
Research Article
Use of BP Neural Networks to Determine China’s Regional CO2

Emission Quota

Yawei Qi , Wenxiang Peng , Ran Yan , and Guangping Rao

School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330032, China

Correspondence should be addressed to Yawei Qi; qiyawei@jxufe.edu.cn

Received 26 November 2020; Revised 4 December 2020; Accepted 14 December 2020; Published 6 January 2021

Academic Editor: Abd E.I.-Baset Hassanien

Copyright © 2021 Yawei Qi et al. /is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

China declared a long-term commitment at the United Nations General Assembly (UNGA) in 2020 to reduce CO2 emissions./is
announcement has been described by Reuters as “the most important climate change commitment in years.” /e allocation of
China’s provincial CO2 emission quotas (hereafter referred to as quotas) is crucial for building a unified national carbon market,
which is an important policy tool necessary to achieve carbon emissions reduction. In the present research, we used historical
quota data of China’s carbon emission trading policy pilot areas from 2014 to 2017 to identify alternative features of corporate CO2
emissions and build a backpropagation neural network model (BP) to train the benchmark model. Later, we used the model to
calculate the quotas for other regions, provided they implement the carbon emission trading policy. Finally, we added up the
quotas to obtain the total national quota. Additionally, considering the perspective of carbon emission terminal, a new char-
acteristic system of quota allocation was proposed in order to retrain BP including the following three aspects: enterprise
production, household consumption, and regional environment. /e results of the benchmark model and the new models were
compared. /is feature system not only builds a reasonable quota-related indicator framework but also perfectly matches China’s
existing “bottom-up” total control quota approach. Compared with the previous literature, the present report proposes a quota
allocation feature system closer to China’s policy and trains BP to obtain reasonable feature weights. /e model is very important
for the establishment of a unified national carbon emission trading market and the determination of regional quotas in China.

1. Introduction

Because of the 2020 COVID-19 epidemic, human beings have
become more aware of their relationship with nature and of
the importance of sustaining a harmonious coexistence of
man and nature. In a time of significant crises, including the
COVID-19 epidemic and climate change, the international
community agrees that only through the development and
implementation of green and low-carbon technologies, so-
ciety can achieve high-quality economic recovery [1–3]. On
Sept. 22, during the General Debate of the 75th Session of the
UNGA, Chinese President Xi Jinping declared that China
aims to reach CO2 emissions peak before 2030 and achieve
carbon neutrality before 2060. According to this, China plans
to restore its economy by promoting low-carbon technologies
and lifestyle. Reducing CO2 emissions has become an im-
portant goal of China’s 14th Five-Year Plan.

During the “13th Five-Year Plan” period, the Chinese
government learned from the successful experience of the
European Union, Japan, and other economies in reducing
CO2 emissions and began to explore the use of market-based
methods: CO2 emission trading systems [4, 5]. From 2014 to
2019, the central government implemented a pilot CO2
emission trading policy in 7 provinces and cities, and each
regional government formulated relevant trading standards
and rules. /e government in the pilot regions implemented
the “allocation + trading” quota management rules for
emission-control enterprises, that is, the emission-control
enterprises received free quotas issued by the government at
the beginning of the performance period. /ese quotas are
determined after an enterprise’s self-inspection and CO2
emissions report is issued and a third-party verification is
performed. If an enterprise’s CO2 emission is exceeded/
remained during the period, it can be bought/sold in the
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carbon trading market. After six years, China’s pilot carbon
market has increased and has become the world’s second
largest carbon market in terms of quota trading volume.
Preliminary statistics have shown that a total of 2,837
emission-control agencies, 1082 nonemission-control
agencies, and 11,169 individuals have participated in the
pilot market. /e cumulative transaction volume of the 7
pilot market quotas has reached 406 million tons, and the
cumulative transaction volume is about 9.28 billion yuan. By
the end of 2019, China’s carbon intensity was reduced by
about 48.1% as compared with data from 2005. In addition,
nonfossil energy accounted for 15.3% of the primary energy
consumption, which means that China has achieved its 2020
emission reduction target ahead of schedule. /us, China is
currently applying market mechanisms to control and re-
duce greenhouse gas emissions and to promote the green
and low-carbon transformation of economic development.
Moreover, the implementation of the CO2 emissions trading
market represents not only an important institutional in-
novation for China but also an important policy tool to
implement international agreements for emissions reduc-
tion. Given the significant emissions reduction results due to
the implementation of the CO2 emission trading market
policies in the pilot regions, the Chinese government has
initiated the creation of a unified national CO2 emission
trading market to help all regions in the country to reduce
carbon emissions. It is expected that with these new rules,
the CO2 emission peak target by 2030 will be achieved as
soon as possible. /erefore, the design and implementation
of a unified national CO2 emission market is an issue that
needs to be studied urgently. /e foundation for a proper
design and implementation of a CO2 emission trading
market program to achieve the intended emission reduc-
tions resides in the correct determination of the national
quota and quotas for each region (province and city).

