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Zero-shot learning is dedicated to solving the classification problem of unseen categories, while generalized zero-shot learning
aims to classify the samples selected from both seen classes and unseen classes, in which “seen” and “unseen” classes indicate
whether they can be used in the training process, and if so, they indicate seen classes, and vice versa. Nowadays, with the
promotion of deep learning technology, the performance of zero-shot learning has been greatly improved. Generalized zero-shot
learning is a challenging topic that has promising prospects in many realistic scenarios. Although the zero-shot learning task has
made gratifying progress, there is still a strong deviation between seen classes and unseen classes in the existing methods. Recent
methods focus on learning a unified semantic-aligned visual representation to transfer knowledge between two domains, while
ignoring the intrinsic characteristics of visual features which are discriminative enough to be classified by itself. To solve the above
problems, we propose a novel model that uses the discriminative information of visual features to optimize the generative module,
in which the generative module is a dual generation network framework composed of conditional VAE and improved WGAN.
Specifically, the model uses the discrimination information of visual features, according to the relevant semantic embedding,
synthesizes the visual features of unseen categories by using the learned generator, and then trains the final softmax classifier by
using the generated visual features, thus realizing the recognition of unseen categories. In addition, this paper also analyzes the
effect of the additional classifiers with different structures on the transmission of discriminative information.We have conducted a
lot of experiments on six commonly used benchmark datasets (AWA1, AWA2, APY, FLO, SUN, and CUB). -e experimental
results show that our model outperforms several state-of-the-art methods for both traditional as well as generalized zero-
shot learning.

1. Introduction

In recent years, deep learning [1–4] has achieved great
success in a wide range of computer vision and machine
learning tasks [5], including face recognition, emotion
classification, and visual question answering. In most cases,
these deep learning models are more effective than human
beings in many aspects, because they can observe potential
information that may be ignored by human eyes in pictures.
However, as the inventor of neural network, human beings
are better at identifying objects they have never seen before
through some prior semantic knowledge about these novel
objects. In this respect, the effect of deep learning is not as
good as that of humans. It precisely is because deep learning
tasks for image recognition rely heavily on fully-supervised

training, so they need a very large amount of labeled data.
However, some object classes are difficult to obtain, such as
the image data of endangered species and newly produced
commodities. Moreover, even if they get the labeled data of
related classes, they will still face the problem of unbalanced
data. It is very difficult to obtain images of these objects,
let alone a large number of labeled samples. -erefore,
training models with a large number of labeled data are
unrealistic. In this background, the concept of zero-shot
learning has been put forward, which has attracted wide
attention in the field of computer vision and has been greatly
developed.

As there are too many classes in the real world, it is
impossible to collect enough labeled data for each class. In
this case, the task of zero-shot learning is desirable, but it is
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challenging. In the literature [6–10], zero-shot learning is
usually realized by using the marked samples of seen cat-
egories and category-related semantic embedding which is
regarded as auxiliary information. -e semantic embedding,
which encodes the interclass relationships, is usually attri-
bute, word vector, or sentence embedding. -erefore, seen
classes and unseen classes are shared in semantic embedding
space. In traditional zero-shot learning settings [11, 12], the
goal is to train an image classifier on the seen classes and
then test the trained classifier on unseen classes, where the
seen classes and unseen classes are disjoint. However, the
traditional zero-shot learning setting is not realistic, and it is
not always applicable in the real world, because in reality, the
test images can come from the seen classes. -erefore, there
is such a trend that we hope the trained classifier can not
only identify unseen classes but also seen classes, which is
called generalized zero-shot learning [13, 14]. In the fol-
lowing articles, we uniformly express the traditional zero-
shot learning as ZSL and the generalized zero-shot learning
as GZSL. -e main difference between ZSL and GZSL is
whether the label space contains seen classes during the test
period. In this work, we have conducted comparative ex-
periments to study both ZSL and GZSL by synthesizing
visual features of unseen classes with using the potential and
valuable discriminative information.

