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In this paper, the issue of optimally modifying the structure of a directed network to guarantee its structural controllability is
investigated. Given a directed network, in order to obtain a structurally controllable system, a framework for finding the minimum
number of directed edges that need to be added to the network is proposed. After we get these edge-addition configurations, we
further calculate the network cost of each optimization scheme and choose the one with the minimum cost. Our main con-
tribution is twofold: first, we provide an algorithm able to find all optimal network modifications in polynomial time; second, we
provide a way to calculate the cost of optimizing the network based on the node betweenness. Numerical simulations are given to
illustrate the theoretical results.

1. Introduction

+e ultimate goal of complex network research is to find ef-
fective means to control network behavior and make it serve
human beings. Controllability is a basic concept in control
theory, which quantifies the ability to control a dynamical
system from any initial state to any final state in finite time [1].
In the past decade, the issue of network controllability for
complex dynamical systems has attracted increasing attention
and becomes a focal topic in interdisciplinary research [2–30].
Numerous works have been reported from rather diverse
perspectives on such topics as structural controllability [2, 3];
exact controllability [18]; edge dynamics [19–21]; optimization
[22–24]; control energy [25, 26]; and robustness [27, 28].

In the study of network controllability, we usually rely on
the theory of structural controllability [31–37]. If there is a
matrix pair that is controllable, all structurally equivalent
matrix pairs are controllable except for special ill-condi-
tioned cases [31]. Recently, those results have been applied to
the controllability analysis of directed complex networks
[2, 3, 16, 19, 22, 23] from a graph-theoretic perspective. Note
that it is very effective to analyze network controllability by
using tools developed under the background of structural
control theory [31].

Optimization of the network controllability is of prime
importance in real applications. Generally speaking, given a
network which is structurally uncontrollable, we can make it
structurally controllable through two strategies: (i) add
external input signals to the original network [16] and (ii)
add new edges to the network topology [23]. Wang et al.
provided a method to change the structure of a complex
network to make the system structurally controllable when
only a single driver node was considered [22]. Zhang and
Zhou considered three related problems on determining the
minimal cost structural perturbations, including edge ad-
ditions, edge deletions, and input deletions to make a
networked system structurally controllable/uncontrollable
[24]. Chen et al. proposed an approach to adding minimum
directed edges to the original network so as to ensure
structural controllability [23].

Motivated by the above discussions, a minimum-cost
optimization method to guarantee structural controllability
is investigated in this paper. It should be emphasized that,
differing from [23], in this work, a new method is proposed
to optimize network topology and thus to ensure the net-
work controllability. Moreover, it also provides a way to
calculate the total cost of optimizing the network. However,
in [23], it only gives a method to optimize the network
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topology without considering the optimization cost. Note
that calculating the optimization cost is exactly the major
point in this work. In [27], Zhang et al. considered the
problem of network cost. Although the measurement
index of edge cost was given therein, it did not provide a
simple and effective method to calculate the total network
cost. Compared with the previous works, we not only
address the problem of optimizing network controllability
but also propose a way to calculate the cost of optimizing
the network. +e main contributions of this article are as
follows. (i) We propose a new method to optimize the
network topology so as to ensure the network control-
lability. (ii) We propose an algorithm to solve the optimal
edge-addition configuration problem. (iii) After getting
all the edge-addition configurations, we introduce net-
work cost measurement indexes to calculate the cost of
optimizing the network. Based on which, we can deter-
mine the optimal edge-addition configuration with
minimum-cost. +e results of this paper can provide both
theoretical and technical guidance for the analysis and
control of real complex networks. +e obtained results
shed some lights on the transformation of a structurally
uncontrollable network to a structurally controllable one
with a low cost. For example, in the power network,
transmission lines with the lowest cost can be set up
among substations to safely and efficiently control the
entire power network.

+e rest of the paper is organized as follows. Section 2
introduces the notation and terminology used in this paper.
Problem formulation and preliminaries on graph theory are
introduced in Section 3. +e main results are given in
Section 4. In Section 5, a network cost index is given to
determine the minimum-cost edge-addition configuration.
Finally, the summary of this paper and the prospect of future
research are presented in Section 6.

2. Notations

In this paper, R denotes the set of real numbers, Rm is the
space of real m-vectors, and Rm×n is the space of m × n real
matrices. For a set S, its cardinality is denoted by |S|.

A directed graph G � (V, E) consists of a node set V �

1, 2, . . . , n{ } and an edge set E � (i, j) . Here, (i, j) ∈ E

implies that there exists a directed edge from node i to node
j, and i and j are called the parent node and the child node,
respectively. We can also say that the tail node i is pointing
toward the head node j. For a digraph G, a directed path of
length k + 1 from node i to node j is defined as a sequence of
distinct edges of the form (i, i1), (i1, i2), . . . , (ik, j), in which
all nodes i, i1, . . . , ik, j are distinct. Here, node i is called the
beginning node and j the end node of the directed path. A
node i2 ∈ V is reachable from i1 ∈ V if there exists a directed
path in G from i1 to i2. A directed graph Gs � (Vs, Es) is a
subgraph of G if Vs⊆V and Es⊆E. A directed graph is said to
be strongly connected if there exists a directed path between
any two nodes. A strongly connected component (SCC) is a
maximal subgraph Gs that is strongly connected. Particu-
larly, a source SCC has no incoming edges from another
SCC.

