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.is paper is concerned with the outer exponential synchronization of the drive-response complex dynamical networks subject to
time-varying delays. .e dynamics of nodes is complex valued, the interactions among of the nodes are directed, and the two
coupling matrices in the drive system and the response system are also different. .e intermittent pinning control is proposed to
achieve outer exponential synchronization in the aperiodical way. Some novel sufficient conditions are derived to guarantee outer
exponential synchronization of the considered complex-valued complex networks by using the Lyapunov functional method.
Finally, two numerical examples are presented to illustrate the effectiveness of the proposed control protocols.

1. Introduction

Under the background of surging development of network
technique and information technique, a lot of attention has
been drawn on the research of complex networks by more
and more scholars. Modeling for the complex networks
[1–3] is an essential part of deploying real network in our
life. At the same time, as an important collective attribute of
a network, synchronization is widely used which includes
robot synchronous operation, sensor clock synchronization,
and power system frequency synchronization. .e research
of the synchronization type in this area has also been the
concern of many scholars, and many great results have been
achieved in recent years such as synchronization, outer
synchronization, almost sure synchronization, projection
synchronization, and quasisynchronization [4–11].

Generally, we consider the network synchronization in
two ways. First is the synchronization generating inside a
network which is focused on the unity of all the nodes. We
call it “inner synchronization.” .e exiting research studies
mostly focus on synchronization, partial synchronization,
and so on. Second is synchronization achieving between two
or more complex networks in the drive-response way, no

matter whether the inner synchronization of one same
network is realized or not. .is type of synchronization, as
the name implies, is called “outer synchronization.” It is easy
enough to think of examples in real life. If we regard the
developed countries and developing countries as two net-
works, one can see that the two networks will eventually
achieve synchronization with the exchange visits between
the countries frequently. In the same way, we take the couple
as two different networks and take their appearance, per-
sonality, values, and outlook on life as different nodes,
through long running-in, and two networks will also be
synchronized. Recently, some studies about outer syn-
chronization of complex networks have sprung up. For
example, Ray and Roychowdhury [12] investigated a class of
outer synchronization between two different networks with
different nodes. Based on this paper, Lu et al. [13] present an
analytical method of outer synchronization of local coupled
dynamical networks by using a pinning impulsive controller
and regrouping method. Furthermore, outer synchroniza-
tion between two uncertain networks with different node
numbers, using the method of adaptive scaling function, is
further investigated [14]. Zhang et al. [15] study the gen-
eralized outer synchronization of coupled complex
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networks, considering nondissipative and different time-
varying coupling delays..ese results providemany valuable
references for us studying the outer synchronization. It is
important to note that the most of the existing research
focuses on the same network structure of outer network
synchronization for the drive-response systems.

For a long time, the research of complex network syn-
chronization in real number domain has attracted lots of
scholars’ attention, but in fact, the studies about the com-
plex-domain deserve more attention for its great potential
and vast development foreground. For example, in the field
of fuzzy neural network, due to the obvious uncertainty and
fuzziness, the complex signal cannot be processed by the real
domain, and at this point, the complex-domain must be
considered. Zhang et al. [16] discussed the synchronization
for a new type of fully complex-valued networks including
the linear feedback control in a finite time and coupling
delay. In [17], Wu et al. probed using the pinning control
strategy to realize the synchronization of complex-variable
network. .e relative conclusion in this letter involves real-
domain and complex-domain networks. Sun and Xu et al.
investigated the synchronization of complex-variable net-
works with fractional order [18, 19]. Among them, Sun et al.
mainly discussed the real combination asymptotical syn-
chronization of three fractional-order complex-variable
chaotic systems based on the related theories [18], and Xu
et al. used the fractional-order techniques and the corre-
lation control strategy to implement fractional-order com-
plex-domain network synchronization [19].