In this paper, we point out the existing problems of ZSL and
GZSL works reported recently, and we analyze the effectiveness
of the dual generative network proposed in this paper as well as
the discriminative information of visual feature representation.
In the early days, as is illustrated in Figure 1(a), most methods
[7, 11, 15–18] mapped image visual features to the semantic
space to solve ZSL tasks based on class attribute embeddings or
other side knowledge. However, using semantic space as the
mapping space will suffer from the hubness problem pointed
out in [19–21]. It is because projecting high-dimensional visual
features to low-dimensional semantic space will greatly reduce
the diversity of features that some points from different classes
may become more clustered as a hub, as shown in Figure 2. In
order to alleviate the hubness problem, some works [19–21]
proposed to map semantic features into the visual space as
illustrated in Figure 1(b). However, this will lead to another
problem called domain shift. For example, the tail of a pig and
the tail of a horse are similar in semantic space, but they are
quite different in visual space, as shown in Figure 3. -en, the
concept of a shared latent space was put forward. People
mapped visual features and semantic attributes into a latent
space at the same time, as shown in Figure 1(c), and performed
nearest neighbor search to calculate the average per-class top-1
accuracy.-is shared latent spacewas considered to alleviate the
hubness and shifting problems, but the generalization ability of
this method is poor. When using mapping methods for GZSL,
the performance will be significantly degraded. Our dual
generation model combines the advantages of improved
WGAN and conditional VAE, which can alleviate hubness and
shifting problems, thus effectively achieving the goal of zero-
shot learning and generalized zero-shot learning.

In contrast, most recent ZSL and GZSL approaches
[8, 22–25] are based on generative adversarial network [26],
which aims at directly optimizing the divergence between

real and generated data distributions. -e work of Xian et al.
[8] learns a GAN by using the seen class visual features and
the corresponding semantic embedding that are manually
annotated attributes or word vector [27] representations.
Fake visual features of the unseen categories are synthesized
using the trained generator and then used together with the
real visual features of seen classes to train ZSL classifiers in a
fully-supervised setting. But GANs are often suffering from
mode collapse and unstable training issues. Inspired by the
idea of generative adversarial networks, our proposed dual
generative framework combines the advantages of condi-
tional variational auto encoder network and improved
WGAN, with the discriminative information by using an
additional classifier trained on the seen classes to increase
the diversity and distinguishability of samples that are
generated by the generator. Among them, the improved
WGAN can overcome the mode collapse problem, and VAE
can alleviate the unstable problem of GAN training, so that
our model can stably and quickly generate visual features
corresponding to categories according to semantic
embedding.

As described above, we combine the advantages of
improved WGAN and conditional VAE together with in-
trinsic characteristics of visual feature representation itself
by using an additional classifier to propose a new model
called dual generative network with discriminative infor-
mation (DGDI). Compared with the previous generative
methods for ZSL whose models suffer from mode collapse
problems [28, 29], our model is more stable by using
conditional VAE to assist GAN in generating visual features.
In this work, our main task is to obtain a robust generator to
synthesis visual features of the unlabeled classes. In par-
ticular, if the generator learns discriminative visual feature
data with sufficient variation, the generated data should be
useful for implementing supervised learning. Moreover, we
consider our dual generative framework that was composed
by improved WGAN and conditional VAE can learn the
complementary information of semantic space, so we believe
that our model can produce higher quality visual features
from semantic embeddings.

Our main contributions are summarized as follows: (1)
we propose a novel generative model named DGDI with
combining the advantages of improved WGAN and con-
ditional VAE, which can learn complementary information
from semantic embeddings. (2) In contrast to previous zero-
shot learning works, we add an additional classifier loss to
train the generator by using the intrinsic characteristics of
visual feature representation, which makes the synthesized
visual features more diverse and distinguishable. (3) We
conduct extensive experiments that demonstrate the effec-
tiveness of our proposed model and the results maintain
high accuracy for both ZSL and GZSL on six widely used
benchmark datasets. In addition, in order to make better use
of the discriminative information expressed by visual fea-
tures, we also analyze the effects of classifiers with different
structures. (4) We also conduct visual experiments on
synthetic visual features from unseen classes by t-SNE [30],
which intuitively proves the effective generation ability of
our model.
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2. Related Work

In this section, we will discuss some relevant works on
(generalized) zero-shot learning as well as generative models.

We are interested in both ZSL andGZSL tasks, in which the
former aims at predicting the labels of unseen classes, while the
latter tries to predict labels of both seen and unseen classes.
Visual feature representation itself has strong distinguishability,
but this is often ignored by previous researchers, so it is not
reused. In this paper, a discriminative classifier is added to
study the intrinsic distinguishable information of visual fea-
tures, and it is applied to the dual generation module to
synthesize more distinctive feature representations according
to the corresponding semantic attributes of categories.

Early works [31, 32] associated seen and unseen classes
by directly learning attribute classifiers. However, most
recent works either learn a compatibility function between
the image feature and class embedding spaces
[7, 11, 16, 17, 21] or learn unseen classes, which are the
mixture of visible classes [33–35]. For example, SYNC

[33, 36, 37] try to predict the labels of unseen classes by
learning linear classifiers. Wang et al. [38] proposed to
combine the knowledge graph with graph convolutional
network [39] and semantic embeddings. Rohrbach et al. [40]
and Ye and Guo [9] project image features to the semantic
embedding space followed by label propagation. Verma and
Rai [41] treat unknown labels of unseen class images as latent
variables and apply expectation-maximization (EM). All the
abovementioned models are nongenerative and suffer from
the problems of hubness as well as domain-shifting, but our
proposed method uses a dual generative model to transform
ZSL or GZSL into traditional supervised learning by gen-
erating fake visual features of unseen classes, which is
considered to alleviate the problems of embedding methods.

