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In this paper, the single-machine scheduling problem is studied by simultaneously considering due-date assignment and group
technology (GT). -e objective is to determine the optimal sequence of groups and jobs within groups and optimal due-date
assignment to minimize the weighted sum of the absolute value in lateness and due-date assignment cost, where the weights are
position dependent. For the common (CON) due-date assignment, slack (SLK) due-date assignment, and different (DIF) due-date
assignment, an O(n log n) time algorithm is proposed, respectively, to solve the problem, where n is the number of jobs.

1. Introduction

In the manufacturing industry, it is well known that firms
can increase production efficiency by adopting the group
technology (GT). -e group technology is an approach to
manufacturing that seeks to improve efficiency in high-
volume production by exploiting the similarities of different
products and activities in their production (Neufeld et al. [1]
and Yang et al. [2]). -rough decades of application, people
have found many advantages of the group technology. For
example, changeover between different jobs in the same
group is simplified, reducing the costs or time involved; jobs
in the same group spend less time waiting, which results in
less work-in-process inventory; jobs in the same group tend
to move through production in a direct route, reducing the
manufacturing lead time (see the work of Yang and Yang [3],
Lu et al. [4], Yin et al. [5], Wang and Liu [6], Wang and
Wang [7], Qin et al. [8], Lu et al. [9], Zhang et al. [10], Liu
et al. [11], and Wang and Liang [12]).

In recent years, the problem of the due-date assignment
has been closely focused on by scholars (see the work of Yin
et al. [13, 14], Wang et al. [15], and Shabtay [16]). Due to the
increasing interest in the Just-In-Time (JIT) system, the issue

of schedule allocation is becoming more and more im-
portant in practical applications. In the classical scheduling
problem, the due date is usually a given constant, while in the
actual application of life, the duration of the job is not a fixed
constant, but a decision variable. In order to strengthen the
global competition and improve the service level for cus-
tomers, the jobs are required to be processed too early or too
late in the JIT system, which leads to the trouble of
scheduling problems involving advance and delay costs and
the expiration date of the construction period. For the early
completion of the job, it means that we have to bear a certain
inventory cost, while for the delayed completion of the job,
we have to bear the contract penalty, and the customer’s
goodwill is damaged (see the work of Li et al. [17], Liu et al.
[18], Wang et al. [19]). A lot of literature deals with the
problems such as the CON, SLK, and some other due-date
assignment methods considering jobs. However, under the
group technology, there are relatively few studies on the
problem of the assignment of jobs. Li et al. [17] considered
three due-date assignment methods under group technol-
ogy. -e objective function is to minimize the weighted sum
of earliness, tardiness, due-date assignment, and completion
time. For the CON, SLK, and different due-date assignments
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(DIFs), they proved that the problem can be solved in
polynomial time, respectively. Ji et al. [20] studied the single-
machine slack due-date window assignment scheduling with
group technology. -e objective function is to minimize the
total cost including the earliness, tardiness, due window
starting time, and due window size. -ey proved that the
problem can be solved in O(n log n) time.

Brucker [21] considered the CON due-date scheduling
problem of minimizing the total cost comprising the total
weighted absolute lateness value and common due-date
(CON) cost, where the weight is position dependent. He
proved that the problem can be solved in a time O(n log n).
Liu et al. [18] considered the SLK due-date assignment
scheduling, and the goal is to minimize the total cost
comprising the total weighted absolute lateness value and
common flow allowance (SLK) cost, where the weight is a
position-dependent weight. -ey proved that the problem
can be solved in a time O(n log n). Wang et al. [19] studied
the scheduling problems of single machine resource allo-
cation in job-dependent learning effects. Under the linear
and convex resource consumption functions, they proved
that the CON and SLK due-date assignment problems can be
solved in polynomial time, respectively. Sun et al. [22]
considered single-machine scheduling problems on resource
allocation, group technology, and learning effect. Under the
linear and convex resource consumption functions, they
proved that the SLK due-date assignment problem can be
solved in polynomial time.

According to this study, we consider due-date assign-
ment and scheduling problems with group technology.
Under the assumption of group technology, the jobs are
classified into groups by exploiting the similarities of dif-
ferent products and activities in their production. In this
paper, we proceed to the study Brucker [21], Liu et al. [18],
and Wang et al. [19], which is an extension of their work
from considering the CON, SLK, and DIF due-date as-
signment scheduling problems with group technology and
position-dependent weights. We organize the rest of the
paper as follows: the problem is formulated in Section 2,
several results of the optimal solution are introduced in
Section 3, and the conclusions are summarized in Section 4.

