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-is paper is concerned with the multivariate stochastic volatility modeling of the stock market. We investigate a DGC-t-MSV
model to find the historical volatility spillovers between nine markets, including S&P, Nasdaq, SSE, SZSE, HSI, FTSE, CAC, DAX,
and Nikkei indices. We use the Bayesian network to analyze the spreading of herd behavior between nine markets. -e main
results are as follows: (1) the DGC-t-MSVmodel we considered is a useful way to estimate the parameter and fit the data well in the
stock market; (2) our computational analysis shows that the S&P and Nasdaq have higher volatility spillovers to the Shanghai and
Shenzhen stock markets; (3) the results also show that there is a strong correlation between stock markets in the same region.

1. Introduction

Price volatility in the stock market is the result of a com-
bination of factors in the whole economy. -rough the
observation of historical data, we can analyze the fluctuation
over a period of time. -e ARCH model [1] and stochastic
volatility model [2] are two main models for studying the
volatility of the time series. -e SV model adds a random
factor to the ARCHmodel, whichmakes the SVmodel better
to fit the real stock fluctuations.-e SVmodel is widely used
to analyze the high-frequency financial time series [3, 4].
Some researchers make various improved models based on
the SV model, including added nonlinear [5] and mean
equation [6], added an interrelated time series [7], added
leverage and student distribution [8, 9], and added two-
factor simulation [10].

-e study of the investor’s behavior shows that the herd
behavior does not only appear in a certain market but widely
exists in various stock markets [11].-e crisis will cause herd
behavior in the country where the crisis originated and
spread to neighboring countries. However, the diversified
asset plays an important role to explain the herding behavior
in non-USmarkets [11]. So, the herd behavior exists not only

in developed countries but also in emerging markets and
underdeveloped markets [12].

Research on herd behavior has focused on a single
market, such as the study of herd behavior in Chinese stock
markets [13]. More and more herd behavior research studies
began to pay attention to the spillover between markets. -e
authors in [14] find the herd behavior caused by the un-
expected impact from both China and US markets and have
proved that the Chinese market has a weaker response to the
impact from the USmarket. After the financial crisis in 2008,
there is growing evidence that herd behavior in different
markets is likely to be driven by the same information at the
same time [15, 16]. -ere are also studies of herd behavior
with intercontinental features [17] and time-varying features
[18]. Volatility spillover causes comovement between
markets [19], especially in crisis [20, 21].

Bayesian networks can reflect the uncertainty relation-
ship between different markets. -e Bayesian network is
widely used in analysis and diagnosis [22]. -e complex
network and Bayesian network are often used in the stock
market to reflect the interaction between traders [23–25].
-e Bayesian method is also used to predict the stock market
[26] and estimate volatility parameters [27]. Malagrino et al.
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[28] use the Bayesian network to verify the impact of the
global stock market index on iBOVESPA.

Existing research focuses on herd behavior in one
market. But with the integration of the world economy, the
spread of herd behavior is no longer limited to a certain
market. It is necessary to research on cross-market effects of
the stock market volatility and herd behavior. In this paper,
an improved multivariate stochastic volatility model is used
to analyze the historical data of S&P, Nasdaq, SSE, SZSE,
HSI, FTSE, CAC, DAX, and Nikkei indices.-en, we use the
volatility spillover correlation parameters between nine
markets to build a Bayesian network.

-e article is organized as follows. Section 2 introduces
the DGC-MSV-t model and the Bayesian network model.
Section 3 analyzes the weekly data of nine representative
stock indexes and establishes a Bayesian network based on
the volatility spillover relationships. Section 4 concludes this
paper.

2. Stochastic Volatility Model and Bayesian
Network Classifiers

2.1. Multivariate Stochastic Volatility Model

2.1.1. Stochastic Volatility Model and DGC-MSV Model.

pt � exp
qt

2
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In equation (1), the known parameter is the yield se-
quence pt, the unknown parameter qt and ψt are unob-
servable variables, pt represents the standard logarithmic
yield at time t, εt indicates the logarithmic volatility, ξt
indicates the independent disturbance of the volatility, ξt
and εt are irrelevant, σ represents the standard error of the
volatility disturbance, and ψ1 is a continuous parameter that
reflects the impact of current volatility on future.

