Hindawi

Complexity

Volume 2021, Article ID 6658724, 16 pages
https://doi.org/10.1155/2021/6658724

WILEY

Hindawi

Research Article
Averaged Soft Actor-Critic for Deep Reinforcement Learning

Feng Ding (), Guanfeng Ma (), Zhikui Chen (O, Jing Gao (©, and Peng Li

School of Software Technology, Dalian University of Technology, Dalian, China

Correspondence should be addressed to Jing Gao; gaojinghit@gmail.com

Received 16 November 2020; Revised 1 February 2021; Accepted 18 March 2021; Published 1 April 2021
Academic Editor: Ning Cai

Copyright © 2021 Feng Ding et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the advent of the era of artificial intelligence, deep reinforcement learning (DRL) has achieved unprecedented success in
high-dimensional and large-scale artificial intelligence tasks. However, the insecurity and instability of the DRL algorithm have an
important impact on its performance. The Soft Actor-Critic (SAC) algorithm uses advanced functions to update the policy and
value network to alleviate some of these problems. However, SAC still has some problems. In order to reduce the error caused by
the overestimation of SAC, we propose a new SAC algorithm called Averaged-SAC. By averaging the previously learned action-
state estimates, it reduces the overestimation problem of soft Q-learning, thereby contributing to a more stable training process
and improving performance. We evaluate the performance of Averaged-SAC through some games in the MuJoCo environment.
The experimental results show that the Averaged-SAC algorithm effectively improves the performance of the SAC algorithm and

the stability of the training process.

1. Introduction

To generate fully autonomous agents which can learn to
automate behaviors by interacting with the experimental
environment via trials and errors is one of the most im-
portant tasks in the current artificial intelligence field. In the
current artificial intelligence field, the long-term challenge is
to create an intelligence system responding to environments
in a timely manner. Such intelligence systems include robots
that can interact with the surrounding environments and
software-based agents that can interact with multimedia
devices. Currently, deep reinforcement learning (DRL)
whose mathematical framework is the experience-driven
autonomous learning is the most important algorithm to
address these challenges [1]. For example, the Google
AlphaGo defeated the world champion in the Go game. To
complete the breakthrough in this field, there are still a lot of
work to do. Among them, ensuring the safety of decision
making is one of the most important challenges. Because the
agent is more inclined to explore unfamiliar states, deep
reinforcement learning will be susceptible to the so-called
security exploration problem, causing the agent to be in an
unsafe state (for example, a mobile robot drove the car into
the ditch). The safe intelligence system should ensure the

safety of the controlled objects and reduce the probability of
dangerous operations. Since 2018, a series of unmanned
vehicle safety accidents have occurred in the United States,
highlighting the importance of safety in automatic control
tasks. However, many current artificial intelligence methods
do not fully control risks. Furthermore, some methods
deliberately add exploratory learning with random nature to
the solution process. The exploratory learning without se-
curity restrictions is likely to bring risks. If the agent directly
applies the reinforcement learning method for “trial and
error” exploration and learning in real-world tasks, the
decision made by the agent may put the system into a
dangerous state. The security of deep reinforcement learning
has attracted more and more attention. Therefore, to im-
prove the safety and address the noncontrol problems in
practical applications, we should find ways to reduce the
propagation error in the neural network. At the same time,
the stability of the DRL algorithm is a big challenge, which
limits the further development of the algorithm. Although
the performance of the computer has been greatly improved,
the stability of DRL cannot be guaranteed. Therefore, how to
improve the security and stability of DRL algorithms for a
large number of artificial intelligence learning is one of the
most challenging problems in DRL today.

mailto:gaojinghit@gmail.com
https://orcid.org/0000-0001-7642-4182
https://orcid.org/0000-0002-9750-5851
https://orcid.org/0000-0002-9209-2189
https://orcid.org/0000-0001-5099-6991
https://orcid.org/0000-0002-7138-430X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6658724

Nowadays, the Deep Q-Network algorithm (DQN)
[2, 3], as the reinforcement learning extension, shows good
results in dealing with some complex high-dimensional
image information tasks. DQN combines the Q-learning of
reinforcement learning with the convolutional neural net-
work (CNN), which learns the control policy directly from
the high-dimensional raw pixels of games. In this way, DQN
can reach human level scores in certain Atari games. After
that, many DQN-based models have been proposed to
enhance the learning ability and stability. Among these
extensions, the Soft Actor-Critic (SAC) algorithm [4] is a
well-known highly optimized version. The Soft Actor-Critic
algorithm is an off-policy Q-learning algorithm based on
maximum entropy. Its main advantages are high sampling
efficiency and robustness by using the stochastic policy. Soft
Actor-Critic has achieved good results in public benchmark
tests and can be directly applied to real robots.

1.1. Motivation. The current SAC algorithm has problems of
insecurity and poor stability during the training process.
Specially, the SAC algorithm is an off-policy Q-learning
algorithm based on maximum entropy, which uses the
experience replay mechanism [5]. Furthermore, it is easy to
overestimate states for SAC by using the max operation to
quickly move the Q-value closer to the possible optimization
target [6-8]. Therefore, the motivation of this paper will
focus on how to improve the security and stability of the
SAC algorithm.

1.2. Challenge. To improve the performance of the SAC
algorithm, we need to meet some challenges in imple-
menting the new algorithm. In particular, the overestima-
tion of the soft Q-value will lead to higher deviations which
are caused by the actions that cannot be sampled in SAC [9].
This deviation causes the algorithm to require more sample
data during the training process and to converge to a bad
situation that is not a local optimum [10]. Therefore, we
discuss the main challenges from the following aspects: (1) to
improve the stability and convergence of the SAC algorithm,
we need to know the reason why the SAC algorithm is not so
stable during the training process; (2) to prove the superi-
ority of our proposed algorithm, we need to conduct ex-
perimental comparisons in different game environments.