In the previous relative works, the dynamics of the nodes
and the coupling matrices of the networks are identical, and
it is more common and easier to discuss the synchronization
of two networks, but that is not the case; most of the time, the
structures of coupling matrices of drive-response complex
dynamical networks are not the same. For example, in the
ecological network, the two systems which are constituted by
a predator and prey are usually in imbalance, leading to the
extinction of a species or ecological environment being
changed. Zhou et al. contributed a valuable instance in
which they construct two classes of small-world and WS
networks through taking some fiber lasers with hyperchaos
features as nodes [20]. .e authors take the relationship of
three people as an example to explain the notion of different-
dimensional node clearly [21]. Zhang et al. first investigate
the stabilization issues including time-varying and inter-
rupted complex networks with uncertain nonlinearities, in
which they design some new stabilization controllers [22].
.en, they research the outer synchronization between two
complex networks with different time-varying coupling
delays. .ey design two controllers for their drive system
and response system by using some particular technique
called “open-plus-closed-loop” [23].

.e aperiodic intermittent control is a very good type of
control strategy that only constrains the boundaries of the
time interval between samples. Compared to the real-domain
one, the complex-domain systems have more utility value,
and at the same time, the sampling in the aperiodical way is
also more universal than in the periodical case. Cai et al.
investigated the outer synchronization between two complex

dynamical networks by using aperiodically adaptive inter-
mittent pinning control [24]. Lei et al. constructed a new
piecewise auxiliary function to realize the outer synchroni-
zation of two general complex networks delayed by using an
aperiodically adaptive intermittent control scheme [25].
Unfortunately, it has been found that the system given by the
authors is inapplicable to the complex-value complex dy-
namical networks. Compared with existing real-value com-
plex dynamical networks, the complex-value case is more
challenging since the state of the dynamics is complex.

Motivated by the previous research, in this manuscript,
we investigate the exponential outer-synchronization issue
of complex-valued complex dynamical networks, in which
the coupling matrices of the drive-response systems are
different. .e major differences are that the state of the
systems is complex-valued, the intermittent control is
aperiodic, and the coupling matrices are different in the
drive and response system. .e main contributions are
highlighted as follows: Firstly, a new complex-valued
complex dynamical network model with nondelays and
time-varying delays coupling is formulated to model the real
networks. Secondly, by using the Lyapunov functional
method, stability theory, complex-valued differential equa-
tions, and other related mathematics theories and tech-
niques, some practical sufficient conditions are relieved to
ensure exponential synchronization of our networks.
Meanwhile, we have adopted a flexible control strategy to
reduce the cost of synchronization. Finally, we give some
numerical simulation to verify our results.

.e frame structure of this manuscript is as follows. In
Section 2, this part is the prophase work, including the
introduction and description of the various definitions and
theorems, quotes, hypothesis, and so on. In Section 3,
combining with the previous theorem, assumptions, and so
on, some effective criteria of complex network synchroni-
zation are deduced and related inference is given. In Section
4, we give some numerical simulation to verify our results.
At last, this manuscript is concluded in Section 5.

2. Preliminaries

2.1. Notations. Rn: the n-dimensional real Euclidean space
Cn: the n-dimensional complex Euclidean space
Rn×n: the set of n × n real matrices
Cn×n: the set of n × n complex matrices
H(xH): the conjugate transpose of a matrix or vector
⊤(x⊤): the conjugate transpose of a matrix or vector
In: the identity matrix with n dimensions
As As � ((A + A⊤)/2) for A ∈ Rn×n

M> 0 for symmetric matrices M, M is a positive-
definite matrix
M< 0 for symmetric matrices M, M is a negative-
definite matrix
λmax(M): the largest eigenvalue of M

λmin(M): the smallest eigenvalue of M

‖·‖: Euclidean norm in complex field
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√
denotes the imaginary unit

|x|: the modulus of a complex number x

R(x): its real part
I(x): its imaginary part
C([−τ, 0],Cn): the set of the continuous vector value
function in the complex number fields.