2. Problem Formulation

In the study, the problem can be formally described as
follows: there are n independent non-preemption jobs
grouped into f groups, i.e., G1, G2, . . . , Gf . A single
machine and all the jobs are available at time zero, and the
single machine can handle one job at a time and preemption
is not allowed. Let the number of jobs in group Gi be ni, i.e.,
Ji,1, Ji,2, . . . , Ji,ni

 , where Ji,j denotes the job Jj of group Gi,
i � 1, 2, . . . , f, j � 1, 2, . . . , ni and n1 + n2 + · · · + nf � n.
Jobs in the same group are processed consecutively and do
not need setup times. Let pij denote the processing time of
job Ji,j and si be the sequence-independent machine setup
time incurred before the process of the first job of group Gi.
Each job Ji,j(i � 1, 2, . . . , f; j � 1, 2, . . . , ni) has a due date
di,j, which is assignable according to one of the following
three due-date assignment methods:

(1) -e common (CON) due-date assignment in which
all jobs of group Gi are assigned the same due date,
i.e., di,j � d

opt
i for i � 1, 2, . . . , f and j � 1, 2, . . . , ni

(2) -e common flow allowance (slack, SLK) assignment
in which the due-date di,j for all jobs of group Gi are
assigned an equal flow allowance that is equal to its
processing time plus the common flow allowance,
i.e., di,j � pi,j + q

opt
i for i � 1, 2, . . . , f and

j � 1, 2, . . . , ni

(3) -e different (DIF) due-date assignments in which
the due date di,j for all jobs of group Gi are assigned a
different due date with no restrictions (i � 1, 2, . . . , f

and j � 1, 2, . . . , ni)

Let Ci,j be the completion time of job Ji,j. -e goal is to
determine the due date di,j (i.e., the CON d

opt
i , the SLK q

opt
i ,

and the DIF di,j) and an optimal sequence π∗ such that the
following objective functions are to be minimized:

Z1(π, D(π)) � 

f

i�1


ni

j�1
ωij Lπ(i,j)



 + ωi,0d
opt
i

⎛⎝ ⎞⎠,

Z2(π, D(π)) � 

f

i�1


ni

j�1
ωi,j Lπ(i,j)



 + ωi,0q
opt
i

⎛⎝ ⎞⎠,

Z3(π, D(π)) � 

f

i�1


ni

j�1
ωi,j Lπ(i,j)



 + ωi,0dπ(i,j) ,

(1)

whereωi,j is the nonnegative weight of the jth position in group
Gi (i.e., position-dependent weight, i � 1,2, ... ,f;j � 1,2, ... ,

ni), ωi,0 denotes the unit cost of d
opt
i (qopti and dπ(i,j)), i �

1,2, ... ,f, D(π) � (d1,1(π), ... ,d1,n1
(π);... ;df,1(π), ... ,df,nf

(π)) is the due-date assignment vector under schedule π, and
Li,j � Ci,j − di,j is the lateness of job Ji,j. Note that |Lπ(i,j)| �

Eπ(i,j) + Tπ(i,j), where Eπ(i,j) � max 0,dπ(i,j) − Cπ(i,j)  is the
earliness of job Jij, Tπ(i,j) �max 0,Cπ(i,j) − dπ(i,j)  is the tar-
diness of job Jij, and π(i, j) represents the job that is in the jth
position of group Gi in π for 1≤k≤ni. By using the three-field
notation (see Graham et al. [23]), the problems can be denoted
by

1|GT,CON| 

f

i�1


ni

j�1
ωij Lπ(i,j)



 + ωi,0d
opt
i

⎛⎝ ⎞⎠,

1|GT, SLK| 

f

i�1


ni

j�1
ωi,j Lπ(i,j)



 + ωi,0q
opt
i

⎛⎝ ⎞⎠,

1|GT,DIF| 

f

i�1


ni

j�1
ωi,j Lπ(i,j)



 + ωi,0dπ(i,j) ,

(2)

respectively, where GT denotes the group technology.

3. Main Results

Lemma 1. For each of the three due-date assignment
methods, there exists an optimal schedule with zero machine
idle times.

2 Complexity



Proof. It is omitted due to simplicity. □

-erefore, it is convenient to introduce a dummy job Ji,0
of group Gi for i � 1, 2, . . . , f with processing time pi,0 � 0
and weight ωi,0 which is always scheduled at time 0, i.e.,
π(i, 0) � 0. Consequently, for any given job schedule π, the
completion times can be calculated by the following
equation:

Cπ(i,j) � Si(π) + si + 

j

k�1

pπ(i,k), (3)

where Si(π) denotes the starting time of groupGi in schedule
π for i � 1, 2, . . . , f.

Lemma 2. If the sequence of groups is fixed, for the CON and
SLK due-date assignment methods, there exists an optimal
sequence with the property that d

opt
i (qopti ) coincides with the

job completion times of group Gi for i � 1, 2, . . . , f.

Proof. Let the sequence of groups be fixed. Consider an
optimal sequence π in Gi.

(a) First, we prove that the common due-date d
opt
i of

group Gi coincides with the completion time of a job
of group Gi. Assume that Cπ(i,ki)

<d
opt
i <Cπ(i,ki+1);

therefore,

Z1i π, Di(π)(  � 

ni

j�1
ωi,j Lπ(i,j)



 + ωi,0d
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j) − d

opt
i



 + ωi,0d
opt
i ,

� 

ki

j�1
ωi,j d

opt
i − Cπ(i,j) 

+ 

ni

j�ki+1
ωi,j Cπ(i,j) − d

opt
i  + ωi,0d

opt
i .