After finding alternative features of corporate carbon
emissions, we used quota data on China’s carbon emission
trading policy pilot areas from 2014 to 2017 and the BP
model to calculate the quotas of other regions in the sample
interval, provided that such regions implemented the carbon
emissions trading policy. We obtained the national total
quota. With respect to carbon emission terminal, we divided
the quota allocation system into three aspects: enterprise
production, household consumption, and regional envi-
ronment and then retrained the BP to obtain new results
which were compared to those of the benchmark model. We
found out that (1) from 2014 to 2016, China’s total quota
displayed a yearly increase and a sudden decrease in 2017.
During the initial stage of the national CO2 emission trading
market program, the national quota is expected to maintain
a relatively high level. Later, during the following 3 to 4 years,
through adjustment and adaptation, quotas in each region
are expected to show a downward trend and increase in the
change rate. /is forces enterprises to either participate in
the CO2 emission trading market or improve their tech-
nology to reduce emissions. (2) Considering the feature
system built by adding household consumption and regional
environment, the training model displays a smaller loss rate,
and the test results (other regional quotas) describe the

actual situation in a more accurate way./us, when building
a unified national CO2 emission trading market and de-
termining quotas for various regions in addition to enter-
prise production, it is more reasonable to consider a feature
system that takes into account household consumption and
regional environment. At the same time, this feature system
can be used in combination with China’s “bottom-up” total
control and postadjustment method. It not only allows
regional quota decision makers to predict CO2 emissions in
advance through the existing data in the feature system and
the trained model before obtaining the final real summary of
the CO2 emissions but also allows enterprises considering
CO2 price when making investment decisions and trying to
make profits in the market.

2. Literature Review

Previous research has mainly studied the following two
aspects: (a) initial distribution of quotas for CO2 emissions
according to different principles and methods and (b) the
allocation efficiency according to the initial allocation of
carbon emission quotas.

/e publications in the first area reported the study of
distribution subjects and distribution methods. CO2 emis-
sion quota allocation can be divided according to the two
following perspectives: region and industry. Region includes
the initial quota allocation among countries and the initial
quota allocation among different provinces within the same
country. In this context, the earliest research studied CO2
emission quota allocation among countries. In 1992, the
United Nations Conference on Environment and Devel-
opment established “common but differentiated responsi-
bilities” as the principle of international environmental
cooperation. Later, in 1998, Rose et al. introduced the
principle of CO2 emission rights allocation, which should
include equity and efficiency. However, what kind of allo-
cation method involves “equity” and how to balance the
importance of “equity” and “efficiency” are controversial
topics [6]. Some scholars in developed countries believe that
allocating CO2 emission rights based on population size is in
line with the principle of equity [7]. However, other experts
in developing countries have proposed that “accumulated
emissions per capita” is more related to equity. According to
this concept, the allowed CO2 emissions per capita in de-
veloping countries during the development stage should be
higher than those in developed countries [8, 9]. Later, more
researchers used different features and methods to quanti-
tatively analyze the initial quota [10–12]. Based on pop-
ulation, GDP, and CO2 emission data for 132 countries,
Wang et al. proposed the Gini coefficient optimization
model that optimizes the historical CO2 emissions quota for
various countries and is able to project future quotas [13].

Chinese scholars have focused on CO2 quota allocation
among provinces and industries in China [14–19]. Song et al.
considered the comprehensive distribution principle of
three indicators: hereditary system, egalitarianism, and
payment, to create the provincial environmental fixed cost
allocation optimization model (FCAM), which will be able
to determine the allocation of provincial CO2 emission
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rights for 2020, with a more balanced equity and efficiency
[20]. From the perspective of equity and efficiency, Yu and
Wu used a master-slave hierarchical interactive iterative
algorithm based on satisfaction to build a two-level planning
model (the upper-level planning model based on equity and
the lower-level planning model based on efficiency) to
optimize the allocation of CO2 emission rights between
provinces [21]. Qian et al. used Chinese enterprise carbon
patent data, and from a consumption and production
perspective created the stochastic frontier model to measure
regional CO2 emission efficiency. Later, they used the es-
timated efficiency value to numerically simulate the regional
allocation of CO2 emission rights [22]. Wu et al. proposed a
coupling model of China’s multiregional CGE and CO2
trade (CGE-3MS). /e model showed the decision-making
and optimization process of trading CO2 units, and they
analyzed the impact of the carbon market on the economy
and emission-control industries in China under different
initial quotas [23].

