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This paper is concerned with the outer exponential synchronization of the drive-response complex dynamical networks subject to
time-varying delays. The dynamics of nodes is complex valued, the interactions among of the nodes are directed, and the two
coupling matrices in the drive system and the response system are also different. The intermittent pinning control is proposed to
achieve outer exponential synchronization in the aperiodical way. Some novel sufficient conditions are derived to guarantee outer
exponential synchronization of the considered complex-valued complex networks by using the Lyapunov functional method.

Finally, two numerical examples are presented to illustrate the effectiveness of the proposed control protocols.

1. Introduction

Under the background of surging development of network
technique and information technique, a lot of attention has
been drawn on the research of complex networks by more
and more scholars. Modeling for the complex networks
[1-3] is an essential part of deploying real network in our
life. At the same time, as an important collective attribute of
a network, synchronization is widely used which includes
robot synchronous operation, sensor clock synchronization,
and power system frequency synchronization. The research
of the synchronization type in this area has also been the
concern of many scholars, and many great results have been
achieved in recent years such as synchronization, outer
synchronization, almost sure synchronization, projection
synchronization, and quasisynchronization [4-11].
Generally, we consider the network synchronization in
two ways. First is the synchronization generating inside a
network which is focused on the unity of all the nodes. We
call it “inner synchronization.” The exiting research studies
mostly focus on synchronization, partial synchronization,
and so on. Second is synchronization achieving between two
or more complex networks in the drive-response way, no

matter whether the inner synchronization of one same
network is realized or not. This type of synchronization, as
the name implies, is called “outer synchronization.” It is easy
enough to think of examples in real life. If we regard the
developed countries and developing countries as two net-
works, one can see that the two networks will eventually
achieve synchronization with the exchange visits between
the countries frequently. In the same way, we take the couple
as two different networks and take their appearance, per-
sonality, values, and outlook on life as different nodes,
through long running-in, and two networks will also be
synchronized. Recently, some studies about outer syn-
chronization of complex networks have sprung up. For
example, Ray and Roychowdhury [12] investigated a class of
outer synchronization between two different networks with
different nodes. Based on this paper, Lu et al. [13] present an
analytical method of outer synchronization of local coupled
dynamical networks by using a pinning impulsive controller
and regrouping method. Furthermore, outer synchroniza-
tion between two uncertain networks with different node
numbers, using the method of adaptive scaling function, is
turther investigated [14]. Zhang et al. [15] study the gen-
eralized outer synchronization of coupled complex
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networks, considering nondissipative and different time-
varying coupling delays. These results provide many valuable
references for us studying the outer synchronization. It is
important to note that the most of the existing research
focuses on the same network structure of outer network
synchronization for the drive-response systems.

For a long time, the research of complex network syn-
chronization in real number domain has attracted lots of
scholars’ attention, but in fact, the studies about the com-
plex-domain deserve more attention for its great potential
and vast development foreground. For example, in the field
of fuzzy neural network, due to the obvious uncertainty and
fuzziness, the complex signal cannot be processed by the real
domain, and at this point, the complex-domain must be
considered. Zhang et al. [16] discussed the synchronization
for a new type of fully complex-valued networks including
the linear feedback control in a finite time and coupling
delay. In [17], Wu et al. probed using the pinning control
strategy to realize the synchronization of complex-variable
network. The relative conclusion in this letter involves real-
domain and complex-domain networks. Sun and Xu et al.
investigated the synchronization of complex-variable net-
works with fractional order [18, 19]. Among them, Sun et al.
mainly discussed the real combination asymptotical syn-
chronization of three fractional-order complex-variable
chaotic systems based on the related theories [18], and Xu
et al. used the fractional-order techniques and the corre-
lation control strategy to implement fractional-order com-
plex-domain network synchronization [19].