(4)

If d
opt
i � Cπ(i,ki)

, we have

Z
1
1i π, Di(π)(  � 

ki

j�1
ωi,j Cπ i,ki( ) − Cπ(i,j) 

+ 

ni

j�ki+1
ωi,j Cπ(i,j) − Cπ i,ki( ) 

+ ωi,0Cπ i,ki( ).

(5)

If d
opt
i � Cπ(i,ki+1), we have

Z
2
1i π, Di(π)(  � 

ki

j�1
ωi,j Cπ i,ki+1( ) − Cπ(i,j) 

+ 

ni

j�ki+1
ωi,j Cπ(i,j) − Cπ i,ki+1( ) 

+ ωi,0Cπ i,ki+1( ).

(6)

Let x � d
opt
i − Cπ(i,ki)

> 0, y � Cπ(i,ki+1) − d
opt
i > 0,

then we can obtain that

Z1i π, Di(π)(  − Z
1
1i π, Di(π)( ,

� 

ki

j�1
ωi,j d

opt
i − Cπ i,ki( )  + 

ni

j�ki+1
ωi,j Cπ i,ki( ) − d

opt
i  + ωi,0 d

opt
i − Cπ i,ki( ) ,

� 

ki

j�0
ωi,j d

opt
i − Cπ i,ki( )  + 

ni

j�ki+1
ωi,j Cπ i,ki( ) − d

opt
i ,

� x 

ki

j�0
ωi,j − 

ni

j�ki+1
ωi,j

⎛⎝ ⎞⎠,

(7)

Z1i π, Di(π)(  − Z
2
1i π, Di(π)( ,

� 

ki

j�1
ωi,j d

opt
i − Cπ i,ki+1( )  + 

ni

j�ki+1
ωi,j Cπ i,ki+1( ) − d

opt
i  + ωi,0 d

opt
i − Cπ i,ki+1( ) ,

� 

ki

j�0
ωi,j d

opt
i − Cπ i,ki+1( )  + 

ni

j�ki+1
ωi,j Cπ i,ki+1( ) − d

opt
i ,

� −y 

ki

j�0
ωi,j − 

ni

j�ki+1
ωi,j

⎛⎝ ⎞⎠.

(8)
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-us, Z1
1i(π, Di(π))≤Z1i(π, Di(π)) if 

ki

j�0 ωi,j ≥


ni

j�ki+1
ωi,j and Z2

1i(π, Di(π))≤Z1i(π, Di(π))

otherwise.

(b) Assume that Cπ(i,li)
< q

opt
i <Cπ(i,li+1); therefore,

Z2i(π) � 

ni

j�1
ωi,j Lπ(i,j)



 + ωi,0q
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j) − pπ(i,j) − q

opt
i



 + ωi,0q
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j−1) − q

opt
i



 + ωi,0q
opt
i ,

� 

li+1

j�1
ωi,j q

opt
i − Cπ(i,j−1)  + 

ni

j�li+2
ωi,j Cπ(i,j−1) − q

opt
i  + ωi,0q

opt
i ,

(9)

where Cπ(i,0) � Si(π) + si.
If q

opt
i � Cπ(i,li)

, we have

Z2i
′ (π) � 

li+1

j�1
ωi,j Cπ i,li( ) − Cπ(i,j−1) 

+ 

ni

j�li+2
ωi,j Cπ(i,j−1) − Cπ i,li( )  + ωi,0Cπ i,li( ).

(10)

If q
opt
i � Cπ(i,li+1), we have

Z2i
″ (π) � 

li+1

j�1
ωi,j Cπ i,li+1( ) − Cπ(i,j−1) 

+ 

ni

j�li+2
ωi,j Cπ(i,j−1) − Cπ i,li+1( )  + ωi,0Cπ i,li+1( ).

(11)

Let x′ � q
opt
i − Cπ(i,li)

> 0 and y′ � Cπ(i,li+1) − q
opt
i > 0;

then, we have

Z2i π, Di(π)(  − Z2i
′ π, Di(π)( ,

� 

li+1

j�1
ωi,j q

opt
i − Cπ i,li( )  + 

ni

j�li+2
ωi,j Cπ i,li( ) − q

opt
i  + ωi,0 q

opt
i − Cπ i,li( ) ,

� 

li+1

j�0
ωi,j q

opt
i − Cπ i,li( )  + 

ni

j�li+2
ωi,j Cπ i,li( ) − q

opt
i ,

� x′ 

li+1

j�0
ωi,j − 

ni

j�li+2
ωi,j

⎛⎝ ⎞⎠,

Z2i π, Di(π)(  − Z
′′
2i π, Di(π)( ,

� 

li+1

j�1
ωi,j q

opt
i − Cπ i,li+1( )  + 

ni

j�li+2
ωi,j Cπ i,li+1( ) − q

opt
i  + ωi,0 q

opt
i − Cπ i,li+1( ) ,

� 

li+1

j�0
ωi,j q

opt
i − Cπ i,li+1( )  + 

ni

j�li+2
ωi,j Cπ i,li+1( ) − q

opt
i ,

� −y′ 

li+1

j�0
ωi,j − 

ni

j�li+2
ωi,j

⎛⎝ ⎞⎠.