A digraph G contains a dilation if there is a subset of
nodes S ⊂ V such that the common-neighbor set of S,
denoted by T(S), has fewer nodes than S itself, i.e.,
|T(S)|< |S|. Here, T(S) is the set of nodes j, in which there is
a directed edge from node j to some other node in S. Notice
that a digraphG contains no dilation if each node has its own
independent parent node. It is intuitively plausible that a
dilation is a subgraph containing a relatively large number of
nodes that are “dominated” by a small number of other
nodes.

3. Problem Statement and Preliminaries

Consider a linear time-invariant (LTI) networked dynamical
system described by

_x(t) � Ax(t) + Bu(t), (1)

where x(t) � [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state
vector of all nodes; u(t) � [u1(t), u2(t), . . . , um(t)]T ∈ Rm is
the input vector; B � (bij) ∈ Rn×m is the input matrix
identifying the nodes that are directly controlled, and A �

(aij) ∈ Rn×n is the adjacency matrix of the underlying
network. +e overall networked system described by (1) can
be denoted by the matrix pair (A, B).

Definition 1. Linear network (1) is said to be state con-
trollable if, for any initial state x(t0) ∈ Rn and any final state
x(tf) ∈ Rn, there exist a finite time t1 and an input
u(t) ∈ Rm, t ∈ [t0, t1], such that x(t1; x(t0), u) � x(tf).

If networked system (1) is state controllable, we can say
that the matrix pair (A, B) is state controllable.

Definition 2 (see [16, 31]). A linear control system (A, B) is a
structured system if the elements in A and B are either fixed
zeros or independent nonzero parameters. Both the two
matrices A and B are called structured matrices.

In this paper, it is assumed that we only know the
structure of the matrices A and B. +is means that we know
which elements in the matrices are fixed to zero and con-
sequently which elements are nonzero free parameters.

Definition 3. A linear control system (A, B) is structurally
controllable if we can set some values to the nonzero pa-
rameters in A and B such that the resulting system is state
controllable in the sense of Kalman defined in Definition 1.

A structured system can be represented by a directed
graph whose nodes denote the (state and input) variables
and edges indicate the connections between some variables
[31]. In this paper, a structured system (A, B) is denoted by a
directed graph G(A, B) � (V, E), in which V � VA ∪VB is
the node set and E � EVA,VA

∪EVB,VA
is the edge set. In

particular, VA � x1, x2, . . . , xn  is the set of state nodes,
corresponding to the n nodes in the original network; VB �

u1, u2, . . . , um  is the set of input nodes corresponding to
the m inputs; EVA,VA

� (xi, xj)|aji ≠ 0  is the set of edges
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between state nodes; and EVB,VA
� (ui, xj) | bji ≠ 0  is the set

of edges between input nodes and state nodes. In the whole
paper, suppose that any input signal is applied to only one
node, referred to as a driver node. A state node being
reachable means that there is a directed path from some
input node to this state node. Similarly, a node set is
reachable if each node in the set is reachable. Notice that, in
the remaining of the paper, unless otherwise specified, the
reachability is only used for the state nodes.

In a digraph, an edge subset M is a matching if no two
edges in M share a common parent node or a common child
node. A matching of maximum size is called a maximum
matching. +e maximum matching of a digraph can be
denoted by mapping the digraph to its bipartite represen-
tation. Consider a directed network G(A, B), whose bipartite
representation can be described by B(A, B) � B(V+

A ∪
VB, V−

A, EV+
A

,V−
A
∪EVB,V−

A
), in whichV+

A � x+
1 , x+

2 , . . . , x+
n  and

V−
A � x−

1 , x−
2 , . . . , x−

n . +at is, each state node xi of the
original digraph is split into two nodes x+

i and x−
i . Here,

x+
i , x−

j  ∈ EV+
A

,V−
A
if (xi, xj) ∈ EVA,VA

and ui, x−
j  ∈ EVB,V−

A
if

(ui, xj) ∈ EVB,VA
. To describe the relationship between the

digraph and its bipartite graph, we use a signal-notation
mapping f: EVA,VA

∪EVB,VA
⟶ EV+

A
,V−

A
∪EVB,V−

A
to map

directed edges from the system digraph into undirected
edges of the system bipartite graph as follows: f((ui, xj)) �

ui, x−
j  and f((xi, xj)) � x+

i , x−
j . Also, we have that

f− 1( ui, x−
j ) � (ui, xj) and f− 1( x+

i , x−
j ) � (xi, xj).

Definition 4. +e element rij � 1 in the matrix R ∈ Rn×n if
there is a directed path from node i to node j (i≠ j). Set
rii � 1, i � 1, 2, . . . , n. +e matrix R is called reachable
matrix.

If only one external input is applied to node 1, then the
first row of the matrix R can be used to determine which
nodes are unreachable.

Definition 5. +e element pij � 1 in the matrix P if edge
(i, j) is one of the matching edges of a maximum matching
about a bipartite graph. +e matrix P is called maximum
matching matrix.