2.2.Model Description. We consider a drive system network
consisting of N agents. In this network, each agent is an n

dimensional identical nonlinearly dynamics unit, and the
drive network can be described as

_xi(t) � f t, xi(t), xi t − τ1(t)( (  + 
N

k�1
a

D
ikΓxk(t)

+ 
N

k�1
b

D
ikΓxk t − τ2(t)( , i � 1, 2, 3, . . . , N,

(1)

where xi(t) � [xi1(t), xi2(t), . . . , xin(t)]⊤ ∈ Cn is the state
vector of the ith agent of the network, f(t, xi(t), xi(t − τ1
(t))) � [f1(t, xi(t), xi(t − τ1(t))), f2(t, xi(t), xi(t − τ1(t))),

. . . , fn(t, xi(t), xi(t − τ1(t)))]⊤ ∈ Cn is a continuous
complex vector-valued function, Γ � diag(ϱ1, ϱ2, . . . , ϱn) ∈
Rn×n is an inner coupling matrix satisfying ϱk > 0 for
k � 1, 2, . . . , n. AD � [aD

ik] ∈ Rn×n is the outer coupling
matrix of the network at time t satisfying aD

ik ≥ 0 for i≠ k,
aD

ii � − 
N
k�i,k≠i aD

ik, BD � [bD
ik] ∈ Rn×n is the other one with

the time-varying delay τ2(t) satisfying bD
ik ≥ 0 for i≠ k and

bD
ii � − 

N
k�i,k≠i bD

ik, and τ1(t) and τ2(t) are the inner and
coupling time-varying delay, respectively, which satisfy
τ1 ≥ τ1(t)≥ 0 and τ2 ≥ τ2(t)≥ 0, and let τ � max(τ1, τ2).

.e response complex dynamical network with con-
trollers is

_yi(t) � f t, yi(t), yi t − τ1(t)( (  + 
N

s�1
a
R
isΓys(t)

+ 
N

s�1
b
R
isΓys t − τ2(t)(  + ui(t), i � 1, 2, . . . , N,

(2)

where yi(t) � [yi1(t), yi2(t), . . . , yin(t)]⊤ ∈ Cn is the state
vector of the jth agent of the response network and
f(t, yi(t), yi(t − τ1(t))) � [f1(t, yi(t), xi(t − τ1(t))), f2
(t, yi(t), yi(t − τ1(t))), . . . , fn(t, yi(t), yi(t − τ1(t)))]⊤ ∈
Cn is a continuous vector-valued function. Here,
AR � [aR

ik] ∈ Rn×n is the outer coupling matrix at time t

satisfying aR
ik ≥ 0 for i≠ k, aD

ii � − 
N
k�i,k≠i aD

ik, BR � [bR
ik] ∈

Rn×n is the outer coupling matrices at time t − τ2(t) satis-
fying bD

ik ≥ 0 for i≠ k and bD
ii � − 

N
k�i,k≠i bD

ik, and ui(t) is the
control input.

.e initial conditions are

xi(s) � εi(s), −�τ1 ≤ s≤ 0, i � 1, 2, . . . , N,

yi(s) � υi(s), −�τ1 ≤ s≤ 0, i � 1, 2, . . . , N,
(3)

where �τ1 � max τ1(t), τ2(t) , εi, υi ∈ Cb
F0

([−�τ1, 0],Cn) with
the norm ‖εi‖

2 � sup−�τ1≤s≤0εi(s)Hεi(s).

Remark 1. .e coupling matrices between the driven system
and the response system are different..e difficulty is how to
design controller ui(t) to achieve the outer synchronization
of the driver-response networks and to prove it right.

.e aperiodically intermittent pinning control is a very
good strategy; the part nodes of the response network are
controlled by receiving information of the part nodes of the
drive network in the aperiodically intermittent way. To
achieve the outer-synchronization objective, the controller is
designed in system (2) as follows:

ui(t) �

−diΓ xi(t) − yi(t)( , i � 1, 2, . . . , l, t ∈ tk,ωk( ,

0, i � l + 1, l + 2, . . . , N, t ∈ tk,ωk( ,

0, i � 1, 2, . . . , N, t ∈ ωk, tk+1( ,

⎧⎪⎪⎨

⎪⎪⎩

(4)

where di > 0 for i � 1, 2, . . . , l(l<N) are the control gain and
denote D � diag d1, d2, . . . , dl, 0, . . . , 0  ∈ RN×N. For any
time span, (tk, tk+1], t0 � 0, i � 0, 1, 2, . . . , (tk,ωk] is the
work time (control time) and ωk − tk is called the ith control
width (control duration), where tk and ωk denote the start
time and the end time of ith control, respectively, while
(ωk, tk+1] is the rest time and tk+1 − ωk is called the ith rest
width.