(12)
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-us, Z2i
′(π, Di(π))≤Z2i(π, Di(π)) if 

li+1
j�0 ωi,j ≥ 

ni

j�li+2
ωi,j and Z′

′
2i(π, Di(π))≤Z2i(π, Di(π)) otherwise.

From (a) and (b), this implies that d
opt
i (qopti ) is equal to

the job completion times of group Gi for i � 1, 2, . . . , f. □

Lemma 3. For the CON due-date assignment, if the sequence
of groups is fixed, for a given schedule π, there exists an
optimal schedule of group Gi in which d

opt
i � Cπ(i,ki)

, where ki

is a median for the sequence ωi,0,ωi,1, . . . ,ωi,ni
and


ki−1
j�0 ωi,j ≤ 

ni

j�ki
ωi,j and 

ki

j�0 ωi,j ≥ 
ni

j�ki+1
ωi,j.

Proof. By using the technique of small perturbations, from
Lemma 2, we assume that d

opt
i � Cπ(i,ki)

. Applying (7) and (8)
to the cases of moving the common due-date x units of time
to the left (right), we have 

ni

j�ki
ωi,j − 

ki−1
j�0 ωi,j ≥ 0 and


ki

j�0 ωi,j − 
ni

j�ki+1
ωi,j ≥ 0. □

Lemma 4. For the SLK due-date assignment, if the sequence
of groups is fixed, for a given schedule π, there exists an
optimal schedule of group Gi in which q

opt
i � Cπ(i,li)

, where li is
a median for the sequence ωi,0,ωi,1, . . . ,ωi,ni

and


li
j�0 ωi,j ≤ 

ni

j�li+1
ωi,j and 

li+1
j�0 ωi,j ≥ 

ni

j�li+2
ωi,j.

Proof. It is similar to the proof of Lemma 3. □

Lemma 5. For the DIF due-date assignment method, there
exists an optimal sequence such that dπ(i,j) ≤Cπ(i,j).

Proof. We consider the case that contradicts this optimal
property. Consider an optimal sequence π in Gi, if
Cπ(i,j) <dπ(i,j), and then, the total cost for job Jπ(i,j) is

Zπ(i,j) � ωi,j dπ(i,j) − Cπ(i,j)  + ωi,0dπ(i,j). (13)

We shift dπ(i,j) to the left such that dπ(i,j) � Cπ(i,j), and
we have

Zπ(i,j) � ωi,0dπ(i,j) <Zπ(i,j). (14)

Hence, the case Cπ(i,j) < dπ(i,j) is not an optimal due-date
assignment. Lemma 5 is proved. □

Lemma 6. For the DIF due-date assignment method, let π be
a given sequence, and the optimal due-date dπ(i,j) for job Jπ(i,j)

can be obtained as follows:

dπ(i,j) �
0, ωi,j ≤ωi,0,

Cπ(i,j), ωi,j >ωi,0.

⎧⎨

⎩ (15)

Proof. From Lemma 5, for job Jπ(i,j), we have

Zπ(i,j) � ωi,j Cπ(i,j) − dπ(i,j)  + ωi,0dπ(i,j) � ωi,jCπ(i,j) + ωi,0 − ωi,j dπ(i,j). (16)

Obviously, if ωi,j ≤ωi,0, dπ(i,j) should be 0, if
ωi,j >ωi,0dπ(i,j) should be Cπ(i,j). Hence, the total cost for job
Jπ(i,j) is

Zπ(i,j) � ηi,jCπ(i,j), (17)

where ηi,j � min ωi,j,ωi,0 . □

For the CON due-date assignment, obviously, the value
of ki (i � 1, 2, . . . , f) given in Lemma 3 is independent of the
job processing times and the job sequence. -erefore, it is
optimal for any job sequence within each group. For a given
schedule π, d

opt
i � Cπ(i,ki)

, and the total cost of all the jobs
within Gi for i � 1, . . . , m is given by

Z1i(π) � 

ni

j�1
ωi,j Lπ(i,j)



 + ωi,0d
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j) − d

opt
i



 + ωi,0d
opt
i ,

� ωi,0Cπ i,ki( ) + 

ki

j�1
ωi,j Cπ i,ki( ) − Cπ(i,j)  + 

ni

j�ki+1
ωi,j Cπ(i,j) − Cπ i,ki( ) ,

� ωi,0 Si +si(  + 

ki

j�0
ωi,j 

ki

h�j+1
pπ(i,h)