In the previous relative works, the dynamics of the nodes
and the coupling matrices of the networks are identical, and
it is more common and easier to discuss the synchronization
of two networks, but that is not the case; most of the time, the
structures of coupling matrices of drive-response complex
dynamical networks are not the same. For example, in the
ecological network, the two systems which are constituted by
a predator and prey are usually in imbalance, leading to the
extinction of a species or ecological environment being
changed. Zhou et al. contributed a valuable instance in
which they construct two classes of small-world and WS
networks through taking some fiber lasers with hyperchaos
features as nodes [20]. The authors take the relationship of
three people as an example to explain the notion of different-
dimensional node clearly [21]. Zhang et al. first investigate
the stabilization issues including time-varying and inter-
rupted complex networks with uncertain nonlinearities, in
which they design some new stabilization controllers [22].
Then, they research the outer synchronization between two
complex networks with different time-varying coupling
delays. They design two controllers for their drive system
and response system by using some particular technique
called “open-plus-closed-loop” [23].

The aperiodic intermittent control is a very good type of
control strategy that only constrains the boundaries of the
time interval between samples. Compared to the real-domain
one, the complex-domain systems have more utility value,
and at the same time, the sampling in the aperiodical way is
also more universal than in the periodical case. Cai et al.
investigated the outer synchronization between two complex

Complexity

dynamical networks by using aperiodically adaptive inter-
mittent pinning control [24]. Lei et al. constructed a new
piecewise auxiliary function to realize the outer synchroni-
zation of two general complex networks delayed by using an
aperiodically adaptive intermittent control scheme [25].
Unfortunately, it has been found that the system given by the
authors is inapplicable to the complex-value complex dy-
namical networks. Compared with existing real-value com-
plex dynamical networks, the complex-value case is more
challenging since the state of the dynamics is complex.

Motivated by the previous research, in this manuscript,
we investigate the exponential outer-synchronization issue
of complex-valued complex dynamical networks, in which
the coupling matrices of the drive-response systems are
different. The major differences are that the state of the
systems is complex-valued, the intermittent control is
aperiodic, and the coupling matrices are different in the
drive and response system. The main contributions are
highlighted as follows: Firstly, a new complex-valued
complex dynamical network model with nondelays and
time-varying delays coupling is formulated to model the real
networks. Secondly, by using the Lyapunov functional
method, stability theory, complex-valued differential equa-
tions, and other related mathematics theories and tech-
niques, some practical sufficient conditions are relieved to
ensure exponential synchronization of our networks.
Meanwhile, we have adopted a flexible control strategy to
reduce the cost of synchronization. Finally, we give some
numerical simulation to verify our results.

The frame structure of this manuscript is as follows. In
Section 2, this part is the prophase work, including the
introduction and description of the various definitions and
theorems, quotes, hypothesis, and so on. In Section 3,
combining with the previous theorem, assumptions, and so
on, some effective criteria of complex network synchroni-
zation are deduced and related inference is given. In Section
4, we give some numerical simulation to verify our results.
At last, this manuscript is concluded in Section 5.

2. Preliminaries

2.1. Notations.

C": the n-dimensional complex Euclidean space

R™: the n-dimensional real Euclidean space

R™": the set of n x n real matrices

C™": the set of nx n complex matrices

H (xH): the conjugate transpose of a matrix or vector
T(xT): the conjugate transpose of a matrix or vector
I,: the identity matrix with n dimensions

AS A° = ((A+ AT)/2) for A e R

M >0 for symmetric matrices M, M is a positive-
definite matrix
M <0 for symmetric matrices M, M is a negative-
definite matrix
Amax (M): the largest eigenvalue of M

Apmin (M): the smallest eigenvalue of M

[-I: Euclidean norm in complex field
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i = v/~1 denotes the imaginary unit

|x|: the modulus of a complex number x

R (x): its real part

S (x): its imaginary part

€ ([-71,0],C™): the set of the continuous vector value
function in the complex number fields.