In recent years, generative models have been widely
used. Generative adversarial network [26] was originally
proposed as an image synthesis method based on a particular
image data distribution [42] and has achieved the state-of-
the-art results. Generative adversarial network [26, 42, 43] is
composed of a generator that synthesizes fake data distri-
bution and a discriminator that distinguishes fake data from
real data. However, GANs are suffering from the problems of
unstable training and mode collapse [44, 45]. In order to
alleviate these problems and improve the quality of syn-
thesized features, many researches have put forward their
own methods. Arjovsky et al. [44] proposed WGAN to
optimize GAN on an approximate Wasserstein distance by
enforcing 1-Lipschitz smoothness. Although WGAN has
obtained better theoretical performance than the original
GAN, it still has the problems of disappearance and ex-
plosion gradient due to weight clipping to enforce the
1-Lipschitz constraint on the discriminator, and then,
Gulrajani et al. [45] proposed an improved version of
WGAN which is called WGAN-GP enforcing the Lipschitz
constraint [3] through gradient penalty. -erefore, our
method draws lessons from the idea of the improved
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Figure 1: -ree mapping methods commonly used in zero-shot learning. (a) Mapping from the visual space to the semantic space.
(b) Mapping from the semantic space to its visual space. (c) Mapping both semantic features and visual features to a shared latent space.

Embedding spaceOriginal space 

Figure 2: Visual explanation of hubness phenomenon. When a
sample point is projected from the original space to the embedding
space, the discriminative information in the original space is very
likely to be lost, so the sample points belonging to the same class
will be closer to other classes, which is especially obvious when
mapping from high-dimensional space to low-dimensional space.
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WGAN. Different from the existing works that directly
generate image itself, our proposed model chooses to gen-
erate visuals features instead, which can be directly used to
train a discriminative classifier for zero-shot learning.

Further, Zhu et al. [46] proposed an interesting appli-
cation of GANs named CycleGAN that translates an image
from one domain to another domain and then back to the
original domain to form a closed loop. Schonfeld et al. [47]
proposed an approach where cross and distribution align-
ment losses are introduced for aligning the visual features
and corresponding embeddings in a shared latent space, by
using two variational auto encoders [48]. -e work of [25] is
similar to our model, which introduces a f-VAEGAN
framework that combines a VAE and a GAN by sharing the
decoder of VAE and generator of GAN for feature synthesis.
Xian et al. [8] used a conditional Wasserstein GAN [44]
along with a seen category classifier to learn the generator for
unseen class feature synthesis. Our proposed model com-
bines the idea of VAEGAN of [25] and the seen classes
classifier of [8] to encourage the generator to synthesize
more discriminative features, which will improve the per-
formance of zero-shot learning and generalized zero-shot
learning to a certain extent.

-e abovementioned generative methods of zero-shot
learning and generalized zero-shot learning almost ignore the
inherent distinguishability of visual feature representations
between categories, which is actually very important to

classification. -erefore, we apply the key discriminative
information of visual feature representations to the proposed
dual generation framework, which promotes the synthesized
visual feature representations generated by the learned gen-
erator to be more easily distinguished from each other. In this
paper, we also analyze the role of the additional classifier with
different structures in the transmission of discriminative
information.

3. Proposed Model

In this section, we first formally define the zero-shot learning
generalized zero-shot learning problems, give an overview of
our proposed dual generative model with using the dis-
criminative information of visual feature representation by
an additional classifier, and then introduce each component
of our model in detail.

3.1. ZSL and GZSL Problem Formulation. In this paper, we
study both the conventional and generalized zero-shot
learning. Specifically, let the source dataset be defined as
S � v, y, ss|v ∈ vs, y ∈ cs, ss ∈ A , where S stands for the
training data of seen classes, v � Rdv is the image’s visual
feature produced by a pretrained neural network which is
usually ResNet101 trained on ImageNet1K, vs is the set of
visual features from seen classes, y is the label of image visual

�e same ‘hasTail’ attribute 

different visual appearance

(a)

Horse
Prototype

Pig
Prototype

(b)

Figure 3: An illustration of the domain shift problem in zero-shot learning image classification. As we can see from the picture, both horses
and pigs have tail attributes, but the visual characteristics of their tails are far apart. It is difficult to correctly identify pigs if the model is
trained by horses. (a) Visual space. (b) Attribute space.
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feature v, cs is the set of labels for seen classes, and ssis the
semantic embedding for the class y. Similarly, we can define
the test set, i.e., the target dataset as T � v, y, su|v

∈ vu, y ∈ cu, su ∈ A} where the vu represents the set of image
features from unseen classes, cu represents the set of labels
for unseen classes, and that cu ∩ cs � ∅ . -e tasks in ZSL
and GZSL are to learn the classifiersfzsl: v⟶ cu

andfgzsl: v⟶ cu ∪ cs, respectively.