1.3. Contribution. We propose an Averaged-SAC algorithm.
Our work is based on the average of the previously known
Q-value estimates [11], using the average soft Q-value to
solve the problem caused by the combination of the
Q-learning and function approximation problem. This
improved algorithm reduces the variance of the target ap-
proximation error and improves the stability of the algo-
rithm training process. After using this algorithm, the
learning ability of the agent is greatly improved, thereby
improving the performance of the model. The contributions
in this paper are listed as follows:

(1) We analyzed the reasons why the SAC algorithm is
sometimes unstable. Through theoretical analysis, we

Complexity

found that the soft Q-value of SAC has an overes-
timation problem, which also causes SAC to con-
verge to a bad situation that is not local optimal.

(2) We propose the Averaged-SAC algorithm. To deal
with the problem caused by overestimation of the
soft Q-value in the SAC algorithm, our work solves
the overestimation phenomenon by the average of
the previously known Q-value estimates. This pro-
posed algorithm reduces the variance of the target
approximation error and improves the stability of
the algorithm training process, which improves the
learning ability of the agent.

This paper is arranged as follows. Section 2 introduces
the preliminary knowledge related to the paper. Section 3
explains some basic knowledge of deep reinforcement
learning and SAC algorithms. Section 4 mainly introduces
the proposed algorithm, and Section 5 describes the ex-
perimental results of some of our continuous tasks in
MuJoCo. Finally, Section 6 summarizes the contribution of
this paper.

2. Preliminaries

As avery important field of machine learning, reinforcement
learning aims to find the best policy for sequential decision
problems through learning. Q-learning can optimally solve
the Markov decision process. However, Q-learning also has
its shortcomings. In the process of learning policy,
Q-learning algorithm [12, 13] includes the step of maxi-
mizing Q-value, which causes it to overestimate the action
value during the learning process. In order to avoid this
overestimation, researchers proposed double Q-learning
and double deep Q-networks later to achieve lower variance
and higher stability [7]. The solution idea of Double-DQN
algorithm (DDQN) is to provide a method to reduce the
chance of overoptimistic estimation. And this method
prevents overfitting.

However, because DDQN uses the previous step of
Q-value for training, it has the same problem as DQN. The
change of DQN makes the training process unstable. This
situation tells us that even if only one step of Q-value is taken
during the training process, DQN will still be unstable. Later,
in order to solve the problems caused by this Q-learning
algorithm, researchers proposed the Averaged-DQN. The
algorithm uses K previously learned Q-values to estimate the
current action value. By using the average Q-value of the first
K steps for training, the variance introduced by Q-learning
can be reduced, and the approximation error [14] can be
reduced, and thus it stabilizes the entire training process.
Double-DQN is an algorithm that uses two sets of deep
neural networks: one for selecting actions and the other for
evaluating actions. DDQN prevents excessive valuation. In
short, DDQN separates selection from evaluation to prevent
overestimation.

The Averaged-DQN (ADQN) is a simple extension of
the DQN algorithm, which uses K previously learned
Q-values to generate new action values. Researchers claim
that ADQN can be easily integrated with other DQN or

Complexity

DDQN. The ADQN uses the previous K learned Q-values to
generate the current Q-value estimate to reduce the variance
caused by the training process.

Compared with DQN, DDQN theoretically reduces
excessive optimism by decomposing the maximum opera-
tion into action selection and action evaluation, thereby
improving performance. Compared with DQN, ADQN can
not only solve the overestimation problem but also reduce
the variance of the approximate error of the target value.
Therefore, the average maximum Q-value of ADQN should
also be less than DQN. In addition, the performance of
ADQN should be better than DQN, which means that the
average score of each episode of ADQN is theoretically
greater than DQN. In addition, compared with DQN and
DDQN, it should have better convergence, and the per-
formance lines of the agent are smoother and more stable.

The SAC algorithm, one of the most popular Actor-
Critic (AC) algorithms [15], also overestimates the soft
Q-value estimation during the training process. And because
SAC only uses the previous step of soft Q-value for calcu-
lation, it has the same problem as the DQN algorithm. That
is, SAC also has the phenomenon of unstable training
process. In order to solve this problem, we innovatively
apply the idea of average Q-value to the calculation of soft
Q-value on Actor-Critic in the SAC model. We propose the
Averaged-SAC algorithm. In order to cope with the prob-
lems caused by overestimation of the soft Q-value in the SAC
algorithm, our work is based on the average of the previously
known Q-value estimates [11] and proposes to solve the
overestimation phenomenon. This solution is the Averaged-
SAC. This improved algorithm reduces the variance of the
target approximation error and improves the stability of the
algorithm training process. After using this algorithm, the
learning ability of the agent is greatly improved, thereby
improving the performance of the model.

3. Background

In this section, we will introduce the relevant background
knowledge of Actor-Critic (AC) and Soft Actor-Critic
(SAC).

Machine learning is developing rapidly, and deep re-
inforcement learning (DRL), especially DRL algorithm for
continuous control, plays an important role [12, 14]. DRL
methods can be divided into model-based DRL methods and
model-free DRL methods. Among them, the model-free
DRL methods include action-value approximation (value-
based) methods and policy gradient (policy-based) methods.
The action-value approximation methods use the estimation
of action-value to update the policy [13]. As for policy
gradient method, Actor-Critic (AC) algorithm is an im-
portant example.

3.1. Actor-Critic. The current research finds that the policy
gradient method is better than the Q-learning method when
solving the optimal policy selection problem in DRL. So, in
recent years, policy gradient (PG) methods have been ap-
plied in many areas. The Actor-Critic method is a

combination of policy-based and value-based method be-
cause it is a PG method and combines with the value es-
timation method. However, it is usually classified as a PG
method [16] in some places.

In the Actor-Critic framework [16], the actor is re-
sponsible for the policy gradient learning, while the critic is
responsible for the policy evaluation to estimate the value
function. It can be seen that, on the one hand, the actor
learns the policy, and the policy update depends on the value
function estimated by the critic; on the other hand, the critic
estimates the value function, and the value function is the
function of the policy learned by the actor. Policy and value
function depend on each other and affect each other, so
iterative optimization is needed during the training process.
This iterative idea of multivariate optimization is actually
reflected in machine learning.

The Actor-Critic model is a better scoring function.
Different from Monte Carlo method, its method of updating
parameters is the Temporal-Difference Learning (TD)
method. The parameters of the Actor-Critic model are
updated immediately after each step of training is com-
pleted, so there is no need to wait until the end of the
episode. The update of 6 which is the parameter of the actor
network is as follows:

A8 = aVy (log m4(s,a))q, (s, a), (1)

where s is the current state, a is the current action, « is policy

learning rate, and w is the parameter of the critic network.