+e maximum matching of a directed graph is not
unique. +erefore, the corresponding maximum matching
matrix P is not unique. It can be found from the matrix P

that the number of nonzero elements in the matrix P is the
number of matching edges in the maximum matching, and
each row and each column have at most one nonzero ele-
ment. +e jth column is full of zero elements, indicating that
node j in the network does not have its own independent
parent node.

Definition 6. Consider a directed network, in which only
one external input signal is applied to node 1. If n � 

n
j�1 r1j,

r1j ∈ R, then such reachable matrix R is called 1 − R matrix.
For example,

1 − R �

1 1 1 1 1

0 1 0 0 0

1 1 1 1 0

0 0 0 1 0

0 0 0 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Obviously, if the reachable matrix R of a network is a
1 − R matrix, then all the state nodes in the network are
reachable.

Definition 7. Consider a directed network, in which only
one external input signal is applied to node 1. If the max-
imum matching matrix P has a unique nonzero element in
each column except for the first column, then such maxi-
mummatching matrix P is called 1 − P matrix. For example,

1 − P �

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Obviously, if the maximum matching matrix P of a
network is 1 − P matrix, then there is no dilation in the
network.

A necessary and sufficient condition for the structural
controllability of an LTI system is given as follows [31].

Lemma 1 (see [31]). &e pair (A, B) is structurally con-
trollable if and only if the following two conditions are sat-
isfied simultaneously:

(1) Every state node x ∈ VA in the digraph G(A, B) �

(VA ∪VB, EVA,VA
∪EVB,VA

) is reachable from some
input node u ∈ VB

(2) &e digraph G(A, B) contains no dilations

&en, we have the following controllability criterion.

Theorem 1. A directed network G(A, B) with
B � [b1, 0, . . . , 0]T is structurally controllable if and only if
the following two conditions are satisfied simultaneously:

(1) &e reachable matrix of G(A, B) is a 1 − R matrix
(2) &e maximum matching matrix of G(A, B) is a 1 − P

matrix

In this paper, given a structurally uncontrollable directed
network, we study the problem of adding the least edges to
improve the topology so as to obtain a structurally con-
trollable system. After we get these optimal edge-addition
configurations, we need to calculate the network cost of each
optimization scheme and choose the one with the minimum
cost. In summary, the problem is given as follows.
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Problem 1. Given the pair (A, B) with B � [b1, 0, . . . , 0]T,
find

A
∗

� arg min
A∈ 0,1{ }n×n

‖A‖0, (4)

s.t. the reachable matrix of digraph G(A + A, B) is a 1 − R

matrix and the maximummatching matrix is a 1 − P matrix,

where ‖A‖0 denotes the number of nonzero elements in a
matrix A.

If (A + A, B) is structurally controllable, we refer to the
matrix A as an effective perturbed matrix and to A

∗ in (4) as
the modified matrix. +e aim of this paper is to provide a
characterization of all possible modified matrices by using
graph-theoretical tools and design an algorithm to obtain
such a solution.

4. Network Topology Optimization to Ensure
Structural Controllability

Note that the system digraph is denoted by G(A, B) �

(VA ∪VB, EVA,VA
∪EVB,VA

). +erefore, given an effective
perturbed matrix A, we can relate a digraph to the perturbed
structured system (A + A, B), which we denote by G(A+
A, B) � (VA ∪VB, EVA,VA

∪EVB,VA
∪ E), where the edge set

E⊆VA × VA is such that (xi, xj) ∈ E if and only if aji � 1.
Since the matrix A is closely related to the E, we can rewrite
Problem 1 in a different way.

Problem 2. Given the system digraph G(A, B) � (VA ∪VB,

EVA,VA
∪EVB,VA

) with B � [b1, 0, . . . , 0]T, find
E
∗

� arg min
E⊆VA×VA

|E|, (5)

s.t. the reachable matrix of the digraph G(A + A, B) �

(VA ∪VB, EVA,VA
∪EVB,VA

∪ E) is a 1 − R matrix and the
maximum matching matrix is a 1 − P matrix.

Additionally, define a feasible edge-addition configura-
tion as a set of directed edges that is a feasible solution of
Problem 2.

+e solutions to Problem 2 are given in this section. First,
a definition is introduced to describe the smallest set of edges
needed to achieve reachability, i.e., satisfy condition (1) in
Lemma 1. Let G(A, B) � (VA ∪VB, EVA,VA

∪EVB,VA
) be the

system digraph.+e set of state nodes VA can be divided into
two sets based on their reachability, namely, VA � R∪N,
where R is the set of reachable nodes and N is the set of
unreachable nodes. In addition, assume that there are r

source SCCs that are unreachable, whose node sets are
denoted by N1, N2, . . . , Nr⊆N. In order to make the nodes
in these unreachable source SCCs reachable, we need to add
a new edge between the reachable node and the node in the
source SCC so that all the nodes in the source SCC are
reachable. Moreover, since the source SCC has outgoing
edges pointing to other nodes, the unreachable nodes that
are connected to the source SCC will also become reachable.

Definition 8. A set SE is made up of connected edges, then
the set SE is called the connected edge set. Here, the con-
nected edge refers to the connecting edge between the
reachable node and the unreachable node.