2.2. Model Description. We consider a drive system network
consisting of N agents. In this network, each agent is an n
dimensional identical nonlinearly dynamics unit, and the
drive network can be described as

N
= (6, (1), x;(t - 7, (1)) + D apTx, ()

x; ()
k=1
N (1)
+ Y bRTx (-7, (1), i=1,23,...,N,
k=1
where x;(t) = [x;; (£), x;, (), ..., x;,(1)]T € C" is the state

vector of the ith agent of the network, f(t,x;(t),x;(t -1,
() = Lfy (6%, (0, %, (£ = 1, (D)), £ (6%, (8, x, (£ — 7, (£)),
o fatx;(8),x;(t— 7, (H))]" € C" is a continuous
complex vector-valued function, I' = diag(o;,05,---> 0,) €
R™" is an inner coupling matrix satisfying o, >0 for
k=1,2,...,n. AP=[al]eR™ is the outer coupling
matr1x of the network at time ¢ satisfying al, >0 for i #k,
-y b al, BP = [bY] € R™" is the other one with
the time- Varylng delay 7, (t) satisfying b2 >0 for i#k and
bR =Y 1 bR, and 7,(t) and 7,(t) are the inner and
couplmg time-varying delay, respectively, which satisfy
7,27, (t)>0 and 7, >7,(¢) 20, and let 7 = max (7}, 7).
The response complex dynamical network with con-
trollers is

N
yi(6) = f(6y; (0, y; (t=7,(1)) + Y aiTy (1)
s=1
N
+ Y by (t-1,(0) +u;(t), i=12,...,N,
s=1
(2)
where y; (t) = [y, (), yi2 (£), ..., 3, ()] € C" is the state

vector of the jth agent of the response network and
Flly @,y (=1 () = [f1 (63,0, x, (1,0, 1,
(ts Vi (t)s Vi (t - T (t))): e fn (ta Vi (t)s Vi (t - T (t)))]T €
C" is a continuous vector-valued function. Here,
AR = [af] € R™ is the outer couphng matrlx at time ¢
satisfying ak >0 for i#k, al = - Y, ;ak, BR = [b}] €
R™" is the outer coupling matrices at tlme t -, (t) satis-
fying b2 >0 for i#k and b2 = - ¥ iksi > and u; (2) is the
control input.
The initial conditions are

x;(s) = & (s),
yi(S) = Ui($)>

-7,<s<0,i=1,2,...,N,

. . (3)
-7,<s<0,i=1,2,...,N,

where 7, = rnax{‘r1 (1), 7, ()}, &, v; € Cr ([-7,,0],C") with

H
the norm |l&]|* = sup_ 7 <5<0€i (8)7 & (8).

Remark 1. The coupling matrices between the driven system
and the response system are different. The difficulty is how to
design controller u; (¢) to achieve the outer synchronization
of the driver-response networks and to prove it right.

The aperiodically intermittent pinning control is a very
good strategy; the part nodes of the response network are
controlled by receiving information of the part nodes of the
drive network in the aperiodically intermittent way. To
achieve the outer-synchronization objective, the controller is
designed in system (2) as follows:

AT (0 - yi(0), i=12,.., bt € (towg,
u;(t) =1 0, i=1+11+2,...,Nt € (t;, wl,
0, i=12,...,N,t € (Wpti]

(4)

whered; >0fori =1,2,...,I(I < N) are the control gain and
denote D = diag{d,,d,,...,d;,0,...,0} € R¥¥. For any
time span, (f3,t;q]t=0,i=0,1,2,..., (f;, w,] is the
work time (control time) and w, — t; is called the ith control
width (control duration), where t; and w; denote the start
time and the end time of ith control, respectively, while
(wp>tyyy] is the rest time and t,, — w; is called the ith rest
width.

We define ¢, (t) = x; () —
error systems as follows:

&)= f(tx; (1), x; (t =7, (1)) = f(t, y: (), y; (t — 7, (1))

N N
+ Zafzrxk (t) - Zaﬁl"yS (1)

k=1 s=1
Zb,sys

y; (t), and one can obtain the

N
+ Y bl (£ 7, (1)) — 1, (1)) + 4 (£).
k=1

(5)

Definition 1. The drive network (1) and the response net-
work (2) are said to be outer exponential synchronized if
there exist positive constants K and « such that

N
D i (8t ) = 3, (8.0, )] < Ke ™, (6)
i=1

for any initial data ¢;,v; € €([-7,0]; C").
Our first basic assumption will be used throughout this
paper to deal with the nonlinearity of the systems.