G, (s,a) is the critic, Q-learning function approximation

(estimate action-value) which calculates the score g value for

action a in the current state s; 7y (s, a) is the actor, policy

function which uses this g value to update its policy weight.
The update of w is as follows:

Aw = ﬁ(R (S’a) + YQw (St+1’at+l) - Qw (St’at))vaw (St’ at)’
(2)

where R(s,a) is the current cumulative reward, f is the
policy learning rate, y is the value learning rate, (R(s,a) +y
Gy (St41>9411) — Gy, (54> a,)) is TD-error, and Vg, (s, a,) is
the gradient of the value function.

The Actor-Critic algorithm was improved later, and the
improved algorithm is called “Advantageous Actor-Critic”
(A2C). A2C uses an advantage function instead of the
original reward in the critic network, which can be used as an
indicator to measure the value of selected actions and the
average of all actions. A baseline is added to the Q-value to
judge the feedback positive or negative. The baseline here is
usually represented by the value function of the state, so the
update of the parameter of the critic network w is defined as
shown below:

Aw = ﬁ(R (s,a) + v, (5t+1) at+1) - V(S))quw (St’at)’
(3)

where (R(s,a) + yq,, (St+1> d41)) 18 Q (s, a), s, € S is the state
attimestept, a, € A is the execution action at time step ¢,
V (s) is the average value of state s, and A(s,a) = Q(s,a) -V
(s) is called the advantage function. The advantage function

uses the action-value function to subtract the baseline value
owned by its corresponding state, so that the result of this
calculation becomes the gain brought by the action, thereby
reducing the variance caused by the change of the state
baseline value.

The Proximal Policy Optimization (PPO) algorithm [17]
is currently the mainstream DRL algorithm. It faces both
discrete control and continuous control, and it has achieved
great success in OpenAl. However, PPO is an on-policy
algorithm, that is, PPO is faced with serious sample inef-
ficiency. Because PPO [17, 18] needs to resample enough
samples under the current policy to update each policy, the
loss caused by such an update method is very large.
Therefore, the previous sampled data are completely dis-
carded, and the large number of samples make the algorithm
complexity too high to ensure convergence. This leads to the
need to learn a large number of samples, which is unac-
ceptable for real robot training.

Deep Deterministic Policy Gradient (DDPG) [16] (and
its extension) is an off-policy algorithm, which is more
sample efficient than PPO. DDPG trains a deterministic
policy, that is, only one optimal action is considered at each
state. However, off-policy methods such as DDPG also have
shortcomings. When reinforcement learning learns from
low-dimensional feature vectors, different variables of dif-
ferent observations may have different physical units (such
as speed and position), so their value ranges will be very
different, which may cause the network to fail to learn ef-
fectively and determine the parameters of the top-level
network architecture. DDPG manually scales the function so
that there will be similar value ranges. The method used by
DDPG is batch normalization in deep learning, to normalize
the data of each dimension to be with zero mean and unit
variance. And during operation, it continues to calculate the
floating average to maintain normality. The characteristics of
DDPG result in a large amount of calculation and the
difficulty to stabilize convergence. On the one hand, the
DDPG algorithm is extremely sensitive to the setting of
hyperparameters, and the convergence is difficult to stabi-
lize. In order to make the loss converge to a good level, the
DDPG algorithm often needs to try to adjust the hyper-
parameters many times. On the other hand, although the use
of Replay Buffer solves the problem of sample utilization
efficiency, the policy and Q-value are coupled with each
other, which makes its performance unstable and the final
score obtained by the DDPG algorithm often very low.

Compared with DDPG, SAC [19] uses stochastic policy,
which has certain advantages over deterministic policies.
SAC has achieved very good results in the public bench-
marks and can be directly applied to real robots.

3.2. Soft Actor-Critic. The goal of SAC is to maximize the
reward obtained from the interaction between agent with the
environment. To achieve this goal, SAC uses soft policy
iteration. The process of soft policy iteration is to alternate
policy evaluation and policy improvement within the
framework of maximum entropy. Experimental results show
that, in terms of learning speed and robustness, SAC

Complexity

consistently outperforms other RL algorithms in continuous
action benchmark tests. SAC tries to find a policy to
maximize the maximum entropy goal.

The SAC has several components in the iterative process:
the policy network ¢ which is responsible for receiving the
state of the current environment and calculating the average
value and standard deviation of the state’s action distribu-
tion, the soft Q-network 6 which is used to estimate the value
of the state action pair, the value network y for evaluating
the state value, and the target value network ¥ which is just
the exponential moving average of the value network y. In
the original SAC, only one sample was collected during the
data collection (one interaction with the environment), and
a small batch update was performed during the update. In
the implementation of our algorithm model, we determine
that the first task is to collect the data of the episode until the
episode is terminated. There are two conditions for episode
termination: improper operation or the agent has completed
the predefined number of steps per episode; here we set it to
1000. Then, we choose to update each batch in order to
update the data better. The number of updates is set to be the
same value as the length of the model episode.

Because current versions of SAC do not give a good
solution for reducing the overestimation of the soft Q-value,
we propose an Averaged-SAC to solve the bias problem
caused by the overestimation of the soft Q-value.

4. Averaged Soft Actor-Critic

We first analyzed the causes of soft Q-value in SAC, which
made a good theoretical analysis for our method. Although
SAC uses the maximization operation to quickly move the
Q-value close to the possible optimization goal, it is easy to
overestimate. SAC’s soft Q-value has the problem of over-
estimation which will result in an “excessive” estimated
sampled action. For some actions that are not sampled in the
SAC, these actions will not be selected as the optimal action.
Therefore, it is easy to overestimate the Q-value in SAC. SAC
will tend to choose the current action with the best per-
formance, although this action is overestimated. At the same
time, SAC is based on sampling after all, so there will be
some states in the interactive environment of SAC that are
not sampled. These unsampled states will affect the learning
ability of the agent, resulting in bias. Therefore, in view of the
problems caused by overestimating the soft Q-value of the
SAC algorithm, we have carried out an innovative extension
to the SAC algorithm and proposed the Averaged-SAC
algorithm. This improved algorithm reduces the variance of
the target approximation error, thereby improving the
stability of training and the performance of the agent.