Based on the GC-MSV model and the DC-MSV model
proposed by Yu and Meyer [29], we build the multivariate
stochastic volatility model with dynamic correlation,
Granger causality, and t-distribution.
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Equation (2) has two sets of time series. Taking the SSE
index and the S&P index as examples, pc represents the yield
of the SSE index and pa represents the yield of the S&P

index. ψ �
ψcc ψca

ψac ψaa

􏼠 􏼡, where ψac represents the volatility

spillover from the SSE index to the S&P index, ψca is the
opposite, and ψaa and ψcc represent the autocorrelation of
the SSE and S&P index. ρt represents the dynamic corre-
lation [29]. o reflects the degree of freedom.

In equations (3)–(6), we describe the design procedure of
the DGC-MSVmodel. With a given qt+1, μ and ψ parameters
obey (μ + ψ(qt− 1 − μ), diag(σ2ξa

, σ2ξc
)) distribution as follows:
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-e density t is the degree of freedom o as follows:
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-erefore, the distribution density of f(pt/qt) is as
follows:
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-at is to say, (pt/εt) also obeys the t-distribution, i.e.,
(pt/(ε ∼t t(exp(εt), o))). -e likelihood function L can be
expressed as follows:
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2.1.2. Bayesian Estimation. -e DGC-MSV model is made
by a prior distribution of unknown parameters. -ere are 9
unknown parameters, including q1, q2, ξ1, ξ2,ψ1,ψ2, σ12, σ21,

and o. Vector κ contains all unknown parameters and po-
tential log volatility, i.e., κ � (a, q1, . . . , qT).
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In order to calculate the marginal posterior distribution
of the target parameter, h(a/p) needs to find the normali-
zation constant in (h + 2T)-dimensional integral
h(ε)h(f/ε)dε as follows:

p
a

p
􏼠 􏼡 � 􏽚

h1

. . . 􏽚
hT

h a, q1, . . . , qT( 􏼁dqT, . . . , dq1. (8)

-e MCMC method has proven to be the most effective
way to solve the high-dimensional calculation problem [30].
Here, we use the WinBUGS software package to calculate
this problem of the multivariate SV model.

2.1.3. Markov chain. -e Markov chain assumes that the
parameter of the random process Xt, t ∈ T􏼈 􏼉 is a discrete set
I � x1, x2, . . .􏼈 􏼉. We use the Markov chain as follows:

P X0 � x0, X1 � x1, . . . , Xt � xt􏼈 􏼉 � P X0 � x0( 􏼁 􏽙

t

t− 1
P
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. (9)

-erefore, the statistical properties of the Markov chain
are completely determined by its one-step transition
probability:

p xt− 1, xt( 􏼁 � P
Xt � xt( 􏼁

Xt− 1 � xt− 1( 􏼁
􏼠 􏼡. (10)

It is necessary to use Gibbs sampling to determine this
conditional probability in the practical application of the
Markov chain.

2.1.4. Gibbs Sampling. Gibbs sampling is the most famous
MCMC sampling algorithm [31]. -e process of one-step
Gibbs sampling is given as follows:
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Considering the Gibbs sampling as a multidimensional
normal random vector, it is possible to set X � (X1, X2) to
obey the multivariate normal distribution as follows:
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-erefore, when t⟶∞, the distribution of (x
(t)
1 , x

(t)
2 )

will converge to the target distribution.

2.2. Bayesian Classifier and Bayesian Network

2.2.1. Bayesian Classifier. -e Bayesian classifier refers to a
kind of the Bayesian network learning method [32]. Assume
U � A1, A2, . . . , An, C􏼈 􏼉 is the n attribute variables of the
instance, it can be represented by the vector
xi � (a1, a2, . . . , an). ai is the value of Ai. C is a class variable.
c is the value of C. -e probability that xi belongs to the class
cj is as follows:

p
cj
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􏼠 􏼡 �
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(13)

where α is a regularization factor, p(cj) is the prior prob-
ability of cj, and p(cj/(a1, a2, . . . , an)) is the posterior
probability of cj. -e prior probability is independent of the
training data. According to the chain rule of probability, it
can be expressed as follows:

p
cj

a1, a2, . . . , an
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n
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-e key to use the Bayesian classification is how to
calculate p(a1, a2, . . . , ai− 1, cj). Different Bayesian classifi-
cation models calculate it in different ways.