Assumption 1 (See [19]). For some given matrix I, it is
assumed there exists a positive-definite diagonal matrix
P = diag{p,, ps>--.> p,}, a diagonal matrix A = diag{é,,
0,5 ..., 0,}, and constants 7 > 0, { > 0 such that such that the
complex-valued vector function f (t,-,-) satisfies



(x-NIP(ft,x,2) ~ f(t, y,w)) — AZ(x ~ ¥)) )
< —nx- T (x-y)+{z-w(z-w),

for all x, y,z,w € C".
The following basic assumption is that the switching is
slow in the sense of combined work time and rest time.

Assumption 2. For the aperiodically intermittent control
strategy, there exist two positive scalars 0<0<w< + 00
such that, fori=0,1,2,..,,

inf (w; - t;) = 6,

8
sup (t — 1) = o ®

Remark 2. In the assumption, 0 and w characterize the
aperiodically intermittent control. The time span of each
control width should be no less than 6, while the sum span of
control and rest width should be no larger than w, i.e., the
span of rest width should be no larger than w - 6.

2.3. Some Lemmas. In the following, we present some
lemmas that will be required throughout this paper.

Lemma 1 (See [26]). Let y(-): [t, — T,+00) — [0, +00) be
a continuous function such that

y () <ay(t) + by (1), )
where b>0,a+b>0,y(t) = sup,_,..,y(s); then, for t >t,
PO <F(tg)e ), (10

Lemma 2 (See [26]). Let y(-): [t, — 7,+00) — [0, +00) be
a continuous function such that

y(t)< —ay(t) + by (1), (11)

where a,b are positive scalars satisfying a>b and
V(L) = sup, ..,y (5); then, for t >t

y(t) < T (tg)e (1), (12)

where r is the unique positive solution of

A—a, +be' =0,
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a=be" +r. (13)

Lemma 3 (See [26]). If the continuous and nonnegative
function y(t) satisfies

{ y(t)< —ay(t) +by(t),
y(t)<cy(t) +by(t),

L <t<w, .
i=0,12,...,
w; <t<t;,

(14)

for t € [-1,00), where T>0, t; and w; are defined by the
aperiodically intermittent controller (8), and we suppose that
there exists a constant vy, where y =limsup,_,
(tiyg —wi/tiy, —t). Ifa>b>0,6=a+c>0,0=1-8y>0,
then

y(H)<7(0)e ¥, t=0, (15)
where A >0 is the unique positive solution of the equation
A—a+be =0.

Definition 2. Let A = [a;;] € R™", B = [b;] € R and we

1
denote the Kronecker product as follows:

agB a,B ... a,B
a, B a,,B ... a,,B
AeB=| 2 % 7 e rm (16)
a, B a,,B ... a,,B
3. Main Results

Here, via using aperiodically intermittent pinning control,
we obtain the synchronization conditions for these two
complex dynamic networks which have different complex
structures and time-varying delays.

Theorem 1. We suppose Assumptions 1 and 2 hold if there

exist a positive-definite matrix P and positive constants o and
B such that

pu=A1(0-1)-v(w-0)>0, (17)

where v = a, + 2b, and A > 0 is the unique positive solution of
the equation

a; = Apin {07 — a = Py, — Iy ® (PAD) — (A" + A" - D) & (PD)},

ay = Ao (-1 + @+ P, + Iy ® (PAD) +(A% + AP) & (PD)},

(18)

b=(+M,, «l(%(BR)T(BR) + é(BD)T(BD)) ® (PT)" (PF)}.
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Then, drive network (1) and response network (2) are
outer exponential synchronized via aperiodical intermittent
pinning controller (4).

Proof. Basing on the properties of the error systems, one can
define a Lyapunov function

1N .
= — . : Iy 19
V(e(t)) 2216, (t)" Pe; () (19)
when t € (t, w;], and one can obtain that

N
Vie®)=)e (t)HJlf(t, x; (£), x; (t — 7, (1))

i=1

- ftyi @),y (t -7, (1))
N N

+ Z ail"xk (t) - Z aﬁl“ys (t)
k=1 s=1

(20)
N
+ Z biplx, (t =7, (1))
k=1
N
=Y by (t -1, (1) +uy (1) }
s=1
For simplicity, we denote e(t)= [e{I (1), e? (1),

ell(1)]" e C™.
According to Assumption 1, one can obtain that

N
zei (t)HP{f (tx; (), x; (t — 7, (1))
i

- fty (1), y;(t -7, (D))}

< - 17€H (He(t) + e (t—1,(t))e(t

+e (t)Iy® (PAD)e(t).