The Averaged-SAC tries to find a policy to maximize the
maximum entropy goal:

T
7 = argmax Y B, o) [V (r (sn,) + 0% (n(15,)]
T =0

(4)

where 7 is the agent’s policy, 7* is the agent’s optimal policy,
T is the total number of steps in the agent’s action time,

Complexity

r: Sx A — R is the reward function of Averaged-SAC,
s, € S is the state at time step f, a, € A is the executed
action at time step t, and y € [0, 1] is the discount rate. Here,
7, is the state action boundary of the trajectory distribution
caused by m. Hyperparameter o balances exploration and
exploitation of reinforcement learning and affects the ran-
domness of optimal policies. Because this hyperparameter
determines the relative importance of the entropy term with
respect to the reward, it is called the temperature parameter.
F (7 (-|s,) is the entropy of the policy 7 in the state s, and its
calculation formula is Z (7 (-|s,)) = —log 7 (:|s,).

Policy evaluation is the first step of the Averaged-SAC’s
soft policy iteration. Policy evaluation needs to calculate the
value of policy 7. To achieve this goal, the Averaged-SAC
defines the soft state-value function as

V(s) = E, . AQ(spa,) — alog(m(ayls,))], (5)

where 7 is the agent’s policy, s, € S is the state at time step
t,ana, € A is the executed action at time step t.
The soft Q-function of Averaged-SAC is defined as
us
T"Q(sp a,) = r(spa,) + VESHM(S[,@) [V (si1)]5 (6)
where p: § x A — S is the distribution of states. Agent can
get the next state according to the current state and action.
The state value function approximates the soft value.
There is no need in principle to include a separate function

approximator for the state value, since it is related to the
Q-function and policy according to equation (5). This
quantity can be estimated from a single action sample from
the current policy without introducing a bias, but in practice,
including a separate function approximator for the soft value
can stabilize training and is convenient to train simulta-
neously with the other networks. The soft value function is
trained to minimize the squared residual error:

e =B o (V60 B - [Qulera) - og mate)]) |
)

where D is the distribution of previously sampled states or a
replay buffer. The gradient of equation (7) can be estimated
with an unbiased estimator:

ﬁﬂv)=V, v, (St)<Vu/ (s:) = Qq(spa,) +1log Ty (atlst))’
(8)

where the actions are sampled according to the current
policy, instead of the replay buffer.

When SAC is applied to the continuous state space, the
neural network with parameter 6 of the SAC algorithm
needs to be updated. The SAC algorithm minimizes the soft
Bellman residual by training the soft Q-function:

2
]Q (0) = E(st,a[) ~ D|:%<Q0 (St’ at) _<r(st’at) + yEsM ~p(spa,) [VW (SH-I)])) :|’ 9)

where D is the replay buffer of past experience, s, € S is the
state at time step t, a, € A is the executed action at time
step t, p: Sx A — S is the distribution of states, ¥ is the
target value network which is just the exponential moving
average of the value network vy, and 0 is the soft Q-network
which is used to estimate the value of the state action pair.

Averaged-SAC uses the Q-value of the target network and
the Monte Carlo estimation to estimate the residual.

The Averaged-SAC algorithm selects the K previously
learned soft Q-values before the current step in the process
of interaction between the agent and the environment to
calculate the average soft Q-value. Therefore, the average soft
Q-value calculation formula is as follows:

K 2
Jo(6) = [E(st,ut,sm)N_@MQQ(M)—<r<svat>+y}<kszm)))] (10)
=1

Through the comparison between Averaged-SAC and
SAC in the InvertedDoublePendulum game in Figure 1, it
can be seen that the proposed Averaged-SAC algorithm has
a significant effect on reducing the overestimation of soft
Q-value. Therefore, it is proved that the proposed algorithm
can greatly reduce the overestimation problem.

The principle of the policy improvement step is to update
the parameters as far as possible in the direction of maxi-
mizing the reward that the agent can obtain. The Averaged-
SAC algorithm updates the temperature to the Boltzmann
policy, where the temperature is « and the Q-function is

used as energy. Therefore, the Averaged-SAC algorithm
updates the policy by minimizing the Kullback-Leibler (KL)
divergence between it and the Boltzmann policy. The policy
improvement formula is as follows:

exp (1/aQ"old (s, -))
(7‘[('|St)H Z”Old(st))’

Tew = arg min Dy

me]]

n

(11)

where the partition function Z™u (s,) is difficult to handle
but not helpful in improving the new policy, so it can be

400 T T T

Complexity

300

200

Overestimated value

100

0 L L L

0.4

—— Averaged-SAC,K=10

— SAC

Million steps

FIGURE 1: Results of the overestimation of Averaged-SAC and SAC.

ignored. The KL divergence of the above formula needs to be
minimized to learn the agent’s policy network parameters.
The minimized KL divergence means the expected value of
the reverse maximization state-action value function, so that
a more accurate regular term of the entropy of the action
distribution can be captured.

For the policy 7, (a]s,), the first task of Averaged-SAC s
to use neural network ¢ to parameterize it. In the process of
parameterized training for continuous states and continuous
actions, the SAC neural network ¢ will output two values:
one is the mean and the other is the covariance. These two
values are used to define the Gaussian policy distribution. In
order to minimize the expected KL divergence formula, the
SAC algorithm calls the temperature parameter a and
multiplies the temperature parameter « by the expected KL
divergence while ignoring the distribution function. After
minimizing the expected KL divergence, the gradient is not
affected any longer, so the purpose of learning and updating
policy parameters is achieved:

]71 (¢) = Esi ~ D[Eu, ~ Ty [06 log(”¢ (atlst)) - Q0 (St’ at)]]’
(12)

where D is the replay buffer of past experience, s, € S is the
state at time step t, a, € A is the executed action at time
step t, 0 is the soft Q-network which is used to estimate the
value of the state action pair, and ¢ is the policy network.