2.2.2. Bayesian Network. -e Bayesian network is a directed
acyclic graph (DAG). Each node corresponds to a condi-
tional probability table as P � P P(Vi/V1,􏼈 V2, . . . , Vi− 1),

Vi ∈ V}.
-e network structure S is a DAG consisting of a set of

node variables V(V � V1, V2, . . . , Vn􏼈 􏼉) and a set of directed
edges L(L � (ViVj/(Vi, Vj)), t∈ nV􏽮 􏽯). -e network struc-
ture is expressed as follows: S � (V, L).

3. Empirical Analysis

3.1.Data andPreprocessing. In this section, the DGC-t-MSV
model proposed in Section 2.1 is fitted to the historical stock
market data. We choose the most popular index, including
S&P, Nasdaq, SSE, SZSE, HSI, FTSE, CAC, DAX, and
Nikkei. -ese are representative stock indices in America,
Europe, and Asia. We collected the daily price from January
2, 2013, to May 15, 2018. -en, we calculate 282 weekly data
and standardize them. -ey can reflect the cross-market
volatility between the world’s major economies. -e S&P
and Nasdaq are both major markets in America. -e British
FTSE, French CAC, and German DAX are known as the
three major European stock indices. -e SSE and SZSE are
the emerging markets which are growing fast. -e Nikkei
and HSI are both important and developed markets in Asia.
-e weekly data are used to eliminate the week effects and
the different time zones of the global market. -e descriptive
statistics is shown in Table 1.

3.2. Parameter Estimation. In this paper, Bayesian simula-
tion is performed by the WinBUGs package. Taking S&P
index and SSE index as examples, we abandon the first
10,000 iterations as the so-called “burn-in.” -en, we sim-
ulate the last 100,000 iterations to obtain the posterior
parameters, as shown in Table 2.

In Table 2, ψac represents the volatility spillover from the
SSE index to the S&P index. -e mean value of ψac is less
than 0.1, which means the spillover from the SSE to the S&P
index is not significant. ψca has a mean value of 0.5662,
which is greater than 0.1. So the spillover from the S&P to the
SSE is significant. -e volatility level parameter μsp of the
S&P is 0.0529. And μsh of the SSE index is 1.012. Obviously,
the absolute value of the volatility level μsh is greater than μsp,
reflecting that the risk of the Shanghai stock market is higher
than that of the S&P market. -e volatility persistence pa-
rameter ψaa of the S&P index is 0.8737, and ψcc of the SSE
index is 0.7671. -e S&P index volatility persistence is
stronger than the SSE index.

Figure 1 shows that μsp and μsh are convergent. Each
parameter has a MCMC error of less than 5% of the sample
standard deviation (SD). Other parameter results are con-
vergent too. We do not show them in the text due to space
limitations. It can be seen from Figure 2 that the dynamic
correlation coefficient ρ is higher. All estimated results of
volatility spillover parameters are shown in Table 3. We use
NA, SP, SH, SZ, HK, JP, UK, FA, and GE to represent
Nasdaq, S&P, SSE, SZSE, HSI, Nikkei, FTSE, CAC, and DAX
indices.

3.3. BayesianNetwork. -e volatility spillover relationship is
a ring diagram. It does not allow a ring diagram in the
Bayesian network. In order to facilitate the research, it is

Table 1: Descriptive statistics.

SP Nasdaq SSE SZSE HSI FTSE CAC DAX NIKKEI
Mean 0.220419 0.30801 0.119385 0.057389 0.10411 0.084644 0.143824 0.185196 0.271633
Median 0.334225 0.504645 0.329614 0.248445 0.387111 0.051609 0.202949 0.249698 0.366232
Maximum 4.39981 4.612395 7.701288 9.35729 6.904966 5.385454 6.90814 5.873106 7.37504
Minimum − 6.282521 − 5.916395 − 19.34068 − 20.0671 − 7.576548 − 5.242531 − 6.365694 − 6.209268 − 8.729473
Std. dev. 1.29829 1.56905 2.79624 3.325197 1.968868 1.529423 1.917783 2.009933 2.309185
Skewness − 0.979637 − 0.780228 − 1.82048 − 1.668393 − 0.507765 − 0.237729 − 0.22026 − 0.361229 − 0.692988
Kurtosis 7.232388 5.052937 12.70377 10.73481 4.283352 4.400866 4.286262 3.588966 5.342746
Jarque–Bera 254.678 77.85544 1257.706 830.8407 31.35835 25.62351 21.64318 10.17253 86.75158