3.2.Model Overview. -e overall framework of our proposed
framework is illustrated in Figure 4. -ere are four main
components in our model, i.e., an encoder, a generator/de-
coder, a discriminator, and a pretrained classifier, in which the
encoder, the generator/encoder, and the discriminator form a
dual generative framework, i.e., VAE-GAN. Our proposed
method is based on the recently introduced f-VAE-GAN
[25] that combines the advantages of the VAE [48] and
GAN [26] which is the same as our proposed method and
has achieved impressive results for ZSL classification.
Referring to the idea of [25], we add an extra classifier
which is the utilization of discriminative information to
classify the generated visual features of the seen classes, in
which the classifier is pretrained on seen classes. We believe
that the additional classifier loss can make the generator
learn to synthesize more discriminative visual features
which is helpful. -e core component of our model is the
dual generative framework whose role is to generate var-
ious visual features conditioned on certain class semantic
embedding. In this paper, we make full use of the inherent
discriminative information of visual feature representa-
tions and apply this inherent feature to the dual generation
module to encourage the generator to synthesize visual
feature representations that are easier to be classified based
on the corresponding category semantic attributes. In the
following, we will introduce the main components dual
generative network, the additional classifier, and their loss
functions of the proposed model in detail.

3.3. Dual Generative Framework. In this work, we propose a
dual generative framework to synthesize visual feature
representations of unseen classes stably and efficiently. -e
dual generative network combines the strengths of improved
WGAN and conditional VAE, which can deal with the mode
collapse and unstable training problems well.

As we can see from Figure 4, the conditional VAE
network is composed of a latent noise encoderp(z|v, s) and a
visual feature representation decoderp(v|z, s), and the
conditional VAE is proposed as a generative method that
maps a random noise vector z � Rdvdrawn from p(z|v, s)to
a data point v in the data distribution conditioning on the
semantic embeddings. We train conditional VAE by min-
imizing the following loss function LCVAE:

LCVAE � KL(p(z|v, s)‖p(z|s)) − E(logp(v|z, s)), (1)

where KL(p(z|v, s)||p(z|s)) represents the LKL, i.e., the
Kullback–Leibler divergence between p(z|v, s)andp(z|s),
the conditional distribution p(z|v, s) is modeled as

E(v, s),p(z|v, s) is equal to G(z, s), and p(z|s) is treated as a
unit Gaussian distribution.

As shown in Figure 4, the improvedWGAN is composed
of a generator G and a discriminator D. We aim to learn a
generatorG: z × c⟶ v conditioned on semantic embed-
dings. -e generator takes class embedding s ∈ A and
random Gaussian noise z � Rdvas inputs and then outputs a
fake visual feature v of the classy. -e loss function of our
improved WGAN is

LWGAN � E D v, ss(   − E[D(v, s)] − λE ∇v D(v, s)
����

���� − 1 
2

 ,

(2)

where v � G(z, ss), v � αv + (1 − α)v, with α ∼ U(0, 1), and
λ is the penalty coefficient, initialized to 10. Different from
the pure GAN, the discriminative network of WGAN is
defined as D: v × c⟶ Rwhich eliminates the sigmoid layer
and outputs a real value. -e first two terms of Equation (2)
are considered as Wasserstein distance, and the third term is
the gradient penalty to enforce the gradient ofD to have unit
norm along the straight line between real and generated
visual feature pairs. We also calculate the value of the
gradient penalty term in each epoch of training to adjust the
super-parameter λ.

Once the dual generative model learns to generate visual
features of seen classes, conditioned on the seen class se-
mantic embeddings ss, it can also generate vu of any unseen
category cu through its class semantic embedding su. So, the
zero-shot learning and generalized zero-shot learning
problems can be transformed into traditional supervised
learning.