As we all know, the backpropagation of neural networks
is an important way to update parameters. Because SAC has
taken an expectation over the distribution of policy output
actions, it leads to error transmitted wrongly in back-
propagation. The SAC algorithm uses a reparameterization
technique [20] to solve the problem. SAC combines its
corresponding neural network output with the input noise
vector sampled from a spherical Gaussian to establish that
the backpropagation error is correctly transmitted. In this
way, the output of the policy network can be used to form a

random action distribution without directly using the output
of the policy network. The following formula indicates that
SAC reparameterizes the policy by the above reparamete-
rization technique:

ay :f¢(et§5t)’ (13)

where €, ~ N (0, I). After this change, the policy objective
will become

I (¢) = E pg ~N[‘X 10g(”¢(f¢(et§5t)|5t)) - Qe(st’fqﬁ(et? St))]’
(14)

where the policy f, is now implicitly defined according to
the formula of f,.

However, the ultimate goal of the temperature param-
eters they obtain is relevant. Learning the temperature pa-
rameters of SAC is also a relatively important work of the
current SAC algorithm. Haarnoja et al. [19] proposed a new
idea to learn temperature parameters. The temperature
parameters here cannot be set as hyperparameters because
they are constantly changing. Since the details are not strictly
related to the proposed Averaged-SAC, we will not repeat
them here. The specific formula is as follows:

J(a) = E, ., [~a(log m, (als,) + H)], (15)

where H is a constant vector equal to the hyperparameter,
representing the entropy of the target.

In Algorithm 1, the Averaged-SAC algorithm, a variant
of SAG, is introduced.

We retain K previously learned parameters of the value
network during the training process. From equations (9) and
(10), we can see the difference between the traditional SAC
algorithm and the Averaged-SAC in the soft Q-value net-
work parameter calculation. In the process of training the
SAC algorithm, we use K previously learned state-value
estimates to generate an average state value, thereby

Complexity

(1) for each iteration do

(3) a; ~ 7'[¢ (aplst)
(4) sp1 ~ p(splspar)

(6) end for
(7) for each gradient step do

®) y—y -4V, Jy (¥

(1) ye—1y+ (1-1)y
(12) end for
(13) end for

Initialize: initialize parameter vectors v, ¥, 0, ¢; initialize average size K

(2) for each environment step do

(5) D —DU{(spa,t (s, a.), s, + 1)}

(9) 66, ~ AV o (B) for i€ {1,2)

ALGORITHM 1: Averaged Soft Actor-Critic (Averaged-SAC).

reducing the overestimation error caused by a single state-
value estimate. This operation reduces the variance gener-
ated during the propagation of the soft Q-network, so that
the convergence of the SAC algorithm becomes stable.

In Algorithm 1, we can see how the parameters of each
neural network are updated:

ﬁw]V (v) = ViV, (St)(Vv/ (S:) —Qy(S,a,) +log Ty (atlst))’
(16)
where the actions are sampled according to the current

policy, instead of the replay buffer (a feature of this
algorithm).

K 2
]Q (6) = [E(st,a,,sz,,l) ~Dl§<Q0 (St’at) - <r(st’at) + Y% kz VW (St+1)>> }’ (17)
=1

where D is the replay buffer of past experience,
p: Sx A — S is the distribution of states, ¥ is the target
value network which is just the exponential moving average
of the value network v, and 6 is the soft Q-network which is
used to estimate the value of the state action pair.

I (¢) = E pe -~ N[o‘ 10g(”¢(f¢ (€ st)lst)) - Q9(5t>f¢(et§5t))]>
(18)

where the policy f is now implicitly defined according to
the formula of f.

When running the SAC algorithm, we need to train
multiple episodes to let the agent learn more knowledge. In
each episode of training, SAC algorithm will update the
parameters of the networks after each operation or when the
terminal state is reached.

The soft Q-value update calculation performed by Av-
eraged-SAC is shown in equation (8). After comparison, it
can be concluded that the biggest difference between SAC
and Averaged-SAC is that Averaged-SAC uses the average
state function to update the soft Q-network. Also, because
the SAC algorithm belongs to the Actor-Critic framework, it
is a combination of value-based methods and policy-based
methods. So, the Averaged-SAC algorithm relies on actor-
learner and cumulative updates to improve training stability.
At the same time, the update of the policy network pa-
rameters and the soft Q-value network parameters are

separate, and the CNN network or fully connected network
is used by Averaged-SAC as the network architecture. The
Actor network finally outputs the policy 7, (a,ls;) through
the softmax network layer, and the Critic network linearly
outputs the state value V' (a,|s,) through the fully connected
layer, where all nonoutput layers share their parameters.

Compared with the traditional SAC, Averaged-SAC uses
the K state values learned by the value network to reduce the
overestimation of the soft Q-value, thereby reducing the
variance in the parameter transfer process. Therefore, Av-
eraged-SAC can stabilize the training process and improve
the performance of the agent.

5. Experiment

This paper uses MuJoCo environment in OpenAl Gym as
the experimental environment. Research by Mnih et al. [2]
pointed out that in most MuJoCo games, SAC is significantly
better than other DRL algorithms. In experiment, we chose 6
MuJoCo games to test the performance of SAC and Aver-
aged-SAC. Averaged-SAC uses K previously learned state
value estimates to generate the soft Q-value in SAC. Some
used parameters are set as follows: 7=>5e -3, Ir=3e -4, and
a=0.2. The discount factor y of all the above algorithms is
0.99. The network architecture used in SAC and Averaged-
SAC is the same as that in [19], and the MuJoCo experiments
use the same settings as those in [19]. There are three

candidate K values in Averaged-SAC: 5, 10, or 20. Finally, we
analyzed the stability and performance of the proposed
Averaged-SAC algorithm in detail.

The experiment aims to solve the following problems:

(1) Compared with SAC, can the Averaged-SAC im-
prove the performance of learning policies?

(2) How does the number K of average soft Q-values
affect the performance of the Averaged-SAC?