Algorithm 1 is illustrated in Figure 1. +e connected edge
set contains the minimum number of added edges required to
ensure that all the state nodes are reachable. Obviously, the
connected edge set can only satisfy condition (1) in Lemma 1
and cannot guarantee the structural controllability of the net-
worked system. To ensure structural controllability of the
system, these edge additionsmust satisfy two conditions: (i) a set
of connected edges and (ii) the “tail” node of the new edge is not
used as an independent parent node in themaximummatching.
It is the “head” node of the edge that has no independent parent
node.

Theorem 2. Consider a directed network G(A, B), whose
bipartite representation is denoted by B(A, B). Let M be a
maximum matching, Uo(M) � vo

i : i ∈ 1, 2, . . . , no   be a
node set in which each node is not used as independent parent
node, and Ur(M) � vr

i : i ∈ 1, 2, . . . , nr   be a node set with
no independent parent nodes. A set E is a feasible edge-ad-
dition configuration if and only if it contains the union of the
following two sets:

(1) SE is the set of connected edges
(2) SM � f− 1( vo

i , vr
i ): vo

i ∈ Uo(M), vr
i ∈ Ur(M),

i � 1, 2, . . . , nr }

+eorem 2 provides some feasible edge-addition configu-
rations, but we need to find the optimal one from these con-
figurations. +erefore, the first task is to select the optimal
solution from these feasible solutions. From the above dis-
cussion, it can be found that, after determining the maximum
matching of a bipartite graph, if those unmatched nodes (nodes
without independent parent nodes) happen to be distributed in
different source SCCs, then the added edges just meet both
conditions in Lemma 1, which is exactly what is needed. To
explore this situation, we introduce the following concepts.

Definition 9. Consider a directed network G(A, B), whose
bipartite representation is denoted by B(A, B). Let M be a
maximum matching associated withB(A, B). Moreover, let
Ur(M) be the set of nodes in which each node has no in-
dependent parent nodes. If there is at least one node i,
i ∈ Ur(M) in an unreachable source SCC, then such an
unreachable source SCC is called an ideal source SCC.

Whether an unreachable source SCC is an ideal source
SCC depends mainly on the specific maximum matching.
Because there may be more than one maximum matching
corresponding to a directed network, it is not possible to
determine whether a node has an independent parent node
in the maximum matching.

Definition 10. +e Ns of the directed network G(A, B) is
defined as the maximum number of ideal source SCCs in all
the maximum matchings.
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We can determine a maximum matching attaining Ns

using Algorithm 2.
We take Figure 2, for example, to illustrate Algorithm 2.
+e reachable matrix corresponding to the digraph in

Figure 2(a) is expressed as follows:

R �

1 1 0 1 0 0

0 1 0 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

+e unreachable node set can be determined as N �

x3, x5, x6  by the position of the 0 element in the first row of
R. Moreover, there are two unreachable source SCCs (red
box), whose node sets are N1 � x3  and N2 � x5, x6 ,
respectively. +en, we can label columns 3, 5, and 6 of R as
follows:

R �

∗ ∗ ∗

1 1 0 1 0 0

0 1 0 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Figure 2(b) shows the bipartite representation of the
original directed network (Figure 2(a)). In order to make the
column ordinals corresponding to all 0 columns in the
maximum matching matrix P coincide with the marked
column ordinals as much as possible, an ideal maximum
matching M is determined in Figure 2(c), and its corre-
sponding maximum matching matrix is expressed as
follows:

u

x1

x2

x3

x5
x6

x4

N1

N2

R–

(a)

u

x1

x2

x3

x4

x5
x6

N2

N1

R–

(b)

Figure 1: Illustration of Algorithm 1.+e black and blue nodes and all the black edges consist of the original directed network G(A, B). +e
black nodes, except for the input node u, constitute the set of reachable state nodes R � x1, x2 . Blue nodes constitute the set of unreachable
state nodes N � x3, x4, x5, x6 . +ere are two unreachable state source SCCs, N1 and N2. In (a), we give a possible edge-addition
configuration for Algorithm 1. First, we add edge (x1, x4) to SE. +en, the state node x4 from N1 becomes reachable, and thus the state node
x3 becomes reachable. Next, we add edge (x4, x5) to SE, and then the state nodes x5 and x6 from N2 become reachable, i.e.,
SE � (x1, x4), (x4, x5) . In (b), we add edges (x2, x4) and (x4, x6) to SE

′, i.e., SE
′ � (x2, x4), (x4, x6) . +erefore, SE and SE

′ are two possible
sets of connected edges.

Input: reachable nodes sets R and unreachable nodes sets N

(1) Order the unreachable source SCCs: N1, N2, . . . , Nr

(2) Select any edge (i, j) in which i is in the set of reachable nodes and j is in the first source SCC
(3) Merge all reachable state nodes into a larger set (we can do it using either BFS/DFS or union-find)
(4) Call Steps 2-3 recursively until all unreachable source SCCs become reachable

ALGORITHM 1: Set of connected edges.
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P
∗

�

∗ ∗
1 1 0 1 0 0

0 1 0 0 0 0

1 1 1 1 0 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 0 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

+ere are at most two 0 columns in P∗ that are consistent
with the marked column ordinals, and the corresponding
node x3 is located in N1, and node x5 is located in N2, so
Ns � 2.

If all the state nodes that are not used as independent
parent nodes are unreachable, then additional edges are
needed to satisfy condition (1) in Lemma 1. +erefore, in
this case, calculating Ns according to Algorithm 2 does
not necessarily lead to an optimal configuration of added
edges. To illustrate this statement, we take Figure 3 for
example.