3.4. Additional Classifier for Discriminative Information.
In order to ensure that the visual features generated by
improved WGAN are well suited for training a discrimi-
native classifier, we added a classifier C to make use of the
discriminative information of visual feature representa-
tions, as shown in Figure 4, which is pretrained on the real
features of seen classes to encourage the generator to
generate distinctive features. For this purpose, module C
uses the negative log likelihood to minimize the classifi-
cation loss over the generated features in the following
formulation:

LCLS � −Ev∼pv
[log P(y|v; θ)], (3)

where v � G(z, s), y is the class label of v, and P(y|v; θ)

denotes the probability of v being predicted with its true class
label y. -e conditional probability is computed by a linear
softmax classifier parameterized by θ. -e classification loss
can be regarded as a regularization that enforces the gen-
erator to construct discriminative features. In the next
section, we carry out experiments to analyze the perfor-
mance of different classifiers for zero-shot learning and
generalized zero-shot learning.

In summary, our proposed model optimizes the fol-
lowing objective function:
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min
G,E

max
D

LCVAE + cLWGAN + αLCLS. (4)

As shown in Figure 5, once the model has been trained,
in order to predict the label of unseen classes, we can first
generate pseudovisual features for each unseen class using
the learned generator. -en, we construct a new dataset by
combining these pseudovisual features with the real features
of the seen classes for GZSL. After that, we can train any
classifier based on this new dataset containing the visual
features of the seen classes and unseen classes.-erefore, the
GZSL task is transformed into a supervised learning
problem. Here, we use a self-learning classifier to fine-tune
the accuracy as in [24].

4. Experiments

In this section, we have conducted a lot of experiments on six
public benchmark datasets for both ZSL and GZSL. -e
detailed information of the experimental setup is provided in
the respective chapters, and in order to make better use of
the discriminative information, we discuss the influences of
classifiers with different structures by conducting compar-
ative experiments and comprehensively analyze the corre-
sponding experimental results.

4.1. Datasets and Settings. We compare our proposed model
with several baselines on six widely used datasets, i.e.,
Oxford Flowers (FLO) [49], Animals with Attributes 2

(AWA2) [14], Caltech-UCSD-Birds (CUB) [50], SUN At-
tribute (SUN) [51], and APascal-a Yahoo (APY). Among
these datasets, APY contains 32 categories from both
PASCAL VOC 2008 and YahooL that contain 15339 images.
AWA2 is a coarse-grained and medium-size dataset which
contains 30,475 images, 50 classes, and 85 attributes. CUB,
FLO, and SUN are medium scale but fine-grained datasets,
in which SUB contains 11788 images from 200 different
types of birds annotated with 312 attributes. FLO dataset
contains 8189 images from 102 different types of flowers
without attribute annotations. However, we use the fine-

E: encoder

G: generator/decoder

D: Conditional discriminator

C: pretrained classifier
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Figure 4: An overview of our proposed architecture, in which the upper part is a dual generation framework and the lower part is an
additional classifier using discriminative information. Given the image samples I selected from seen classes, visual features vs are extracted
from the Resnet101 which is pretrained on ImageNet1K and input to the netE (encoder), along with the corresponding semantic em-
beddings ss. -e latent noise vector z output from netE is then input together with semantic embeddings ss to the netG (generator) that
synthesizes fake visual features vs. -e netD (conditional discriminator) learns to distinguish real features vsfrom synthesized vs. Both netE
and netG together constitute the so-called conditional VAE, which is training by LKL (KL divergence) and LBCE (binary cross-entropy loss).
Similarly, both netG and netD are trained using LWGAN.-e additional classifier is a multilayer fully-connected neural network, and we also
discuss the influence of different classifier structures in the following.

Final results 

Leverage the confident 

Result

G 

C1 
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Figure 5:-e test process of our method for ZSL: firstly, we use the
learned generator to synthesize the visual features of unseen cat-
egories conditioned on semantic embeddings; then, we train the
classifier by utilizing these synthesized visual features; finally, the
real unseen samples are used for testing.-e test part is divided into
two steps, the first step is rough classification, and then the second
step is to fine-tune the classifier by using the confident classification
results in the first step.
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grained visual descriptions collected by [27]. SUN contains
14340 images from 717 scenes annotated with 102 attributes.
Statistics of the datasets are presented in Table 1.

For real visual features, we extract 2048-dim top-layer
pooling units of the ResNet101 [56] from the entire image.
We do not do any image preprocessing such as cropping or
use any other data augmentation techniques. ResNet101 is
pretrained on ImageNet1K and not fine-tuned. For pseu-
dovisual features, we generate 2048-dim features using our
model. For the class semantic embeddings, we use per-class
attributes for AWA (85-dim), CUB (312-dim) and SUN
(102-dim), APY (64-dim). Furthermore, for dataset FLO, we
extract 1024-dim character-based features from fine-grained
visual descriptions by CNN-RNN [57].