5.1. Experimental Environment and Setup. The purpose of
our experimental evaluation is to understand how the
performance and stability of the learning policy of our
method compares with the previous SAC algorithm. We
compared our method with existing technologies to solve a
series of challenging continuous control tasks and the rllab
realization of humanoid robot tasks in the OpenAl gym
benchmark suite. Although a variety of different algorithms
can be used to solve simpler tasks [21], it is sometimes
difficult to achieve stable performance in some tasks using
SAC algorithms, such as 21-dimensional Humanoid. Al-
gorithm stability also plays a big role in performance: easier
tasks make it more practical to adjust hyperparameters for
better results. And for algorithms that are more sensitive on
the strictest benchmarks [9], the narrow area of effective
hyperparameters becomes very small, resulting in poor
performance.

We conducted experiments in a set of MuJoCo envi-
ronments. We aim to show how the average soft Q-value
scheme affects the performance of SAC and how different K
values affect the performance of Averaged-SAC. In order to
make our experimental comparison more reasonable, we
must make the experimental analysis meaningful and the
results reproducible. For SAC and Averaged-SAC, we used
the same SAC code base implemented on PyTorch for SAC
implementation [8].

5.2. Experimental Results of Averaged-SAC and SAC. We
tested the performance of Averaged-SAC in the game tasks
in the continuous action space. We chose 6 MuJoCo games,
including Walker2D, Ant, Hopper, Humanoid, Inver-
tedDoublePendulum, and HalfCheetah. We use these game
environments to compare the performance of Averaged-
SAC and SAC during training.

The result is shown in Figure 2. It shows that the Av-
eraged-SAC of all 6 games of MuJoCo is better than SAC.
For the MuJoCo experiment, each training period (epoch)
includes 1000 steps. First, we focus our analysis on the
performance of Averaged-SAC (red) compared to the SAC
benchmark (blue). For all game environments of Averaged-
SAC, y=0.99. The hyperparameter y is obtained in the SAC.

The results show that Averaged-SAC consistently out-
performs the SAC benchmark in all environments and all
training stages. For example, in Ant-v2, the average per-
formance of Averaged-SAC is 1.5 times that of the bench-
mark SAC, and the average reward value of Averaged-SAC
reaches 2400 score which is 1.8 times faster than SAC; in

Complexity

Hopper-v2, the average reward value of Averaged-SAC
reaches 2600 score which is 1.7 times faster than SAC, and
the average performance of Averaged-SAC is 1.4 times that
of SAC; in Walker2d-v2, the average reward value of Av-
eraged-SAC reaches 5000 score which is 2 times faster than
SAC, and the average performance of Averaged-SAC is 2.2
times that of SAC; in HalfCheetah-v2, the average reward
value of Averaged-SAC reaches 10000 score which is 1.9
times faster than SAC, and the average performance is 1.7
times that of SAC; in Humanoid-v2, the average reward
value of Averaged-SAC is 1.6 times faster than SAC to reach
4300 score, and the average performance of Averaged-SAC
is 1.5 times that of SAC; in InvertedDoublePendulum-v2, the
average reward value of Averaged-SAC reaches 9000 score
which is 1.2 times faster than SAC, and the average per-
formance of Averaged-SAC is 1.3 times that of SAC. In
addition, Averaged-SAC is more stable than SAC during
training.

5.3. Experimental Results of Averaged-SAC’s Loss and SAC’s
Loss. Figure 3 shows the variation of the loss value of the
critic network part in these 6 games. It can be seen from the
figure that the Averaged-SAC loss values of all the 6 games of
MuJoCo are all lower than those of the SAC during the
training process, which indicates that the proposed Aver-
aged-SAC model exactly reduces the error caused by
overestimation and greatly helps the soft Q-learning.

5.4. Experimental Results of Averaged-SAC with Different K
Values. Figure 4 shows the performance of Averaged-SAC
in 6 different MuJoCo game environments under different K
values. It can be seen that when K value is 10, the corre-
sponding Averaged-SAC algorithm is better than other al-
gorithms with different K values. As a result, we can draw the
following conclusions: increasing K value within a certain
range will result in better performance and stability of
Averaged-SAG; if the increased K value range exceeds a
certain limit, then the performance of Averaged-SAC and
stability will decline.

5.5. Experimental Results of Averaged-SAC’s Loss with Dif-
ferent K Values. Figure 5 shows the variation of the loss
value of the critic network part of these 6 games under
different K values. From the figure, we can see the changes in
the Averaged-SAC loss values of all 6 MuJoCo games during
the training process. When the K value is 10, the corre-
sponding Averaged-SAC loss value is lower than that of
other algorithms with different K values. As a result, we can
draw the following conclusion: increasing K value within a
certain range will result in a large reduction in the propa-
gation error of Averaged-SAC, further improving the sta-
bility of the algorithm.

In addition, in order to compare the performance of
Averaged-SAC and SAC more intuitively, we use a table to
list the average training scores of them. The results are
summarized in Table 1. It can be seen that the overall
performance of Averaged-SAC is better than that of SAC. In

Complexity

3000

2000

1000

Average score per episode

_1000 L 1 1 1 1 1 1]
0 3000 6000
Training epoch
—— Averaged-SAC, K =10
— SAC
(a)
4800 T T T T T T

(o5
3
(=3
(=}

—_
N
(=}
(=}

Average score per episode

0 3000
Training epoch

6000

SAC
—— Averaged-SAC, K =10

(c)

Average score per episode

Average score per episode

15000

10000

5000

6000

'S
@
S
S

W
(=}
(=}
[=}

1500

0 2000

FicUre 2: Continued.

0 400
Training epoch

800

Averaged-SAC, K = 10
— SAC

(®)

4000
Training epoch

6000

— SAC
—— Averaged-SAC, K =10

(d)

10

Average score per episode

Complexity

6000 - 1
8000
L
K
4000 2
2
o -
g
o
4
3
3
2000 % 4000
g
<
0
~1000 L L L L L L 0 L L L L
0 2000 4000 6000 0 1000 2000
Training epoch Training epoch
—— Averaged-SAC, K =10 —— Averaged-SAC,K =10
— SAC — SAC
(e) 6]

FIGURE 2: Results of Averaged-SAC and SAC in 6 MuJoCo games. (a) Ant-v2. (b) HalfCheetah-v2. (c) Hopper-v2. (d) Humanoid-v2.
(e) Walker2D-v2. (f) InvertedDoublePendulum-v2.