-7 (t))

(21)

From the definitions of AP (Y, a? = 0), the following
equation holds:

N N N N
Yei (OPY aplxi (1) = Y e;PY apT (x; (t) - y; (1))

i=1 k=1 i=1 k=1
= (1)AP ® (PD)e(t).
(22)

Similarly,

Ze (t)PZblkka (t—1,(t) =" ()B” ® (PD)e (t — 7, (1)),

Ze (t)PZalkl"x (t) =" (A" @ (PD)e(t),

s=1

Ze (t)PZbkl“x —1,(t)) =" ()BR® (PD)e(t - 7, (1)).
(23)

By using 2x"y<cxflx + (1/c)yfy for any x,y e CV
and ¢ >0, one can get

" (1)B” ® (PD)e(t - 7, (1)) s%aeH (D)e(t) + ie (t -, 0)(B°) "B (P1)"

- (PD)e(t -1, (1)e" (£)B* ® (PD)e(t - 7, (1))

s%ﬁeH (te(t) (24)

1
T (0)(B)" B (PD) (PD)e (t - 7, (1)),

where a>0 and > 0.
Also, one can get

N
=Y el (1)Pd;Te; (1) = e ()De (PDe ().

i=1

N
Yei ()Pu, (1) =
i=1

(25)

Vte(t)<e” (t)Hn——a——ﬁ>1Nn +Iy® (PAT) +( A" + A7 -

Substituting inequalities (21)-(25) into equality (20), we
get

D)® (PD)e(t)

+ (-1, (O)e(t -1, (1) +e (t—‘rz(t))<(2ﬁ( R)H(BR)+$(3D)H(3D))®(PF)H(PI“)) (26)

e(t—1,(1)).
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Similarly, when t € (w,t, ], one can get

(t=7,(1))) = f(ty;(8), y; (£ = 7,(1))) ]

N N
=N akTy () + Y bl (t - 1, (1))
s=1 k=1

N
_besys (t T (t))
s=1 (28)

SeH(t){<—11 +%(x +%ﬁ)1N,, +Iy® (PAT) +(A" + A7) ® (Pl")}

e(t)+ e (t—1,(t))e(t -1, (1) + e (t - 1,(1))

6
So, we get
V(te®)< —a,V(t)+b sup V(s). 27)
t—T<s<t
[ f(tx; (1), x;
S Drx(t
. N +Yay "
Vi(te(t) = Ye ()P ; *
i=1
1 R\T R 1
(GCONCRS
So, we get
V(t,e(t)) <a,V(t)+b sup V(s). (29)
t—71<s<t
By Lemma 3 and condition (17), we get
< 2
Yle®| <ke™, (30)
i=1

where K = exp (4 + fw)sup_..,.oV (s) and & = (4/v) > 0. The
proof is completed. O

A—a, +be'" =0,

ay = Apin {01 — € = B)y,, — Iy ® (PAT) — (A" + AP - D)’ & (PD)},

a = /\max

b={(

Then, the solution e;(t), i=1,...,N of system (5) is
globally exponentially stabilized with the aperiodical inter-
mittent pinning controller (4).

(BD)T(BD)) ® (PI)’ (Pr)>e(t -7, ().

Remark 3. The condition of outer synchronization is given
in (17) and (18) and is affected due to the different coupling
matrices between the driven system and the response system.

When the coupling is without delay, that is, 7, (t) = 0,
then we have the corollary as follows.