Next, we will propose Algorithm 3 to solve Problem 2.
Algorithm 3 is mainly divided into the following four steps:

Step 1. All the state nodes in the directed network are
classified into a reachable node set and an unreachable
node set, respectively, based on the node reachability.
Step 2. Determine the ideal maximum matching to get
Ns. If there exist some unreachable nodes that are not
used as independent parent nodes in the ideal maxi-
mummatching, then we alter the matching by finding a
directed path rooted at the input node.
Step 3. Add some edges to satisfy Lemma 1.+ese edges
start at reachable nodes that are not used as inde-
pendent parent nodes and end at nodes that have no
independent parent nodes in unreachable source SCCs.
Step 4. If there are unreachable nodes that are not used
as independent parent nodes, then we need to add a set
of connected edges to ensure that both two conditions
of Lemma 1 are satisfied.

Given a structurally uncontrollable system (A, B) that
contains unreachable nodes and/or dilations. +erefore, we
need to optimize the network topology to ensure structural
controllability by adding edges. Algorithm 3 is given to
obtain optimal edge-addition configuration to solve Prob-
lem 2.

Input: A directed network G(A, B) with B � [b1, 0, . . . , 0]T;
(1) Write the reachable matrix R of the directed network, and determine the unreachable node set N in the network by the position

(column ordinal) of the 0 element in the first row.
(2) Find the unreachable source SCCs.
(3) Select the nodes located in the source SCCs from the unreachable nodes set N and mark their column ordinals.
(4) By using the marked column ordinals to identify an ideal maximummatching M. Its corresponding maximummatching matrix is

P∗. +e column ordinals corresponding to all 0 columns in the matrix P∗ need to match the marked column ordinals as much as
possible.

(5) According to Step 3, an ideal maximummatching matrix P∗ can be obtained. From the matrix P∗, the nodes corresponding to the
matching column ordinals can be found.

(6) Based on the distribution of the nodes found in Step 5 in the source SCCs, Ns can be calculated.

ALGORITHM 2: Determine the ideal maximum matching to get Ns.
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x+2

(b)

x–1
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x+4

x+5

x+6

x+1

u

x+2

(c)

Figure 2: Example illustrating Algorithm 2.
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Next, an example in Figure 4 is given to illustrate
Algorithm 3.

5. Network Optimization Cost

We have solved the optimal edge-addition configuration
problem; however, there are multiple potential edge-

addition configurations to ensure structural controllability.
From the application perspective, the lowest cost configu-
ration is usually selected as the final optimization solution.
+erefore, we present Problem 3 based on Problem 2, taking
the network cost into account. In order to solve Problem 3,
we introduce an edge cost measurement index to calculate
the edge cost and thus obtain the cost of the whole network.

u

x1

x2

x4

x3

(a)

x+3

x+4

x+1

u

x+2

x–1

x–2

x–3

x–4

(b)

u

x1

x2

x4

x3

(c)

x+3

x+4

x+1

u

x+2

x–1

x–2

x–3

x–4

(d)

u

x1

x2

x4

x3

(e)

Figure 3:+emaximummatching of a directed graph is not unique, and different maximummatchings will result in different feasible edge-
addition configurations. In (a), the initial system digraph G(A, B) is given. +e red edges in (b) and (d) form two different maximum
matchings. +e red edges in (c) and (e) are determined by the maximummatchings in (b) and (d), respectively. In (c), after determining the
maximummatching, node x4 has no independent parent node and node x2 has not been used as the parent node. So, we need to add the edge
(x2, x4) to satisfy condition (2) of Lemma 1. Since node x2 is unreachable, we also need to add the edge (x1, x2) to satisfy condition (1) of
Lemma 1. +en, we have E1 � (x1, x2), (x2, x4) . In (e), after determining the maximum matching, node x4 has no independent parent
node and node x1 has not been used as the parent node. So, we can add edge (x1, x4) to satisfy both two conditions of Lemma 1, i.e.,
E2 � (x1, x4) . +erefore, E2 is an optimal edge-addition configuration but E1 is not.

Input: A directed network G(A, B);
(1) All the state nodes in the network are classified into a reachable node set R and an unreachable node set N. +en, determine the

unreachable source SCCs in the directed network G(A, B).
(2) Using Algorithm 2 to get M′ and Ns.
(3) if Uo(M′)∩R � ∅, then
(4) Find an unreachable node xj, and thus add the edge (xi, xj), xi ∈ R;
(5) M←M′ ∪ (xi, xj) ;
(6) else
(7) Set M � M′;
(8) end if
(9) Obtain the unique set of disjoint directed paths L � ∪ q

i�1Li in M, where the beginning node of each Li is in some unreachable
source SCCs and the end node is not used as a separate parent node;

(10) Let Q � q1, q2, . . . , qn  andZ � z1, z2, . . . , zn , qi, zi are the beginning and end nodes of each path Li, respectively;
(11) Let E

∗←∅, k←1;
(12) if Z∩R � ∅, then
(13) Find a reachable node vo, vo ∈ Uo(M);
(14) for k≤ q do
(15) E

∗←E∪ vk−1, qk ; k←k + 1;
(16) Z⊆R
(17) end for
(18) if x+

i ∈ Uo(M), Ur(M)≠∅, then
(19) E

∗←E∪ (xi, xj) , x−
j ∈ Ur(M);

(20) Uo(M)←Uo(M)\x+
i ; Ur(M)⟵Ur(M)\x−

j ;
(21) when Ur(M) � ∅
(22) end if

ALGORITHM 3: Minimal edge addition.