Critic loss

2000 T T T T T T T T
g 100 + g
E
1000 + | 3
k=
L _ © 50t .
0 . n " 0 . . , .
0 3.0 6.0 0 0.5 1.0
Million steps Million steps
—— Averaged-SAC,K=10 — SAC
— SAC —— Averaged-SAC, K =10
(a) (b)

FiGgure 3: Continued.

Complexity

5000 T T T T
» 3000 L
<
-2
£
© L
1000 +
0 T T
0 2.5 5.0
Million steps
—— SAC
—— Averaged-SAC,K=10
(©)
6000 T T T T T

4000

Critic loss

2000

Million steps

—— Averaged-SAC, K =10
— SAC

(e)

11

2000 T T T

1500 R

1000 + 4

Critic loss

500 4

O 1 1 1
0 2 4 6 8

Million steps

— SAC
—— Averaged-SAC, K =10
(d)
400 T T T T

200

Critic loss

0 0.5 1.0
Million steps

—— Averaged-SAC, K =10
— SAC

)

FIGURE 3: Results of the critic loss of Averaged-SAC and SAC in 6 MuJoCo games. (a) Ant-v2. (b) HalfCheetah-v2. (c) Hopper-v2.
(d) Humanoid-v2. (e) Walker2D-v2. (f) InvertedDoublePendulum-v2.

addition, we concluded that as the value of K increases a
little, the average training score of Averaged-SAC will in-
crease; if the increased K value exceeds a certain limit, the
average score of Averaged-SAC will show a decreasing trend
in certain game environments. Since Averaged-SAC needs to
calculate the average value, it needs more training time. But
considering its performance improvement, the cost is
acceptable.

In summary, after 6 comparative experiments in the
MuJoCo environment, we confirm that Averaged-SAC can
indeed achieve better performance than SAC in MuJoCo
games. In addition, increasing the value of K in Averaged-
SAC appropriately will result in better performance and
stability with acceptable increased training time costs.
However, in Averaged-SAC, an appropriate value of K
should be selected according to computing resources

12

3000

2000

1000

Average score per episode

_1000 L 1 1 1 1 1 1 1]
0 3000 6000
Training epoch
—— Averaged-SAC, K=10 —— Averaged-SAC, K =20
—— Averaged-SAC,K=1 —— Averaged-SAC,K=5
(@
4800 T T T T T T

(o5
3
(=3
(=}

—_
N
(=}
(=}

Average score per episode

0 3000
Training epoch

6000

—— Averaged-SAC, K =20 — Averaged-SAC, K =10
—— Averaged-SAC,K=1 —— Averaged-SAC,K=5

(c)

Average score per episode

Average score per episode

15000

10000

5000

6000

'S
@
S
S

W
(=1
(=1
(=]

1500

Complexity

0 400 800
Training epoch

—— Averaged-SAC,K=5 —— Averaged-SAC,K=1

—— Averaged-SAC, K=10 —— Averaged-SAC, K =20

(®)

0 L L L L
0 2000 4000 6000 8000
Training epoch
—— Averaged-SAC,K=1 —— Averaged-SAC, K =20
—— Averaged-SAC,K=5 —— Averaged-SAC,K=10

FiGUure 4: Continued.

(d)

Complexity

Average score per episode

6000 - 1
8000 |
L
2
4000 2
2l i
g
o
2
3
2000 % 4000 |
g
<
ol
~1000 ' ' ' ' ' ' 0 ' ' ' '
0 2000 4000 6000 0 1000 2000
Training epoch Training epoch
—— Averaged-SAC, K= 10 —— Averaged-SAC, K =5 —— Averaged-SAC, K =10 — Averaged-SAC, K= 1
—— Averaged-SAC, K =1 Averaged-SAC, K = 20 Averaged-SAC, K =20 —— Averaged-SAC,K=5
(e) ()

13

FIGURE 4: Results of the Averaged-SAC with different K values. (a) Ant-v2. (b) HalfCheetah-v2. (¢) Hopper-v2. (d) Humanoid-v2.

(e) Wal

Critic loss

ker2D-v2. (f) InvertedDoublePendulum-v2.

2000 T T T T T T T T
g 100 J
2
1000 { =
k=
i O 50t i
0 —— I L 0 L 1 L L
0 3.0 6.0 0 0.5 1.0
Million steps Million steps
—— Averaged-SAC, K=10 —— Averaged-SAC, K=5 —— Averaged-SAC,K=5 —— Averaged-SAC,K=1
—— Averaged-SAC,K=1 Averaged-SAC, K =20 Averaged-SAC, K =20 —— Averaged-SAC, K =10
(a) (b)

FiGgure 5: Continued.

Complexity

—— Averaged-SAC,K=5

Million steps

Averaged-SAC,K=1 —— Averaged-SAC, K =10
Averaged-SAC, K =20

(d)

14
5000 T T T T 2000
1500 -
,» 3000 - 1 .
< <
9 .9 1000 -
2 2
S L |l ©
500 |
1000 -] \
0 : ol
0 2.5 5.0 0
Million steps
—— Averaged-SAC,K=5 Averaged-SAC, K =20 —_—
—— Averaged-SAC, K=1 —— Averaged-SAC, K =10
(©)
6000 T T T T T 400
4000
kel kel
b= 2 200
= k=
©) ©)

2000

Million steps

Averaged-SAC, K =20 — Averaged-SAC, K =1
—— Averaged-SAC, K=10 — Averaged-SAC,K=5

(e)

—— Averaged-SAC,K=10
—— Averaged-SAC,K=5 —— Averaged-SAC,K=1

0.5 1.0
Million steps

Averaged-SAC, K =20

)

FIGURE 5: Results of the critic loss of Averaged-SAC with different K values. Analysis of the experimental performance of Averaged-SAC and
SAC. (a) Ant-v2. (b) HalfCheetah-v2. (c) Hopper-v2. (d) Humanoid-v2. (e) Walker2D-v2. (f) InvertedDoublePendulum-v2.

TaBLE 1: The training scores of Averaged-SAC and SAC in 6 MuJoCo games.

