery cost of p � 0.5
grows faster than the recovery cost of p � 0.2.

We further study the cost of cooperate epidemic
spreading on SF random network with different degree

distribution. As shown in Figure 4, we can see that with the
cA increase, the immunizing cost increases.-emean cost of
all nodes decreases with cA for small values of λ and in-
creases with cA for large values of λ. In addition, we can see
that the theoretical analysis well predicts the numerical
simulation results in both Figures 3 and 4.

5. Conclusion

In conclusion, we studied the immunization of cooperative
spreading dynamics on complex networks. In our model, we
assumed that the immunization probability depends on the
degree of nodes. Furthermore, the cost of immunization
correlated with node degrees. Using a generalized perco-
lation theory, we theoretically analyzed the final outbreak
size and the cost of system. Compared with immunizing
small degree nodes, we found that immunization nodes with
large degrees suppress the spreading for small values of
transmission probability, while the opposite situation hap-
pens for large values of transmission probability. For the cost
of the system, we revealed that, immunizing hubs increase
the cost of the system. Finally, we investigated the effects of
degree heterogeneity on final spreading size and cost of the
system. Our results shed some light on studying the co-
operative spreading dynamics and may provide some clues
for future researches.
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