Complexity 7



In addition, we need to adopt a simple and practical method
to calculate the cost of the network and determine a min-
imum-cost configuration to ensure the controllability based
on the optimal edge-addition configuration.

Problem 3. Consider a directed network G(A, B), find
E
∗

� arg min
E⊆VA×VA

|E|, (9)

s.t. the new directed network G(A + A, B) contains neither
unreachable nodes nor dilations. Also, the cost of the new
directed network must be the lowest one.

5.1. Main Idea. Given a structurally uncontrollable di-
rected network G(A, B). +e optimal edge-addition
configuration is obtained by using Algorithm 3. +e first
step of calculating the network optimization cost is to
obtain the load of each node in the network. Note that the
nature of node load is exactly consistent with the be-
tweenness centrality of the node. Betweenness centrality

of a node refers to the proportion of the number of paths
passing through the node in the total number of shortest
paths. Intuitively, the betweenness centrality reflects the
importance of the node as a “bridge.” +erefore, the initial
load on each node can be denoted by its betweenness
centrality [27]. We can calculate the betweenness cen-
trality of each node by “pajek” software after importing a
directed network. +ere is a nonlinear relationship be-
tween the load of a node and its capacity [38, 39], so we
can determine the node capacity by this nonlinear rela-
tion. +e cost of a node can be measured by its node
capacity in the network. We take the larger one of the two
node capacities as the cost of the edge that connects these
two nodes [40]. In this paper, we calculate the network
costs of all optimal edge-addition configurations and then
choose the one with the lowest network cost as the optimal
edge-addition configuration.

+e specific calculation process of network cost is given
as follows:

Step 1. Node load can be measured by the betweenness
centrality

u

x1

x2
x3 x4

x5

x6 x7 x8

N1

N2

N3

(a)

x+3

x+4

x+5

x+6

x+7

x+8

x+1

u

x+2

x–1

x–2

x–3

x–4

x–5

x–6

x–7

x–8

(b)

Figure 4: In (a), the directed network G(A, B) contains a single input node u and eight state nodes x1, x2, . . . , x8. We will first decompose
the directed graph according to the first step of Algorithm 3, R � x1, x2 , N � x3, x4, x5, x6, x7, x8 . +ere are three unreachable source
SCCs in the digraph, N1 � x4 , N2 � x6 , N3 � x7, x8 . In (b), we provide B(A, B) the bipartite graph of the directed graph to attain a
maximummatching M′(red edges) according to Step 2 of Algorithm 3, i.e., M′ � (u, x1), (x1, x2), (x4, x3), (x8, x5), (x7, x8) . According to
the maximummatching, nodes x4, x6, andx7 have no independent parent node, Ur(M′) � x4, x6, x7 . +e nodes x2, x3, x5, andx6 are not
used as the independent parent node, Uo(M′) � x2, x3, x5, x6 . According to Step 3 of Algorithm 3, reachable node x2 is not used as the
parent node, x2 ∈ R, x3, x5, x6 ∈ N. +erefore, we need to pick nodes in Uo(M′) and Ur(M′), respectively, and they form edges that make
nodes x3, x5, andx6 become reachable. +e added edge (x2, x4) can satisfy the above conditions (Uo(M)⊆R). After the edge (x2, x4) is
added, a new maximum matching M � M′ ∪ (x2, x4)  is formed. +en, the remaining set in which each node has not been used as an
independent parent node is Uo(M) � x5, x3, x6 . +e set with no independent parent node is Ur(M) � x6, x7 . According to Step 18 of
Algorithm 3, Ur(M) � x6, x7 ≠∅. So, we need to keep adding edges until the two conditions of Lemma 1 are satisfied.+e other two edges
added have four choices: (x5, x6), (x3, x7) , (x5, x7), (x3, x6) , (x5, x6), (x6, x7) , and (x3, x6), (x6, x7) . Finally, after adding three edges
to the graph, both two conditions of Lemma 1 are satisfied, and thus a new directed graph G(A + A, B) is obtained. In summary, we can get
four optimal edge-addition configurations as follows: E

∗
1 � (x2, x4), (x5, x6), (x3, x7) , E

∗
2 � (x2, x4), (x5, x7), (x3, x6) ,

E
∗
3 � (x2, x4), (x5, x6), (x6, x7) , and E

∗
4 � (x2, x4), (x6, x7), (x3, x6)  (a solution to Problem 2).
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CB(v) � 
s≠v≠t∈V

σst(v)

σst

, (10)

where CB(v) denotes the betweenness centrality of
node v, σst(v) denotes the number of the shortest di-
rected paths (s⟶ t) that passes through node v, and
σst means the number of the shortest directed paths
from node s to node t.
Step 2. +ere is a nonlinear relationship between node
load and node capacity described by

Cap(v) � CB(v) + β CB(v)( 
α
, v � 1, 2, . . . , n, (11)

where Cap(v) is the capacity of node v, α> 0, β> 0.
Since there is a positive correlation between node load
and capacity, set α � β � 1. +us, the node capacity is
determined by

Cap(v) � 2CB(v). (12)

Step 3. Use the index of node capacity to measure the
node cost

Cost(v) � Cap(v) � 2CB(v), (13)

where Cost(v) denotes the cost of node v.
Step 4. Compare the capacities of two nodes of an edge,
and take the larger one as the capacity of the edge (edge
cost)

Cost lij  � max Cap vi( ,Cap vj  , (14)

where Cost(lij) is the cost of edge lij.
Step 5. Calculate the network cost of each configuration
according to Step 4

Cost(Net) � Cost lij , (15)

where Cost(Net) denotes the cost of the whole
network.