Compared with the first piece of literature, the second
one focused on whether the existing allocation of quotas
between regions and industries is reasonable and effective. In
general, allocation efficiency is used to measure whether the
allocation is reasonable. Some Chinese scholars used the
original DEA and the zero-sum DEA models to measure
quota allocation for Chinese provinces. /ey found out that
the results of the zero-sum DEA model were better than
those obtained with the original DEA model [24]. In ad-
dition, other scholars revised the original DEA model and
proposed a new allocation method that included the eval-
uation of DEA efficiency and historical CO2 emissions.
Later, they used China’s emission commitment as the de-
cision-making guidance and selected the maximization of
the average efficiency as the final goal [25, 26]. Besides, after
proving that the original DEA model was inefficient to
determine CO2 emissions quotas, some scholars used other
models to redistribute the quotas of various industries
[27–29]. Huang and Zhang used the SBM and RE/CE
models to get a more comprehensive efficiency that reveals
Chinese energy use and the CO2 emission situation. From
the empirical study of 30 regions in China, they found that
the southern region of China has the most efficient score,
while northeastern China has poor performance. Price factor
has a significant influence on energy use and CO2 emission
efficient score of some provinces [30].

In summary, we have identified two points that should
be taken into account when creating regional quota allo-
cation systems and building the correspondingmodels. First,
feature selection should be performed with caution. Factors
related to the regional CO2 emission accounting as well as
those related to CO2 emissions of the accounting entities
(enterprises participating in the CO2 emission trading
market) should be selected. Second, when using the feature
system data in the allocation model, it is necessary to
carefully determine the weight of each feature to ensure the
scientific, rigorous, and accurate quota allocation.

/erefore, in the present research, we first selected
features that are closely related to the accounting entities
(emission-control enterprises), such as the number of

industrial enterprises exceeding designated size in the re-
gion, the energy consumption per unit of industrial added
value, and the proportion of coal-fired energy included in
the total energy consumption. We also considered features
that are related to regional accounting CO2 emissions, such
as per capita energy consumption, per capita carbon
emissions, forest coverage, and green areas. /en, we built a
feature system that can be used in conjunction with China’s
“bottom-up” total control and postadjustment method to
provide a predictive model. In addition, this model allows
enterprises considering CO2 prices whenmaking investment
decisions, thereby stimulating corporate green innovation.
In addition, for the first time, we considered the use of the BP
in order to determine the weight of each feature based on
historical quota data. /is is different from the previous
literature, which used subjective weight determination
methods. In addition, our methods are more in line with
China’s actual CO2 emission situation and more accurate
during calculations. Finally, the feature system and the
corresponding BP neural network model proposed in the
present research can be used to calculate the quotas of other
regions during the same period and also predict future
quotas for the same region.

3. Empirical Analysis

3.1. Data and Feature Statistics

3.1.1. Data. OnOctober 29, 2011, China´s Development and
Reform Commission indicated that China should start
implementing the pilot carbon emission trading policy.
Specifically, Beijing, Tianjin, Shanghai, Chongqing,
Guangdong, Hubei, and Shenzhen were labeled as the pilot
regions. /is allowed each regional government to deter-
mine the transaction start time, corresponding transaction
subject enterprises, and quotas according to local conditions.
Although the central government promulgated the pilot
policy in 2011, each pilot region actually started the carbon
emission trading system between 2013 and 2014. /erefore,
considering the complete CO2 quota and the availability of
additional data, we selected 31 regions (5 cities and 26
provinces) as the research sample for the period 2014–2017.
With respect to sample pretreatment, the following aspects
were considered: (1) given that Shenzhen belongs to
Guangdong Province and that both of them are pilot regions,
Shenzhen was analyzed separately; (2) regions with serious
missing values in historical feature data were eliminated
(Tibet); (3) taking into account that the different dimensions
of the data may affect the prediction, all features were
normalized using

bijt �
aijt − min aijt

max aijt − min aijt

, (1)

where aijt indicates the jth original feature of the i region in
the t year, min aijt and max aijt represent the minimum and
maximum values of the original feature j in 31 regions in the
t year, respectively, and bjit indicates the j feature of i region
in the t year after normalization.
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Regional features (except that for Shenzhen) were ob-
tained from the National Bureau of Statistics and China
Statistical Yearbook. Features of Shenzhen were obtained
from the Shenzhen Statistical Yearbook, and the historical
quotas data came from the 2014–2018 Beijing Carbon
Market Annual Report.