We define ei(t) � xi(t) − yi(t), and one can obtain the
error systems as follows:

_ei(t) � f t, xi(t), xi t − τ1(t)( (  − f t, yi(t), yi t − τ1(t)( ( 

+ 
N

k�1
a

D
ikΓxk(t) − 

N

s�1
a

R
isΓys(t)

+ 
N

k�1
b

D
ikΓxk t − τ2(t)(  − 

N

s�1
b

R
isys t − τ2(t)(  + ui(t).

(5)

Definition 1. .e drive network (1) and the response net-
work (2) are said to be outer exponential synchronized if
there exist positive constants K and κ such that



N

i�1
xi t, t0, εi(  − yi t, t0, υi( 

����
����≤Ke

−κt
, (6)

for any initial data εi, υi ∈ C([−τ, 0];Cn).
Our first basic assumption will be used throughout this

paper to deal with the nonlinearity of the systems.

Assumption 1 (See [19]). For some given matrix Γ, it is
assumed there exists a positive-definite diagonal matrix
P � diag p1, p2, . . . , pn , a diagonal matrix Δ � diag δ1,

δ2, . . . , δn}, and constants η> 0, ζ > 0 such that such that the
complex-valued vector function f(t, ·, ·) satisfies
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(x − y)
H

P((f(t, x, z) − f(t, y, w)) − ΔΣ(x − y))

≤ − η(x − y)
H

(x − y) + ζ(z − w)
H

(z − w),
(7)

for all x, y, z, w ∈ Cn.
.e following basic assumption is that the switching is

slow in the sense of combined work time and rest time.

Assumption 2. For the aperiodically intermittent control
strategy, there exist two positive scalars 0< θ <ω< +∞
such that, for i � 0, 1, 2, . . .,

inf
i

ωi − ti(  � θ,

sup
i

ti+1 − ti(  � ω.

⎧⎪⎪⎨

⎪⎪⎩
(8)

Remark 2. In the assumption, θ and ω characterize the
aperiodically intermittent control. .e time span of each
control width should be no less than θ, while the sum span of
control and rest width should be no larger than ω, i.e., the
span of rest width should be no larger than ω − θ.

2.3. Some Lemmas. In the following, we present some
lemmas that will be required throughout this paper.

Lemma 1 (See [26]). Let y(·): [t0 − τ, +∞)⟶ [0, +∞) be
a continuous function such that

_y(t)< ay(t) + by(t), (9)

where b> 0, a + b> 0, y(t) � supt−τ≤s≤ty(s); then, for t≥ t0,

y(t)≤y t0( e
(a+b) t− t0( ). (10)

Lemma 2 (See [26]). Let y(·): [t0 − τ, +∞)⟶ [0, +∞) be
a continuous function such that

_y(t)< − ay(t) + by(t), (11)

where a, b are positive scalars satisfying a> b and
y(t) � supt−τ≤s≤ty(s); then, for t≥ t0,

y(t)≤y t0( e
− r t− t0( ), (12)

where r is the unique positive solution of

a � be
rτ

+ r. (13)

Lemma 3 (See [26]). If the continuous and nonnegative
function y(t) satisfies

_y(t)< − ay(t) + by(t), ti ≤ t≤ωi,

_y(t)< cy(t) + by(t), ωi ≤ t≤ ti+1,
 i � 0, 1, 2, . . . ,

(14)

for t ∈ [−τ,∞), where τ > 0, ti and ωi are defined by the
aperiodically intermittent controller (8), and we suppose that
there exists a constant ψ, where ψ � lim supi⟶∞
(ti+1 − ωi/ti+1 − ti). If a> b≥ 0, δ � a + c> 0, ϱ � λ − δψ > 0,
then

y(t)≤y(0)e
− ϱt

, t≥ 0, (15)

where λ> 0 is the unique positive solution of the equation
λ − a + beλτ � 0.