Table 2: -e simulation results of posterior parameters.

node Mean Std. dev. MC error 2.50% Median 97.50% Start Sample
μsp 0.0529 0.2279 0.0117 − 0.4818 0.0849 0.4388 10000 100001
μsh 1.012 0.4018 0.0192 0.18 1.022 1.774 10000 100001
o 10.47 3.714 0.1461 4.187 9.954 9.954 10000 100001
ψaa 0.8737 0.0972 0.0043 0.6238 0.8982 0.9896 10000 100001
ψac 0.0423 0.0483 0.0023 − 0.0107 0.029 0.1804 10000 100001
ψcc 0.7671 0.1209 0.0063 0.5019 0.7853 0.9546 10000 100001
ψca 0.5662 0.3106 0.0164 0.0647 0.5129 1.3140 10000 100001
σξa

0.136 0.0454 0.0023 0.0744 0.128 0.2437 10000 100001
σξb

0.1265 0.0539 0.0027 0.0622 0.1125 0.2679 10000 100001
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Figure 2: Correlation ρ between the S&P index and Shanghai Composite Index.

Table 3: Volatility spillover parameter estimation result.

NA SP SH SZ HK JP UK FA GE
NA — 0.2393 0.6552 0.6354 − 0.003 0.322 − 0.031 0.2401 0.2156
SP 0.1 — 0.5662 0.3968 0.0087 0.1833 − 0.163 0.1108 0.1089
SH 0.0397 0.0423 — 0.2786 0.0557 0.0337 0.1086 0.1534 0.1137
SZ 0.0434 0.0594 0.0872 — 0.0711 0.0287 0.1608 0.1077 0.129
HK 0.4577 0.0087 0.6744 0.6684 — 0.6907 0.401 0.3567 0.3122
JP 0.0132 0.0168 0.3417 0.3751 0.0257 — 0.1807 0.1608 0.0599
UK 0.2809 0.3848 0.2952 0.1784 0.0586 0.0365 — 0.0967 0.152
FA 0.0400 0.0360 0.195 0.3979 0.0783 0.1009 0.2286 — 0.1771
GE 0.0641 0.0729 0.2627 0.2722 0.1136 0.207 0.217 0.2232 —
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Figure 3: BN initial state diagram (NA).
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Figure 1: μsp and μsh posterior distribution density.
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necessary to extract the directed acyclic graph from a certain
node. -is paper uses GeNie software to establish the
Bayesian network. GeNie software is one of the commonly
used software for Bayesian network simulation. We assume
that the initial probability of herd infection between markets
is consistent. Based on the significant volatility spillover
parameters in Table 2, the relationship between the Nasdaq
market and other markets is extracted, as shown in Figure 3.

In ordinary, the infection probability of herd behavior
between each market is shown in Figure 3. In Figure 4, we
test the spillover effect caused by the Nasdaq market when it
has a terrible crisis. We assume that the HK stock market is
totally emerging as a herd behavior, as shown in Figure 5. In
Figure 5, it can be found that the herd behavior in Hong
Kong will cause a large volatility spillover in Asia, generally
higher than 80%. -e market in Europe and US is not
sensitive to the crisis of Hong Kong. It shows that the Asian
investors are highly concerned about Hong Kong.

4. Conclusion

-is paper analyzes the volatility spillover using the DGC-t-
MSV model and Bayesian network. -e above calculation
results and the conclusions of the analysis can reflect the
current situation of international stock markets, indicating
that the method used in this paper is effective.