At test time, in the ZSL setting, the goal is to correctly
classify unseen class label, i.e., cu, and in the GZSL setting,
the search space includes both seen and unseen classes, i.e.,
cs ∪ cu. We use the unified evaluation protocol in [58]. In the
ZSL setting, we first calculate the average accuracy of each
category independently and then sum the average accuracy
of all categories and divide by the total number of categories
to get average per-class top-1 accuracy (T1). As for the GZSL
setting, we compute the average per-class top-1 accuracy on
seen classes cs denoted as s and the average per-class top-1
accuracy on unseen classes cu denoted as u; after that we
calculate their harmonic mean as the final measure, i.e.,
H � 2∗ (s∗ u)/(s + u).

4.2. Implementation Details. In our proposed model, the
encoder, the generator, and the discriminator are all
implemented as multilayer perceptron (MLP). -rough
experiments, we find that when the dimensions of semantic
embeddings s and Gaussian random noise z ∼ N(0, 1) are
the same, the performance of zero-shot learning is the best.
-erefore, we set the dimension of Gaussian random noise
as the dimension of semantic embeddings of each dataset.
-e latent vector z and semantic embeddings s are con-
catenated and feed into the generator. Similarly, the dis-
criminators take input as the concatenation of image
features and class embeddings. In which, the discriminator,
the encoder, and the generator are all two-layer fully-con-
nected (FC) networks with 4096 hidden units. In addition to
the output layer of G, other components use LeakyReLU as a
nonlinear activation function. While for G, sigmoid acti-
vation is used to apply BCE loss. -rough experiments, we
prove that when this extra classifier is a single-layer per-
ceptron, it is better to use the discriminative information by
visual feature representations.-emodel is trained using the
Adam optimizer with learning rate of 0.0001. Following the
suggestion of WGAN paper [44], we update the generator
once every 5 discriminator iterations. Hyperparameters α
and c are initialized to 1 and 10, respectively, and then tuned
by cross-validation.

4.3. Comparing with State-of-the-Art Methods. We compare
our approach with ALE [6], f-WGAN [8], SE-GZSL [52], Sycle-
WGAN [22], LisGAN [24], f-VAEGAN [25], TCN [53], DVBE
[55], and SAE [45] for both ZSL and GZSL, and two more

approaches, CADA-VAE [54] andDVBE [55] are compared for
GZSL. -e above methods are either representative ones or the
state-of-the-art ones published in the past few years. Following
previous work [24, 25], we report the average per-class top-1
accuracy. Specifically, for ZSL, we report the top-1 accuracy of
unseen samples by only searching the unseen label space.
However, for the GZSL, we report the accuracy on both seen
classes and unseen classes with the same settings in [58]. Some
of the results reported in this paper are also cited from [5].

Table 2 reports the results of ZSL. In these experiments,
the categories of test samples are only searched from cu . It
can be seen that the classification accuracies obtained on
AWA1, APY, FLO, SUN, and CUB are 71.4%, 44.9%, 73.6%,
65.1%, and 62.6%, respectively. Our proposed framework
has improved the state-of-the-art performance on AWA1,
APY, FLO, SUN, and CUB datasets by 0.3%, 1.8%, 3.3%,
0.4%, and 1.6%. As for AWA2, we achieve the best of
previous works. From Table 2, we can also observe that the
generation-based methods, e.g., LisGAN, f-CLSWGAN, and
ours, generally have better results than embedding ones, e.g.,
ALE. -e GAN method transforms ZSL into supervision
problem by generating visual features of unseen classes,
while the embedding methods use indirect way to deal with
unseen classes. -is also proves the validity of the generative
model in ZSL problem. Generally speaking, our method
produces one of the best performances compared to the
existing methods on five of six datasets.

Table 3 summarizes the results of GZSL. From Table 3,
we can observe that our proposed model has better per-
formance than existing methods, which is similar to the
conclusion to Table 2. Our method stably predicts seen and
unseen classes. Although some previous methods, such as
ALE, performed well in identifying unseen samples in ZSL
settings, their performance in GZSL decreased significantly.
When the number of unseen classes becomes larger, ZSL
models always tend to be confused, resulting in performance
degradation. -is phenomenon is especially obvious when
the number of unseen classes is much larger than that of seen
classes. Moreover, in real life, the amount of seen classes that
can get manual annotations is definitely far less than that of
unseen classes. -erefore, the applicability of these ZSL
methods in practical application is limited and GZSL is the
development trend in line with the reality.