Definition 2. Let A � [aij] ∈ Rm×n, B � [bij] ∈ Rs×t, and we
denote the Kronecker product as follows:

A⊗B �

a11B a12B . . . a1nB

a21B a22B . . . a2nB

⋮ ⋮ ⋱ ⋮

am1B am2B . . . amnB

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rms×nt
. (16)

3. Main Results

Here, via using aperiodically intermittent pinning control,
we obtain the synchronization conditions for these two
complex dynamic networks which have different complex
structures and time-varying delays.

Theorem 1. We suppose Assumptions 1 and 2 hold if there
exist a positive-definite matrix P and positive constants α and
β such that

μ � λ(θ − τ) − ](ω − θ)> 0, (17)

where ] � a2 + 2b, and λ> 0 is the unique positive solution of
the equation

λ − a1 + be
λτ

� 0,

a1 � λmin (η − α − β)INn − IN ⊗ (PΔΓ) − A
R

+ A
D

− D 
s
⊗ (PΓ) ,

a2 � λmax (−η + α + β)INn + IN ⊗ (PΔΓ) + A
R

+ A
D

 
s
⊗ (PΓ) ,

b � ζ + λmax
1
β

B
R

 
⊤

B
R

  +
1
α

B
D

 
⊤

B
D

  ⊗ (PΓ)⊤(PΓ) .

(18)
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Cen, drive network (1) and response network (2) are
outer exponential synchronized via aperiodical intermittent
pinning controller (4).

Proof. Basing on the properties of the error systems, one can
define a Lyapunov function

V(e(t)) �
1
2



N

i�1
ei(t)

H
Pei(t), (19)

when t ∈ (tk,ωk], and one can obtain that

_V(e(t)) � 
N

i�1
ei(t)

H
⎧⎨

⎩f t, xi(t), xi t − τ1(t)( ( 

− f t, yi(t), yi t − τ1(t)( ( 

+ 

N

k�1
a

D
ikΓxk(t) − 

N

s�1
a

R
isΓys(t)

+ 
N

k�1
b

D
ikΓxk t − τ2(t)( 

− 
N

s�1
b

R
isys t − τ2(t)(  + ui(t)

⎫⎬

⎭.

(20)

For simplicity, we denote e(t) � [eH
1 (t), eH

2 (t),

. . . , eH
N(t)]H ∈ CnN.

According to Assumption 1, one can obtain that



N

i�1
ei(t)

H
P f t, xi(t), xi t − τ1(t)( ( 

− f t, yi(t), yi t − τ1(t)( ( 

≤ − ηe
H

(t)e(t) + ζe
H

t − τ1(t)( e t − τ1(t)( 

+ e
H

(t)IN ⊗ (PΔΓ)e(t).
(21)

From the definitions of AD (
N
k�i aD

ik � 0), the following
equation holds:



N

i�1
e

H
i (t)P

N

k�1
a

D
ikΓxk(t) � 

N

i�1
eiP

N

k�1
a

D
ikΓ xk(t) − yi(t)( 

� e
H

(t)A
D ⊗ (PΓ)e(t).

(22)

Similarly,



N

i�1
e

H
i (t)P

N

k�1
b

D
ikΓxk t − τ2(t)(  � e

H
(t)B

D ⊗ (PΓ)e t − τ2(t)( ,



N

i�1
e

H
i (t)P

N

s�1
a

R
ikΓxs(t) � e

H
(t)A

R ⊗ (PΓ)e(t),



N

i�1
e

H
i (t)P

N

s�1
b

R
ikΓxs t − τ2(t)(  � e

H
(t)B

R ⊗ (PΓ)e t − τ2(t)( .