5.2. Data Processing. In Figure 4(a), the initial directed
network G(A, B) is given. Get the optimal edge-addition
configuration by Algorithm 3, E

∗
1 � (x2, x4), (x5, x6), (x3,

x2
x3 x4

x5

x8
x7x6

x1

u

N3

N2

N1

Figure 5: +e new directed network resulting from the first configuration scheme E
∗
1 � (x2, x4), (x5, x6), (x3, x7) .
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Figure 6: +e different color curves in the figure represent the trend that the states of the 8 nodes in the new directed network change over
time.
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x7)} and E
∗
2 � (x2, x4), (x5, x7), (x3, x6)  and E

∗
3 � (x2,

x4), (x5, x6), (x6, x7)} and E
∗
4 � (x2, x4), (x6, x7), (x3, x6) .

+e new directed network resulting from the first
configuration scheme is shown in Figure 5. Figure 6 shows
the curve of the state of each node over time.

We import this new directed network G(A + A, B) into
pajek software to calculate the betweenness centrality of each
node. +e original data of betweenness centrality of each
node are shown in Table 1. In Table 2, we collate the data of
node load, node capacity, edge cost, and network cost
according to each step described in Section 5.1. +en, we get
the network cost of the first configuration scheme.

+e new directed network resulting from the second
configuration scheme is shown in Figure 7. +e original data
of betweenness centrality of each node are shown in Table 3.
Similarly, we can obtain the data of node load, node capacity,
edge cost, and network cost, as shown in Table 4.

+e new directed network resulting from the third
configuration scheme is shown in Figure 8. +e original data
of betweenness centrality of each node are shown in Table 5.
Similarly, we can obtain the data of node load, node capacity,
edge cost, and network cost, as shown in Table 6.

+e new directed network resulting from the fourth
configuration scheme is shown in Figure 9. +e original data
of betweenness centrality of each node are shown in Table 7.
Furthermore, we can obtain the data of node load, node
capacity, edge cost, and network cost, as shown in Table 8.

Comparing the network costs of the above four con-
figuration schemes, we choose the fourth scheme as the
optimal edge-addition configuration so as to get the solution
of Problem 3.

5.3. Illustrative Example. In [23], a directed network as
shown in Figure 10 is considered. +e authors proposed 14
edge-addition configurations, i.e., E

∗
� (x2, x10), (x9, x5),

(xi, xj)}, i ∈ 1, . . . , 6, 10{ }, j ∈ 7, 8{ }. However, they did not
tell us which one is the optimal edge-addition configuration
with the lowest cost. Using the results of our work, the cost of
each optimization scheme can be calculated, and finally a
scheme E

∗
8 � (x2, x10), (x9, x5), (x4, x8)  with the lowest

Table 1:+e original data of betweenness centrality of each node in
Figure 5.

Node Val Label
1 0.47619051 1
2 0.4761905 2
3 0.3095238 3
4 0.4761905 4
5 0.3333333 5
6 0.3333333 6
7 0.1904762 7
8 0.1904762 8
We calculate the betweenness centrality value of eight nodes in Figure 5 by
pajek software.

Table 4: +e data of node load, node capacity, edge cost, and
network cost for the second configuration scheme.

Edge Node load Node capacity Edge cost
(1, 2) (0.29, 0.36) (0.58, 0.72) 0.72
(3, 1) (0.14, 0.29) (0.28, 0.58) 0.58
(2, 4) (0.36, 0.43) (0.72, 0.86) 0.86
(4, 3) (0.43, 0.14) (0.86, 0.28) 0.86
(4, 5) (0.43, 0.24) (0.86, 0.48) 0.86
(6, 1) (0.00, 0.29) (0.00, 0.58) 0.58
(5, 7) (0.24, 0.14) (0.48, 0.24) 0.48
(3, 6) (0.14, 0.00) (0.28, 0.00) 0.28
(7, 8) (0.14, 0.02) (0.28, 0.04) 0.28
(8, 7) (0.02, 0.14) (0.04, 0.28) 0.28
(8, 5) (0.02, 0.24) (0.04, 0.48) 0.48

Network cost 6.26

Table 2: +e data of node load, node capacity, edge cost, and
network cost for the first configuration scheme.