We use harmonic mean which is considered more
stable than arithmetic and geometric mean to measure the
mean value between the accuracy of seen and unseen
classes. From the reported results from Table 3, we can find
that our method is more stable than the existing methods.
Our proposed method avoids the unbalanced and extreme
results between saccs and u. As far as harmonic mean H is
concerned, we achieved up to 0.3%, 0.2%, 3.1%, 0.8%, and
1.1% improvements on AWA2, APY, FLO, SUN, and CUB,
respectively.-e average is 1.1% over the five. Although our
model did not perform the best on AWA1, its performance
is almost equal to the previous artistic level. It can be seen
from the results that our method reduces the precision
difference between known classes and unknown classes to a
certain extent, which verified the effective generalization
ability of our method.

Complexity 7



Considering the fact that both f-WGAN and
f-CLSWGAN leverage GANs to synthesize unseen visual
features, the performance improvement of our method can
be attributed to two aspects. One is that we introduce a
classifier trained on seen classes to guarantee that the
generated features of each class can be distinguished from
each other, which is considered as the usage of the dis-
criminative information. -e other is our classifier self-
learningmechanism at test time, which is able to leverage the
confident results to fine-tune itself. In general, the results
verify that it is beneficial to leverage the additional classifier
to train VAEGAN. -e correct classification of generated
unseen visual features guarantee that each synthesized
sample features is highly related with its category and is
more distinguishable.

4.4. Discussion of the Additional Classifier. Here, we analyze
the influence of the additional loss of classifiers with
different structures on the performance of zero-short
learning and generalized zero-shot learning. -e exper-
imental results on datasets SUN and CUB are shown in
Table 4.

As we can see from Table 4, the effect of single-layer
perceptron is the best among all tested classifiers, except for
the accuracy of the ZSL of the SUN. -e output layer of all
classifiers uses sigmoid as the activation function to calculate
the classification loss, thus constraining the dual generation
network to synthesize the visual feature representation
which is easy to classify. By comparing the experimental
results from lines 2 to 4 and lines 3 to 7 in Table 4, we found
that using ReLu as an activation function for the hidden
layer worked best. At the same time, from the data of the last
three rows and the top three rows in Table 4, it can be seen
that the hidden layer uses 1024 units better than 512 for both
ZSL and GZSL. -rough experiments, we found that using

single-layer neural network as an additional classifier to
understand the discrimination information can not only get
the best results, but also reduce the running time time.

4.5. Analysis of Synthetic Image Features. In order to provide
an intuitive evaluation on our proposed model, we visualize
the visual features of some synthetic image visual features
and the corresponding real image visual features of unseen
classes. -e results are shown in Figure 6. For convenience,
we chose 10 unseen categories of AWA2 dataset for visu-
alization. First of all, we get the semantic embeddings and
the real image features of the selected categories. Secondly,
we input these semantic embeddings and Gaussian random
noise into the learned generator to obtain the synthetic
image features. Finally, we use t-SNE [30] to reduce the
dimension of synthetic and real visual features from 2048 to
2 and plot the obtained feature data into scatter for
visualization.

From the visualization of real feature samples in
Figure 6(a), it can be seen that some categories overlap to
a large extent, such as seals, walruses, blue whales, and
dolphins. It is reasonable for them to overlap, because
blue whales, dolphins, seals, and walruses are similar in
biology and look very similar visually. -e visualization
of synthetic image features is shown in Figure 6(b). By
comparing 6(a) and 6(b), we can clearly find that for most
categories, such as seals and dolphins, the synthetic image
features are very close to real samples, and some of them
even overlap with real samples well, such as horses, sheep,
and giraffes. One failure is rat, and we can see that the
synthesized features are far from the real features. An-
other disadvantage is that there is almost no confusion
between the categories of synthetic samples, which is
contrary to the actual situation. However, the finally

Table 1: Statistics of datasets.

Dataset att/stc Seen classes (train + val) Unseen classes Images (train + val) Images (test unseen/seen)
APY 64 15 + 5 12 5932 7924/1483
AWA1 85 27 + 13 10 19832 5685/4958
AWA2 85 27 + 13 10 23527 7913/5882
CUB 312 100 + 50 50 7057 2967/1764
SUN 102 580 + 65 72 10320 1440/2580
FLO 1024 62 + 20 20 5631 1403/1155

Table 2: Results of ZSL on six classification benchmarks. ZSL measuring per-class average top-1 accuracy (T1) on cu. -e “-” means that
there are no relevant results in the reference, while the underlined results are reproduced according to the description of references.