(23)

By using 2xHy≤ cxHx + (1/c)yHy for any x, y ∈ CN

and c> 0, one can get

e
H

(t)B
D ⊗ (PΓ)e t − τ2(t)( ≤

1
2
αe

H
(t)e(t) +

1
2α

e t − τ2(t)(  B
D

 
H

B
D ⊗ (PΓ)H

· (PΓ)e t − τ2(t)( e
H

(t)B
R ⊗ (PΓ)e t − τ2(t)( ≤

1
2
βe

H
(t)e(t)

+
1
2β

e t − τ2(t)(  B
R

 
H

B
R ⊗ (PΓ)H

(PΓ)e t − τ2(t)( ,

(24)

where α> 0 and β> 0.
Also, one can get



N

i�1
e

H
i (t)Pui(t) � −

N

i�1
e

H
i (t)PdiΓei1(t) � −e

H
(t)D⊗ (PΓ)e(t).

(25)

Substituting inequalities (21)–(25) into equality (20), we
get

_V(t, e(t))≤ e
H

(t) − η −
1
2
α −

1
2
β INn + IN ⊗ (PΔΓ) + A

R
+ A

D
− D ⊗ (PΓ) e(t)

+ ζe
H

t − τ1(t)( e t − τ1(t)(  + e
H

t − τ2(t)( 
1
2β

B
R

 
H

B
R

  +
1
2α

B
D

 
H

B
D

  ⊗ (PΓ)H
(PΓ) 

e t − τ2(t)( .

(26)
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So, we get
_V(t, e(t)) ≤ − a1V(t) + b sup

t−τ≤s≤t
V(s). (27)

Similarly, when t ∈ (ωk, tk+1], one can get

_V(t, e(t)) � 
N

i�1
ei(t)

H
P

f t, xi(t), xi t − τ1(t)( (  − f t, yi(t), yi t − τ1(t)( ( 

+
N

k�1
a

DΓxk(t)

ik − 
N

s�1
a

R
jsΓys(t) + 

N

k�1
b

D
ikΓxk t − τ2(t)( 

−
N

s�1
b

R
jsys t − τ2(t)( 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ e
H

(t) −η +
1
2
α +

1
2
β INn + IN ⊗ (PΔΓ) + A

R
+ A

D
 ⊗ (PΓ) 

e(t) + ζe
H

t − τ1(t)( e t − τ1(t)(  + e
H

t − τ2(t)( 

·
1
2β

B
R

 
⊤

B
R

  +
1
2α

B
D

 
⊤

B
D

  ⊗ (PΓ)⊤(PΓ) e t − τ2(t)( .

(28)

So, we get
_V(t, e(t))≤ a2V(t) + b sup

t−τ≤s≤t
V(s). (29)

By Lemma 3 and condition (17), we get



N

i�1
ei(t)

����
����
2 ≤Ke

−κt
, (30)

where K � exp(μ + βω)sup−τ≤s≤0V(s) and κ � (μ/])> 0. .e
proof is completed. □

Remark 3. .e condition of outer synchronization is given
in (17) and (18) and is affected due to the different coupling
matrices between the driven system and the response system.

When the coupling is without delay, that is, τ2(t) � 0,
then we have the corollary as follows.

Corollary 1. We suppose Assumptions 1 and 2 hold, a
positive-definite matrix P, and positive constants α and β such
that

μ � λ(θ − τ) − ](ω − θ)> 0, (31)

where ] � a2 + 2b, and λ> 0 is the unique positive solution of
the equation

λ − a1 + be
λτ

� 0,

a1 � λmin (η − α − β)INn − IN ⊗ (PΔΓ) − A
R

+ A
D

− D 
s
⊗ (PΓ) ,

a2 � λmax (−η + α + β)INn + IN ⊗ (PΔΓ) + A
R

+ A
D

 
s
⊗ (PΓ) ,

b � ζ.

(32)

Cen, the solution ei(t), i � 1, . . . , N of system (5) is
globally exponentially stabilized with the aperiodical inter-
mittent pinning controller (4).