⎛⎝ ⎞⎠ + 

ni

j�ki+1
ωi,j 

j

h�ki+1
pπ(i,h)

⎛⎝ ⎞⎠,

� 

ki

h�1
pπ(i,h) 

h−1

j�0
ωi,j

⎛⎝ ⎞⎠ + 

ni

h�ki+1
pπ(i,h) 

ni

j�h

ωi,j
⎛⎝ ⎞⎠ + ωi,0 Si +si( ,

� 

ni

j�1
Wi,jpπ(i,j) + ωi,0 Si +si( ,

(18)
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where

Wi,j �



j−1

h�0
ωi,h, j � 1, 2, . . . , ki,



ni

h�j

ωi,h, j � ki + 1, . . . , ni.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

For the SLK due-date assignment, obviously, the value of
li (i � 1, 2, . . . , f) given in Lemma 4 is independent of the
job processing times and the job sequence. -erefore, it is
optimal for any job sequence within each group. For a given
schedule π, q

opt
i � Cπ(i,li)

, and the total cost of all the jobs
within Gi for i � 1, 2, . . . , f is given by

Z2i(π) � 

ni

j�1
ωi,j Lπ(i,j)



 + ωi,0q
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j) − pπ(i,j) − q

opt
i



 + ωi,0q
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j−1) − q

opt
i



 + ωi,0q
opt
i ,

� 

ni

j�1
ωi,j Cπ(i,j−1) − Cπ i,li( )



 + ωi,0Cπ i,li( ),

� 

li+1

j�1
ωi,j Cπ i,li( ) − Cπ(i,j−1)  + 

ni

j�li+2
ωi,j Cπ(i,j−1) − Cπ i,li( )  + ωi,0Cπ i,li( ),

� 

li+1

j�0
ωi,j 

li

h�j

pπ(i,h)
⎛⎝ ⎞⎠ + 

ni

j�li+2
ωi,j 

j−1

h�li+1
pπ(i,h)

⎛⎝ ⎞⎠ + ωi,0 Si + si( ,

� 

li

j�1
pπ(i,j) 

j

h�0
ωi,h

⎛⎝ ⎞⎠ + 

ni−1

j�li+1
pπ(i,j) 

ni

h�j+1
ωi,h

⎛⎝ ⎞⎠ + ωi,0 Si + si( ,

� 

ni

j�1
Vi,jpπ(i,j) + ωi,0 Si + si( ,

(20)

where

Vi,j �



j−1

h�0
ωi,h, j � 1, 2, . . . , li,



ni

h�j+1
ωi,h, j � li + 1, . . . , ni − 1,

0, j � ni.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

For the DIF due-date assignment, from Lemma 6, the
total cost of all the jobs within Gi for i � 1, 2, . . . , f is given
by

Z3i(π) � 

ni

j�1
ωi,j Lπ(i,j)



 + ωi,0dπ(i,j) ,

� 

ni

j�1
ηi,jCπ(i,j),

� 

ni

j�1
ηi,j Si + si + 

j

h�1
pπ(i,h)

⎛⎝ ⎞⎠,

� 

ni

j�1
Ui,jpπ(i,j) + Si + si(  

ni

j�1
ωi,j,

(22)

where

Ui,j � 

ni

h�j

ηi,h, h � 1, 2, . . . , ni. (23)

Obviously, from (18), (20), and (22), the term


ni

j�1 Wi,jpπ(i,j)(
ni

j�1 Vi,jpπ(i,j) and 
ni

j�1 Ui,jpπ(i,j)) is only
concerned with the job processing sequence within group Gi

and can be minimized by the HLP rule (see the work of
Hardy et al. [24]), i.e., the optimal job sequence within group
Gi(i � 1, 2, . . . , f) can be obtained by arranging the ele-
ments of the Wi,j (Vi,j and Ui,j) and pi,j vectors in opposite
orders. -e term ωi,0(Si + si)((Si + si) 

ni

j�1 ωi,j) is only de-
pendent on the starting time of the groupGi, and the optimal
sequence of the groups G1, G2, . . . , Gf  can be obtained by
the following lemma.

Lemma 7. For the problems 1|GT,CON|
f
i�1(

ni

j�1 ωij|Lπ(i,j)|

+ωi,0d
opt
i ) and 1|GT,SLK|

f

i�1(
ni

j�1ωi,j|Lπ(i,j)| +ωi,0q
opt
i ), the

optimal group sequence can be obtained by arranging the groups
in nondecreasing order of θi � (si + 

ni

j�1 pi,j)ωi,0, i � 1,2, ... ,f,

respectively. For the problem 1|GT,DIF|
f
i�1 

ni

j�1(ωi,j |Lπ(i,j)|

+ωi,0dπ(i,j)), the optimal group sequence can be obtained by
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arranging the groups in nondecreasing order of θi � (si+


ni

j�1 pi,j) 
ni

j�1ωi,j, i � 1,2, ... ,f.