Edge Node load Node capacity Edge cost
(1, 2) (0.48, 0.48) (0.96, 0.96) 0.96
(3, 1) (0.31, 0.48) (0.62, 0.96) 0.96
(2, 4) (0.48, 0.48) (0.96, 0.96) 0.96
(4, 3) (0.48, 0.31) (0.96, 0.62) 0.96
(4, 5) (0.48, 0.33) (0.96, 0.66) 0.96
(6, 1) (0.33, 0.48) (0.66,0 .96) 0.96
(5, 6) (0.33, 0.33) (0.66, 0.66) 0.66
(3, 7) (0.31, 0.19) (0.62, 0.38) 0.62
(7, 8) (0.19, 0.19) (0.38, 0.38) 0.38
(8, 7) (0.19, 0.19) (0.38, 0.38) 0.38
(8, 5) (0.19, 0.33) (0.38, 0.66) 0.66

Network cost 8.46

Table 3:+e original data of betweenness centrality of each node in
Figure 7.

Node Val Label
1 0.2857143 1
2 0.3571429 2
3 0.1428571 3
4 0.4285714 4
5 0.2380952 5
6 0.0000000 6
7 0.1428571 7
8 0.0238095 8
We calculate the betweenness centrality value of eight nodes in Figure 7 by
pajek software

x2
x3 x4

x5

x8
x7x6

x1

u

N3

N1

N2

Figure 7: +e new directed network resulting from the second
configuration scheme E

∗
2 � (x2, x4), (x5, x7), (x3, x6) .
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cost can be selected to ensure the structural controllability of
the network.

6. Conclusions

In this paper, we have solved the problem of how to optimize
the network topology to ensure structural controllability.
Given a structurally uncontrollable directed network, Al-
gorithm 3 presents all possible edge-addition configurations.
After determining the optimal edge-addition configuration,
a network cost index is given to choose the lowest cost
configuration.

In future, we can combine these two strategies of adding
edges and adding external input signals to ensure the net-
work controllability and choose the scheme with the highest
benefit by comparing the costs of several strategies. In

x2 x3

x1

u

x6 x7
x8

x5

x4

N1

N3

N2

Figure 8: +e new directed network resulting from the third
configuration scheme E

∗
3 � (x2, x4), (x5, x6), (x6, x7) .

Table 5:+e original data of betweenness centrality of each node in
Figure 8.

Node Val Label
1 0.4523810 1
2 0.4523810 2
3 0.0714286 3
4 0.4523810 4
5 0.5238095 5
6 0.5238095 6
7 0.1666667 7
8 0.1666667 8
We calculate the betweenness centrality value of eight nodes in Figure 8 by
pajek software.

Table 6: +e data of node load, node capacity, edge cost, and
network cost for the third configuration scheme.

Edge Node load Node capacity Edge cost
(1, 2) (0.45, 0.45) (0.90, 0.90) 0.90
(3, 1) (0.07, 0.45) (0.14, 0.90) 0.90
(2, 4) (0.45, 0.45) (0.90, 0.90) 0.90
(4, 3) (0.45, 0.07) (0.90, 0.14) 0.90
(4, 5) (0.45, 0.52) (0.90, 1.04) 1.04
(6, 1) (0.52, 0.45) (1.04, 0.90) 1.04
(5, 6) (0.52, 0.52) (1.04, 1.04) 1.04
(6, 7) (0.52, 0.17) (1.04, 0.34) 1.04
(7, 8) (0.17, 0.17) (0.34, 0.34) 0.34
(8, 7) (0.17, 0.17) (0.34, 0.34) 0.34
(8, 5) (0.17, 0.52) (0.34, 1.04) 1.04

Network cost 9.48

x6 x7
x8

N3

N2

x1

x2
x3 x4

x5
N1

u

Figure 9: +e new directed network resulting from the fourth
configuration scheme E

∗
4 � (x2, x4), (x6, x7), (x3, x6) .

Table 7:+e original data of betweenness centrality of each node in
Figure 9.

Node Val Label
1 0.1547619 1
2 0.2261905 2
3 0.2857143 3
4 0.2976190 4
5 0.0000000 5
6 0.2023810 6
7 0.1547619 7
8 0.0595238 8
We calculate the betweenness centrality value of eight nodes in Figure 9 by
pajek software.

Table 8: +e data of node load, node capacity, edge cost, and
network cost for the fourth configuration scheme.

Edge Node load Node capacity Edge cost
(1, 2) (0.15, 0.23) (0.30, 0.46) 0.46
(3, 1) (0.29, 0.15) (0.58, 0.30) 0.58
(2, 4) (0.23, 0.30) (0.46, 0.60) 0.60
(4, 3) (0.30, 0.29) (0.60, 0.58) 0.60
(4, 5) (0.30, 0.00) (0.60, 0.00) 0.60
(6, 1) (0.20, 0.15) (0.40, 0.30) 0.40
(3, 6) (0.29, 0.20) (0.58, 0.40) 0.58
(6, 7) (0.20, 0.15) (0.40, 0.30) 0.40
(7, 8) (0.15, 0.06) (0.30, 0.12) 0.30
(8, 7) (0.06, 0.15) (0.12, 0.30) 0.30
(8, 5) (0.06, 0.00) (0.12, 0.00) 0.12

Network cost 4.94

u
x1

x2
x3

x5

x6

x4 x10

x9

x8
x7

Figure 10: A directed network.
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addition, we can extend a single directed network to the
topology design of a multiplex network [29, 41] so as to
ensure the structural controllability of the multiplex
network.
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