Method AWA1 AWA2 APY FLO SUN CUB
ALE [6] 59.9 — — 48.5 58.1 54.9
f-WGAN [8] 68.2 — — 67.2 60.8 57.3
SE-GZSL [52] 69.5 69.2 — — 63.4 59.6
Sycle-WGAN [22] 66.8 — — 70.3 59.9 58.6
LisGAN [24] 70.6 — 43.1 69.6 61.7 58.8
f-VAEGAN [25] 71.1 70.5 40.4 67.7 64.7 61.0
TCN [53] 70.3 71.2 38.9 — 61.5 59.5
Ours 71.4 71.2 44.9 73.6 65.1 62.6
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trained softmax classifier can well predict the labels of
most categories of test images.

5. Conclusion

In this paper, we discuss the generalized zero-shot learning
task and propose a model called DGDI, a dual generative
framework that combines the advantages of conditional

VAE and improved WGAN to obtain a more robust gen-
erative model with the using of discriminative information
by adding a classification loss. We make full use of the
discriminative information of visual feature representation
between categories to further improve our dual generative
module by adding a softmax classifier pretrained on the seen
classes to encourage the generator to learn the discriminative
information. -e experimental results on six datasets clearly

Table 3: Results of GZSL on six classification benchmarks respectively. GZSL measuring the harmonic mean H of the per-class top-1
accuracy u on cu and the per-class top-1 accuracy s on cu. -e “—” means that there are no relevant results in the reference, while the
underlined results are reproduced according to the description of references.

Method
AWA1 AWA2 APY FLO SUN CUB

u s H u s H u s H u s H u s H u s H
ALE [6] 16.8 76.1 27.5 — — — — — — 13.3 61.6 21.9 21.8 33.1 26.3 23.7 62.8 34.4
f-WGAN [8] 57.9 61.4 59.6 — — — — — — 59.0 73.8 65.6 42.6 36.6 39.4 43.7 57.7 49.7
SE-GZSL [52] 58.3 67.8 61.5 58.3 68.1 62.8 — — — — — — 40.9 30.5 34.9 41.5 53.3 46.7
Sycle-WGAN [22] 59.6 63.4 59.8 — — — — — — 61.6 69.2 65.2 47.2 33.8 39.4 47.9 59.3 53.0
LisGAN [24] 52.6 76.3 62.3 — — — 34.3 68.2 45.7 57.7 83.8 68.3 42.9 37.8 40.2 46.5 57.9 51.6
f-VAEGAN [25] 57.6 70.6 63.5 55.2 73.6 63.1 30.3 58.6 39.9 56.8 74.9 64.6 45.1 38.0 41.3 48.4 60.1 53.6
TCN [53] 49.4 76.5 60.0 61.2 65.8 63.4 24.1 64.0 35.1 — — — 31.2 37.3 34.0 52.6 52.0 52.3
CADA-VAE [54] 72.8 57.3 64.1 75.0 55.8 63.9 36.7 47.2 40.6 53.5 51.6 52.4
DVBE [55] — — — 63.6 70.8 67.0 32.6 58.3 41.8 — — — 45.0 37.2 40.7 53.2 60.2 56.5
Ours 58.7 70.3 64.0 60.1 76.4 67.3 36.5 61.7 45.9 62.6 83.0 71.4 48.3 37.4 42.1 53.8 61.9 57.6

Table 4: -e results of different classifiers on SUN and CUB. -e single-layer structure is what we use for our proposed model. -e two
layers mean that a latent layer is added to the single-layer structure, the _relu/_lrelu/_sigmoid indicates the activation function followed by
the hidden layer, and _1024/_512 indicates the number of neurons in the added hidden layer.

SUN CUB

ZSL GZSL ZSL GZSL
T1 s u H T1 s u H

Single-layer (used) 65.1 37.4 48.3 42.1 62.6 61.9 53.8 57.6
two_layers_1024_relu 65.8 37.8 47.4 42.1 61.8 62.4 47.3 53.8
two_layers_1024_lrelu 65.1 37.3 48.1 41.6 61.3 60.4 47.5 53.2
two_layers_1024_softmax 65.1 38.2 46.1 41.8 61.3 61.7 47.5 53.7
two_layers_512_relu 65.3 37.6 45.6 41.2 61.4 59.0 48.3 53.1
two_layers_512_lrelu 64.5 38.0 45.6 41.5 61.1 62.3 46.0 52.9
two_layers_512_ softmax 64.7 37.3 46.1 41.2 61.2 57.5 49.2 53.0

(a) (b)

Figure 6: . SNE visualization of real (a) and synthetic (b) image features for unseen classes in AWA2 datasets.
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show the effectiveness of our proposed framework; our
method has achieved good performance on almost all
datasets, which fully proves the importance of the dis-
criminative information between the visual feature repre-
sentations of categories. It is a meaningful problem to
improve the precision and generalization ability of zero-shot
learning, and we will further study it.
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