Proof. For the problem 1|GT,CON| 
f
i�1(

ni

j�1 ωij

|Lπ(i,j)| + ωi,0d
opt
i ), let π and π′ be two sequences where the

difference between π and π′ is a pairwise interchange of two
adjacent groups Gk and Gl, that is, π � [A, Gk, Gl, B] and
π′ � [A, Gl, Gk, B], where A and B are partial sequences. To
show π dominates π′, it suffices to show that
Z1(π, D(π))≤Z1(π′, D(π′)). We assume that S denotes the
completion time of the last job in A, and we have

Sl(π) � S + sk + 

nk

j�1
pk,j,

Sk π′(  � S + sl + 

nl

j�1
pl,j.

(24)

Suppose that

sk + 
nk

j�1 pk,j

ωk,0
≤

sl + 
nl

j�1 pl,j

ωl,0
, (25)

and from (18), we have

Z1(π, D(π)) − Z1 π′, D π′( ( ,

� ωk,0 S + sk(  + ωl,0 S + sk + 

nk

j�1
pkj + sl

⎛⎝ ⎞⎠

− ωl,0 S + sl(  − ωk,0 S + sl + 

nl

j�1
plj + sk

⎛⎝ ⎞⎠,

� ωl,0 sk + 

nk

j�1
pk,j

⎛⎝ ⎞⎠ − ωk,0 sl + 

nl

j�1
pl,j

⎛⎝ ⎞⎠

≤ 0.

(26)

-erefore, Z1(π, D(π))≤Z1(π′, D(π′)). -is completes
the proof of the problem 1|GT,CON| 

f
i�1(

ni

j�1 ωij

|Lπ(i,j)| + ωi,0d
opt
i ).

For the problem 1|GT, SLK| 
f

i�1(
ni

j�1 ωij|Lπ(i,j)|

+ωi,0q
opt
i ), the proof can be obtained similarly.

For the problem 1|GT,DIF| 
f

i�1(
ni

j�1 ωij|Lπ(i,j)|

+ωi,0d
opt
i ), stemming from the proof of the problem

1|GT,CON| 
f
i�1(

ni

j�1 ωij|Lπ(i,j))| + ωi,0d
opt
i ), we suppose

that

sk + 
ni

j�1 pk,j


nk

j�1 ωk,j

≤
sl + 

ni

j�1 pl,j


nl

j�1 ωl,j

, (27)

and from (22), we have

Z3(π, D(π)) − Z3 π′, D π′( ( ,

� S + sk(  

nk

j�1
ωk,j + S + sk + 

nk

j�1
pkj + sl

⎛⎝ ⎞⎠ 

nl

j�1
ωl,j − S + sl(  

nl

j�1
ωl,j − S + sl + 

nl

j�1
plj + sk

⎛⎝ ⎞⎠ 

nk

j�1
ωk,j,

� 

nl

j�1
ωl,j sk + 

nk

j�1
pk,j

⎛⎝ ⎞⎠ − 

nk

j�1
ωk,j sl + 

nl

j�1
pl,j

⎛⎝ ⎞⎠

≤ 0.

(28)

-erefore, Z1(π, D(π))≤Z1(π′, D(π′)). -is completes
the proof of the problem 1|GT,CON| 

f
i�1(

ni

j�1 ωij|Lπ(i,j)|

+ωi,0d
opt
i ). □

Based on the abovementioned analysis, we can present
the following algorithm to solve the problems 1|GT,CON|


f
i�1(

ni

j�1 ωij|Lπ(i,j)| + ωi,0d
opt
i ), 1|GT, SLK| 

f
i�1(

ni

j�1 ωi,j

|Lπ(i,j)| + ωi,0q
opt
i ), and 1|GT,DIF| 

f

i�1 
ni

j�1(ωi,j|Lπ(i,j)| +

ωi,0dπ(i,j)).

Theorem 1. =e problems 1|GT,CON| 
f

i�1(
ni

j�1 ωij |Lπ(i,j)|

+ωi,0d
opt
i ), 1|GT, SLK| 

f
i�1(

ni

j�1 ωi,j|Lπ(i,j)| + ωi,0q
opt
i ), and

1|GT,DIF| 
f

i�1 
ni

j�1(ωi,j|Lπ(i,j)| + ωi,0dπ(i,j)) can be solved in
O(n log n) time, respectively.