Corollary 1. We suppose Assumptions 1 and 2 hold, a
positive-definite matrix P, and positive constants a and 3 such

that
p=r0-1)-v(w-0)>0, (31)

where v = a, + 2b, and A > 0 is the unique positive solution of
the equation

(32)

{(=n+a+ )y, + Iy (PAD) +(A" + AP) & (PD)},

Remark 4. The corollary gives the sufficient conditions to
ensure the drive systems and the response system to achieve
synchronization by the aperiodical intermittent pinning
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100

FIGURE 1: A complex-valued Lorenz system is illustrated. (a) The image part of the states. (b) The real part of the states.

controller, which extends the result of [13], where the states
of the drive systems and the response systems are real and
the coupling is without the delay.

4. Numerical Simulation

In this section, one numerical simulation example is pre-
sented to validate the effectiveness of the abovementioned
theorem by the complex-value Lorenz system.

X =-a;x+a,y,
y=(as—z)x—a,y, (33)

. I _ _
Z=-a,2+7 (xy + xy).

It has a chaotic attractor when the parameters a, = 2,
a, =0.8, a; =60+ 0.02i, and a, =1-0.06i [17]. Figure 1
shows the state of the complex-valued Lorenz system with
the initial value (1 +4,2 + 44, 3). One can get S (z(t)) = 0 if
S (z(0)) = 0.

We consider the driver-response system of 10 agents via
coupling protocol (1), (2), and (4) with the topology as
shown in Figure 2. Let

10 10
% (8) = f (62, (8), %, (t =7, (1)) + Y aplxg (£) + Y bpLx (£ =7, (1))
k=1

=1
’ (34)
2
—dDY (x,(t) -y, (1), i=1,2,...,10,
=
0 o
Pi(6) = f 6y (), y; (t =1, () + Y @y () + Y by, (t -1, (1), i=1,2,...,10. (35)
s=1 s=1
In this numerical simulation, let D =diag b =3.260,c =2.4443,a, = 1042.3,and y = 0.0138 by solving
{1,1,1,1,1,0,0,0,0,0}, 7,(t) =0.01(e'/1+¢€"), IP=2, equation (18) in Theorem 1.

o;(t,x; (1), x;(t =7, (1), x;(t —1,()) = 0.01diag{x; (¢) +
xqp(t—1(®)+xq (E—7,(), x5 (1) + x5 (t — 71 (1)) + X1
(t-7, ()} and o, (L, y; (1), y; (t =7, (1), y; (t = 7,(1))) =
0.01 diag {y;; (t) + y;y (t = 7, (1)) + y;y (t = 75 (£)), ¥y ()+ Y
(t—1, () + yp (£ — 1, (D))}

Computations then yield 7, = 1, 7, =0, 7, = 0.01, and
7, = 0.0025. One can design the control strength d; = 100.
By simple computation, one can obtain that a, = 5.8039,

The initial values for this simulation are x;;(fy) =
-2 xixcos(ty) —kxcos(ty), Vis (tg) = —2x (i+7)x
cos(ty)+ sxcos(ty), fori=1,...,10,j=1,...,7, k=1,2,
and t, € [-1,0]. The trajectories of system (35) and (34)
under the aperiodically intermittent pinning control
gains are shown in Figures 3 and 4. It is obvious that the
outer synchronization between (35) and (34) can be
realized.
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FIGUre 2: The topology structures of the response (a, b) and drive (c, d) network. (a) AR (b) BY, (¢) AP, (d) BP.
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Figure 3: Continued.
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FiGURE 3: The evolution of x;; and y; (i=1,2,...,10) in system (34) and (35) via aperiodically intermittent control.
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FIGURE 4: The evolution of x;, and j;, (i =1,2,...,10) in system (34) and (35) via aperiodically intermittent control.

5. Conclusions

In this paper, the outer-synchronization problem of two
complex-value complex dynamical networks with node
delay and time-varying coupling delay is investigated. In
particular, we realized global outer synchronization by
using an aperiodically intermittent control scheme to a
small part of agents. Furthermore, we obtained sufficient
criteria for the global exponential outer synchronization.
Finally, one numerical example is given to illustrate the
theoretical analysis.

In the future, the work will be extended to the case that
the drive network and response network are coupled via
negatively weighted couplings. The event-trigger intermit-
tent control will be considered.
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