Remark 4. .e corollary gives the sufficient conditions to
ensure the drive systems and the response system to achieve
synchronization by the aperiodical intermittent pinning
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controller, which extends the result of [13], where the states
of the drive systems and the response systems are real and
the coupling is without the delay.

4. Numerical Simulation

In this section, one numerical simulation example is pre-
sented to validate the effectiveness of the abovementioned
theorem by the complex-value Lorenz system.

_x � −a1x + a1y,

_y � a3 − z( x − a4y,

_z � −a2z +
1
2

(xy + xy).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

It has a chaotic attractor when the parameters a1 � 2,
a2 � 0.8, a3 � 60 + 0.02i, and a4 � 1 − 0.06i [17]. Figure 1
shows the state of the complex-valued Lorenz system with
the initial value (1 + i, 2 + 4i, 3). One can get I(z(t)) � 0 if
I(z(0)) � 0.

We consider the driver-response system of 10 agents via
coupling protocol (1), (2), and (4) with the topology as
shown in Figure 2. Let

_xi(t) � f t, xi(t), xi t − τ1(t)( (  + 
10

j�1
a

D
ikΓxk(t) + 

10

k�1
b

D
ikΓxk t − τ2(t)( 

− diΓ
2

j�1
xi(t) − yi(t)( , i � 1, 2, . . . , 10,

(34)

_yi(t) � f t, yi(t), yi t − τ1(t)( (  + 

10

s�1
a

R
isΓys(t) + 

10

s�1
b

R
isΓys t − τ2(t)( , i � 1, 2, . . . , 10. (35)

In this numerical simulation, let D � diag
1, 1, 1, 1, 1, 0, 0, 0, 0, 0{ }, τ2(t) � 0.01(et/1 + et), lD � 2,
σi(t, xi(t), xi(t − τ1(t)), xi(t − τ2(t))) � 0.01diag xi1(t) +

xi1(t − τ1(t)) + xi1 (t − τ2(t)), xi2(t) + xi2(t − τ1(t)) + xi2
(t − τ2(t))}, and σi(t, yi(t), yi(t − τ1(t)), yi(t − τ2(t))) �

0.01 diag yi1(t) + yi1(t − τ1(t)) + yi1(t − τ2(t)), yi2(t)+ yi2
(t − τ1(t)) + yi2(t − τ2(t))}.

Computations then yield τ1 � 1, τ1 � 0, τ2 � 0.01, and
τ1 � 0.0025. One can design the control strength di � 100.
By simple computation, one can obtain that a1 � 5.8039,

b � 3.260, c � 2.4443, a2 � 1042.3, and c � 0.0138 by solving
equation (18) in .eorem 1.

.e initial values for this simulation are xij(t0) �

−2 × i × cos(t0) − k × cos(t0), yjs(t0) � −2× (i + 7)×

cos(t0)+ s × cos(t0), for i � 1, . . . , 10, j � 1, . . . , 7, k � 1, 2,
and t0 ∈ [−1, 0]. .e trajectories of system (35) and (34)
under the aperiodically intermittent pinning control
gains are shown in Figures 3 and 4. It is obvious that the
outer synchronization between (35) and (34) can be
realized.
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Figure 1: A complex-valued Lorenz system is illustrated. (a) .e image part of the states. (b) .e real part of the states.
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Figure 3: Continued.
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Figure 2: .e topology structures of the response (a, b) and drive (c, d) network. (a) AR, (b) BR, (c) AD, (d) BD.
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5. Conclusions

In this paper, the outer-synchronization problem of two
complex-value complex dynamical networks with node
delay and time-varying coupling delay is investigated. In
particular, we realized global outer synchronization by
using an aperiodically intermittent control scheme to a
small part of agents. Furthermore, we obtained sufficient
criteria for the global exponential outer synchronization.
Finally, one numerical example is given to illustrate the
theoretical analysis.

In the future, the work will be extended to the case that
the drive network and response network are coupled via
negatively weighted couplings. .e event-trigger intermit-
tent control will be considered.
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