Environment SAC Averaged-SAC, K=10
Ant-v2 2235.1 £260.5 2447.2 +180.3
Walker2D-v2 27254 +512.5 3027.6 £632.2
Hopper-v2 2322.7 £425.6 2468.4 +354.3
Humanoid-v2 3341.1 £547.9 3611.1 £637.9
HalfCheetah-v2 8813.2+382.6 9613.8 +252.4
InvertedDoublePendulum-v2 8503.2+122.6 9023.2+112.3

Complexity

because a larger value of K will require more training time
costs.

6. Conclusion

This paper proposes an Averaged-SAC algorithm, which
uses K previously learned state values to calculate the soft
Q-value in the Averaged-SAC algorithm. The purpose is to
effectively reduce the error caused by overestimation of soft
Q-value in the calculation process. We have proved that
Averaged-SAC can indeed stabilize training and improve
performance in several games in MuJoCo’s continuous
action space. In addition, we also conducted some experi-
ments to study the influence of K in the Averaged-SAC
algorithm. Experimental results show that within a certain
range, increasing the average number of previously learned
state values will lead to better performance; if the increased
average number of previously learned state values exceeds a
range, the learning performance will show a decreasing
trend; by repeatedly taking experiments with different K
values, we find that when the K value is 10, the learning
performance can reach the best. Averaged-SAC is a simple
extension that can be easily integrated with SAC.

In future work, we plan to test Averaged-SAC on other
oft-policy DRL algorithms and other benchmarks (such as
Atari games) to see if the significant performance im-
provement observed on MuJoCo can be extended to other
algorithms and environments. In addition, investigations on
the selection of K will be conducted. This means that we can
dynamically understand how many previously learned soft
Q-values should be used for averaging to achieve the best
performance. A simple suggestion might be to associate the
number of K with the state TD-error. Another method is to
use neural networks to make K a dynamically learnable
parameter. Finally, incorporating averaging techniques into
policy gradient-based methods (such as PPO and TRPO
methods) can further improve the performance of these
algorithms.

Data Availability

We perform experiments on six MuJoCo games. The
MuJoCo games used are commonly used public environ-
ments, which are linked below. MuJoCo: http://www.
mujoco.org.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported in part by the National Natural
Science Foundation of China under grant nos. 61672123,
61602083, and 62002044, the Fundamental Research Funds
for the Central Universities under grant no. DUT20LAB136,
and the China Scholarship Council.

15

References

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike
adaptive elements that can solve difficult learning control
problems,” Institute of Electrical and Electronics Engineers
Transactions on Systems, Man, and Cybernetics, vol. SMC-13,
no. 5, pp. 834-846, 1983.

[2] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Playing atari with
deep reinforcement learning,” 2013, https://arxiv.org/abs/
1312.5602.

[3] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, 2015.

[4] T. Haarnoja, A. Zhou, P. Abbeel et al., “Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a
stochastic actor,” 2018, https://arxiv.org/abs/1801.01290.

[5] H. V. Hasselt, “Double Q-learning,” in Proceedings of the
Advances in Neural Information Processing Systems (NIPS),
pp- 2613-2621, Vancouver, CA, USA, December 2010.

[6] S. Levine and V. Koltun, “Guided policy search,” in Pro-
ceedings of the International conference on machine learning
(ICML), pp. 1-9, Atlanta, GA, USA, June 2013.

[7] P.Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” 2017,
https://arxiv.org/abs/1709.06560.

[8] B. Mazoure, T. Doan, A. Durand, R. D. Hjelm, and J. Pineau,
“Leveraging exploration in off-policy algorithms via nor-
malizing flows,” 2019, https://arxiv.org/abs/1905.06893.

[9] W. Dabney, Z. Kurth-Nelson, N. Uchida et al., “A distribu-
tional code for value in dopamine-based reinforcement
learning,” Nature, vol. 2020, p. 5, 2020.

[10] J. Duan, S. E. Li, Y. Guan, Q. Sun, and B. Cheng, “Hierarchical
reinforcement learning for self-driving decisionmaking
without reliance on labeled driving data,” IET Intelligent
Transport Systems, vol. 14, 2020.

[11] O. Anschel, N. Baram, and N. Shimkin, “Averaged-DQN:
variance reduction and stabilization for deep reinforcement
learning,” in Proceedings of the International Conference on
Machine Learning, pp. 176-185, Sydney, Australia, August
2017.

[12] N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and
Y. Tassa, “Learning continuous control policies by stochastic
value gradients,” in Proceedings of the Advances in Neural
Information Processing Systems (NIPS), pp. 2944-2952,
Montreal, CA, USA, December 2015.

[13] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end
training of deep visuomotor policies,” Journal of Machine
Learning Research, vol. 17, no. 39, pp. 1-40, 2016.

[14] D. Kingma and J. A. Ba, “A method for stochastic optimi-
zation,” in Proceedings of the International Conference for
Learning Presentations (ICLR), San Diego, CA, USA, May
2015.

[15] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in
Proceedings of the Advances in Neural Information Processing
Systems, pp. 1008-1014, Denver, CO, USA, June 2000.

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. Riedmiller, “Deterministic policy gradient algorithms,” in
Proceedings of the International Conference on Machine
Learning, pp. 387-395, Beijing, China, June 2014.

[17] J. Schulman, S. Levine, P. Abbeel, M. L. Jordan, and P. Moritz,
“Trust region policy optimization,” in Proceedings of the In
International Conference on Machine Learning (ICML),
pp. 1889-1897, Lille, France, July 2015.

http://www.mujoco.org
http://www.mujoco.org
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1905.06893

16

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2017,
https://arxiv.org/abs/1707.06347.

[19] P. Thomas, “Bias in natural actor-critic algorithms,” in Pro-
ceedings of the International Conference on Machine Learning
(ICML), pp. 441-448, Beijing, China, June 2014.

[20] J. Peters and S. Schaal, “Reinforcement learning of motor
skills with policy gradients,” Neural Networks, vol. 21, no. 4,
pp. 682-697, 2008.

[21] T. Haarnoja, A. Zhou, K. Hartikainen et al., “Soft actor-critic
algorithms and applications,” 2018, https://arxiv.org/abs/
1812.05905.

Complexity

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905