(1) Analysis of volatility spillover shows that there is an
extensive linkage between international markets. Most de-
veloped stock markets will quickly respond to abnormal
impact in major global stock markets, such as the Hong
Kong stock market.-e Bayesian network simulation proves
that the Hong Kong stock market has a wide range of in-
fluence. -e Nasdaq and S&P indices reflect the high global
influence of the US stock market. -erefore, we must pay
more attention to the contagious and influential stock
markets, such as the Nasdaq and S&P. -is result will help
investors to understand the volatility correlation between
stockmarkets and explain some impact factors such as cross-
market herd behavior. (2) By establishing a Bayesian net-
work, it can be found that the stock market is more sensitive
in one economic region.-is paper uses weekly data to avoid
the effects of the week and the time difference. It can be
found that, in Europe, the British FTSE Index, the French
CAC40 Index, and the German DAX30 Index are more
closely related. In the Asian market, the Shanghai SSE Index,
the Shenzhen SZSE Index, and the Hong KongHSI Index are
more closely related. -is is an obvious phenomenon of
regional economics. In general, the spread of herd behavior
is related to the regional division. -is result shows that
investors should pay more attention to the crisis in the
surrounding markets. (3) Using the MSV model and the
Bayesian network, it can be found that the Chinese stock
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Figure 4: BN final state diagram (NA).
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market is more closely linked to the foreign stock market,
especially the US market. -is result can reflect the trading
relationship between China and US.

-e research in this paper shows that stock investors
should avoid some highly correlated markets when they
allocate diversified stock assets. -ey can lower the risk by
choosing the market with lower correlation. -e DGC-t-
MSV model used in this paper can simulate the impact of
multiple random factors on the market. -e Bayesian net-
work can clearly reflect the relationship between multiple
markets. Further research will use the self-learning method
to learn these random factors in the Bayesian network.
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evaluation of oecd countries using bayesian stochastic frontier
analysis and bayesian network classifiers,” Journal of Applied
Statistics, vol. 45, no. 1, pp. 17–25, 2018.

[23] G. Feng and X. Zhang, “Productivity and efficiency at large
and community banks in the us: a bayesian true random
effects stochastic distance frontier analysis,” Journal of
Banking & Finance, vol. 36, no. 7, pp. 1883–1895, 2012.

[24] W. Long, L. Guan, J. Shen, L. Song, and L. Cui, “A complex
network for studying the transmission mechanisms in stock
market,” Physica A: Statistical Mechanics and Its Applications,
vol. 484, pp. 345–357, 2017.

Complexity 7



[25] J. L. Ticknor, “A bayesian regularized artificial neural network
for stock market forecasting,” Expert Systems with Applica-
tions, vol. 40, no. 14, pp. 5501–5506, 2013.

[26] L. Wang, Z. Wang, S. Zhao, and S. Tan, “Stock market trend
prediction using dynamical bayesian factor graph,” Expert
Systems with Applications, vol. 42, no. 15-16, pp. 6267–6275,
2015.

[27] R. Oh, D. W. Shin, and M.-S. Oh, “Bayesian analysis of fi-
nancial volatilities addressing long-memory, conditional
heteroscedasticity and skewed error distribution,” Commu-
nications for Statistical Applications and Methods, vol. 24,
no. 5, pp. 507–518, 2017.

[28] L. S. Malagrino, N. T. Roman, and A. M. Monteiro, “Fore-
casting stock market index daily direction: a bayesian network
approach,” Expert Systems with Applications, vol. 105,
pp. 11–22, 2018.

[29] J. Yu and R. Meyer, “Multivariate stochastic volatility models:
bayesian estimation and model comparison,” Econometric
Reviews, vol. 25, no. 2-3, pp. 361–384, 2006.

[30] J. B. Liu, J. Zhao, and Z. Q. Cai, “On the generalized adjacency,
Laplacian and signless Laplacian spectra of the weighted edge
corona networks,” Physica A-Statistical Mechanics and Its
Applications, vol. 540, 2020.

[31] Z. Zhu and J.-B. Liu, “-e normalized Laplacian, degree-
Kirchhoff index and the spanning tree numbers of generalized
phenylenes,” Discrete Applied Mathematics, vol. 254,
pp. 256–267, 2019.

[32] J. B. Liu and S. N. Daoud, “Number of spanning trees in the
sequence of some graphs,” Complexity, vol. 2019, Article ID
4271783, 2019.

8 Complexity