Proof. Step 1 and Step 4 need time O(n), respectively. Step 2
needs O(

f
i�1 nilog ni)≤O(n log n) time. Step 3 needs

O(f log f)≤O(n log n) time (
f
i�1 ni � n andf< n). -us,

the total time complexity of Algorithm 1 is O(n log n). □

Example 1. We only consider the problem 1|GT,CON| 
f

i�1
(

ni

j�1 ωij|Lπ(i,j)| + ωi,0d
opt
i ). Consider n � 12,f � 3, G1: [J1,1,

J1,2,J1,3], p1,1 � 2,p1,2 � 4,p1,3 � 6, ω1,1 � 2, ω1,2 � 4,ω1,3 �

3,ω1,0 � 2, s1 � 2; G2: [J2,1,J2,2,J2,3,J2,4], p2,1�5,p2,2�8,

p2,3 � 4,p2,4 � 3, ω2,1 � 3,ω2,2 � 2, ω2,3 � 2, ω2,4 � 3,ω2,0 �

1, s2 � 4; and G3: [J,,J3,2,J3,3,J3,4,J3,5], p3,1�9,p3,2�4,

p3,3 � 2,p3,4 � 3,p3,5 � 7, ω3,1 � 4,ω3,2 � 2, ω3,3 � 5,ω3,4 � 3,

ω3,5 � 7,ω3,0 � 5, s3 � 3.
-e solution is as follows:

Step 1: we calculate k1 � 2,W1,1 � 2, W1,2 � 4, W1,3 � 3;
k2 � 2, W2,1 � 1, W2,2 � 4, W2,3 � 5, W2,4 � 3; and k3 �

3, W3,1 � 5, W3,2 � 9, W3,3 � 11, W3,4 � 10, W3,5 � 7
Step 2: sequence of jobs within each group: G1:

[J1,3⟶ J1,1⟶ J1,2], G2: [J2,2⟶ J2,3⟶ J2,4
⟶ J2,1], and G3: [J3,1⟶ J3,2⟶ J3,3⟶ J3,4
⟶ J3,5]
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Step 3: θ1 � 7, θ2 � 24, θ3 � 28/5, and θ3 < θ1 < θ2;
hence, the optimal group sequence is [G3, G1, G2]

Step 4: d
opt
3 � s3 + 

k3
j�1 p3j � 18, d

opt
1 � S1 + s1 + 

k1
j�1

p1j � 28 + 2 + 8 � 38, and d
opt
2 � S2 + s2 + 

k2
j�1 p2j �

42 + 4 + 12 � 58

4. Conclusions

In this paper, we studied the single-machine scheduling
problem involving the due-date assignment and job
scheduling under the group technology. -e due dates are
assignable according to one of the following three due-date
assignment methods: CON, SLK, and DIF due-date as-
signment. -e objective is to find the optimal due dates of
jobs, a sequence for groups, and jobs to minimize a total cost
function. We show that the problem can be solved in
polynomial time. In future study, we can consider the group
scheduling models associated with learning and deterio-
rating effects. In addition, we can further study the group
scheduling with CON and SLK due-date assignment in the
flow shop setting.

Data Availability

No data were used to support this study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is paper was supported by the National Natural Science
Foundation of China (grant nos. 71871091 and 71471057)
and the Natural Science Foundation of Liaoning Province in
China (grant no. 2020-MS-233).

References

[1] J. S. Neufeld, J. N. D. Gupta, and U. Buscher, “A compre-
hensive review of flowshop group scheduling literature,”
Computers & Operations Research, vol. 70, pp. 56–74, 2016.

[2] L. Yang, Y. Zhao, and X. Ma, “Group maintenance scheduling
for two-component systems with failure interaction,” Applied
Mathematical Modelling, vol. 71, pp. 118–137, 2019.

[3] S.-J. Yang and D.-L. Yang, “Single-machine scheduling si-
multaneous with position-based and sum-of-processing-
times-based learning considerations under group technology
assumption,” Applied Mathematical Modelling, vol. 35, no. 5,
pp. 2068–2074, 2011.

[4] Y.-Y. Lu, J.-J. Wang, and J.-B. Wang, “Single machine group
scheduling with decreasing time-dependent processing times
subject to release dates,” Applied Mathematics and Compu-
tation, vol. 234, pp. 286–292, 2014.

[5] N. Yin, L. Kang, and X.-Y. Wang, “Single-machine group
scheduling with processing times dependent on position,
starting time and allotted resource,” Applied Mathematical
Modelling, vol. 38, no. 19-20, pp. 4602–4613, 2014.

[6] J.-J. Wang and Y.-J. Liu, “Single-machine bicriterion group
scheduling with deteriorating setup times and job processing
times,” Applied Mathematics and Computation, vol. 242,
pp. 309–314, 2014.

[7] J.-B. Wang and J.-J. Wang, “Single machine group scheduling
with time dependent processing times and ready times,”
Information Sciences, vol. 275, pp. 226–231, 2014.

[8] H. Qin, Z.-H. Zhang, and D. Bai, “Permutation flowshop
group scheduling with position-based learning effect,”
Computers & Industrial Engineering, vol. 92, pp. 1–15, 2016.

[9] Y.-Y. Lu, J.-B. Wang, P. Ji, and H. He, “A note on resource
allocation scheduling with group technology and learning
effects on a single machine,” Engineering Optimization,
vol. 49, no. 9, pp. 1621–1632, 2017.

[10] X. Zhang, L. Liao,W. Zhang, T. C. E. Cheng, Y. Tan, andM. Ji,
“Single-machine group scheduling with new models of po-
sition-dependent processing times,” Computers & Industrial
Engineering, vol. 117, pp. 1–5, 2018.

[11] F. Liu, J. Yang, and Y.-Y. Lu, “Solution algorithms for single-
machine group scheduling with ready times and deteriorating
jobs,” Engineering Optimization, vol. 51, no. 5, pp. 862–874,
2019.

[12] J.-B. Wang and X.-X. Liang, “Group scheduling with dete-
riorating jobs and allotted resource under limited resource
availability constraint,” Engineering Optimization, vol. 51,
no. 2, pp. 231–246, 2019.

[13] Y. Yin, T. C. E. Cheng, C.-C. Wu, and S.-R. Cheng, “Single-
machine common due-date scheduling with batch delivery
costs and resource-dependent processing times,” Interna-
tional Journal of Production Research, vol. 51, no. 17,
pp. 5083–5099, 2013.

Step 1: for the problem 1|GT,CON| 
f

i�1(
ni

j�1 ωij|Lπ(i,j)| + ωi,0d
opt
i ), we calculate ki of each group according to Lemma 3 and

calculate Wi,j according to equation (19). For the problem 1|GT, SLK| 
f
i�1(

ni

j�1 ωi,j|Lπ(i,j)| + ωi,0q
opt
i ), we calculate li of each group

according to Lemma 4 and calculate Vi,j according to equation (21). For the problem 1|GT,DIF| 
f

i�1 
ni

j�1(ωi,j|Lπ(i,j))| + ωi,0dπ(i,j)),
we calculate Ui,j according to equation (23).
Step 2: we assign the smallest Wi,j (Vi,j and Ui,j) value to the job with the largest pi,j value, the second smallest Wi,j (Vi,j and Ui,j)
value to the job with the second largest pi,j value, and so on, with ties broken arbitrarily, and then obtain the internal job sequence of
each group.
Step 3: we arrange the groups in nondecreasing order of θi by Lemma 7.
Step 4: according to Lemma 3, we calculate d

opt
i for the problem 1|GT,CON| 

f

i�1(
ni

j�1 ωij|Lπ(i,j)| + ωi,0d
opt
i ). According to Lemma 4,

we calculate q
opt
i for the problem 1|GT, SLK| 

f
i�1(

ni

j�1 ωi,j|Lπ(i,j)| + ωi,0q
opt
i ). According to Lemma 6, we calculate di,j for the problem

1|GT,DIF| 
f

i�1 
ni

j�1(ωi,j|Lπ(i,j)| + ωi,0dπ(i,j)).

ALGORITHM 1: Optimal algorithm.

8 Complexity



[14] Y. Yin, M. Liu, T. C. E. Cheng, C.-C. Wu, and S.-R. Cheng,
“Four single-machine scheduling problems involving due date
determination decisions,” Information Sciences, vol. 251,
pp. 164–181, 2013.

[15] D.-J. Wang, Y. Yin, J. Xu, W.-H. Wu, S.-R. Cheng, and
C.-C. Wu, “Some due date determination scheduling prob-
lems with two agents on a single machine,” International
Journal of Production Economics, vol. 168, pp. 81–90, 2015.

[16] D. Shabtay, “Optimal restricted due date assignment in
scheduling,” European Journal of Operational Research,
vol. 252, no. 1, pp. 79–89, 2016.

[17] S. Li, C. T. Ng, and J. Yuan, “Group scheduling and due date
assignment on a single machine,” International Journal of
Production Economics, vol. 130, no. 2, pp. 230–235, 2011.

[18] W. Liu, X. Hu, and X.Wang, “Single machine scheduling with
slack due dates assignment,” Engineering Optimization,
vol. 49, no. 4, pp. 709–717, 2017.

[19] J.-B. Wang, X.-N. Geng, L. Liu, J.-J. Wang, and Y.-Y. Lu,
“Single machine CON/SLK due date assignment scheduling
with controllable processing time and job-dependent learning
effects,” =e Computer Journal, vol. 61, no. 9, pp. 1329–1337,
2018.

[20] M. Ji, K. Chen, J. Ge, and T. C. E. Cheng, “Group scheduling
and job-dependent due window assignment based on a
common flow allowance,” Computers & Industrial Engi-
neering, vol. 68, pp. 35–41, 2014.

[21] P. Brucker, Scheduling Algorithms, Springer, Berlin, Germany,
3rd edition, 2001.

[22] L. Sun, A. J. Yu, and B. Wu, “Single machine common flow
allowance group scheduling with learning effect and resource
allocation,” Computers and Industrial Engineering, vol. 139,
Article ID 106126, 2020.

[23] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan,
“Optimization and approximation in deterministic se-
quencing and scheduling: a survey,” Annals of Discrete
Mathematics, vol. 5, pp. 287–326, 1979.

[24] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities,
Cambridge University Press, Cambridge, UK, 2nd edition,
1967.

Complexity 9