China and its regions have not released official data on
CO2 emissions. /us, we used the CO2 emission calculation
method given in the 2006 IPPC National Greenhouse In-
ventory Guidelines and reported by Qi [31]:

CO2 � 
n

i�1
EFi × Ei × 10− 6

� 
n

i�1
CEFi × NCVi × ORi ×

44
12

  × Ei × 10− 6
,

(2)

where CO2 indicates carbon dioxide emissions (t) and EFi

represents the carbon dioxide emissions factor for a specific
fuel (kg − CO2/kg,m3). We considered 11 types of energy
consumption including raw coal, coal, coke, crude oil, fuel
oil, gasoline, kerosene, diesel, liquefied petroleum gas, re-
finery dry gas, and natural gas (n � 11); Ei is the fuel
consumption for fuel i (kg,m3); CEFi represents the carbon
content of the fuel i(tC/TJ); NCVi indicates the average low
calorific value of fuel i (kJ/kg,m3); ORi denotes the carbon
oxidation rate of fuel i(%). /e carbon dioxide emission
coefficients of various energy sources are shown in Table 1.

3.1.2. Feature Statistics. Considering the calculation order,
there are two carbon allocation methods:

(1) /e “up-bottom” allocationmethod is applied from a
macro (provincial) perspective, according to the
general principle of efficiency and equity. /is
methodology considers population, provincial eco-
nomic level (GDP), degree of industrialization (in-
dustrial structure), historical factors (accumulated
carbon emissions per capita), and natural endow-
ments to determine quotas for the different regions
and for enterprises. In addition, the method allows
determining the amount of quotas in advance, in
such a way that participating entities are able to
consider CO2 prices in decision-making processes.
However, due to the lack of data regarding actual
emissions of the participating entities, when the
quotas correspond to the actual situation and, in
consequence, entities are motivated to participate in
market transactions emissions reduction, these
processes display great uncertainty.

(2) In the case of the “bottom-up” allocation method,
the level-by-level summary determines the quotas
for each region through the calculation of emissions
at the microlevel (emission terminal). Considering
carbon dioxide production terminal in human so-
ciety (mainly consumers and enterprises), the en-
terprise component considers the number of
equipment that emits CO2, the scale of the

enterprise, the scientific research level of enterprise
emissions reduction (patents and R&D investment),
and so on. /e consumer component involves
population size, per capita carbon emissions, and so
on. Taking into account the emission data of the
participating entities, this method is suitable for
adjusting quotas afterwards (without specifying
quotas in advance). However, it may eventually re-
sult in oversupply of quotas due to the excessively
high emission limits. /is situation may discourage
participants to consider CO2 prices when they are
making investment decisions. In consequence, par-
ticipants are not motivated to reduce emissions.

At the same time, given the problem of excessive CO2
emissions caused by humans, people are also planting trees
(forest carbon sinks) and using photosynthesis to reduce
emissions. /erefore, resident life should also be considered
when calculating quotas.

In 2020, the central government will formally begin to
build a national carbon emission trading market. First, it will
issue a national carbon emission trading quota setting and
allocation implementation plan for the power industry
(2019–2020). /e plan involves a “bottom-up” quota de-
terminationmethod, that is, relevant provincial departments
will be required to determine the list of key emitters and
their actual output. Later, they will identify key emitters’
quotas based on the benchmark method (the free quotas in
each region for 2019–2020 were preallocated according to
the 70% of the power (heat) supply of each key emitter in
2018). /en, after the quotas of all the key emitters in each
region are verified, they will be added up to form the total
quota of the region, and the regional quotas will be further
added to obtain the total quota of the country.

According to China’s “bottom-up” quota allocation
method, it is most accurate to use the CO2 emission
equipment data of emission-control enterprises in the
regions. However, since China’s national carbon emission
trading market is still in its infancy, relevant data (cor-
porate power supply (heat) units, actual output) of emis-
sion-control enterprises in regions have not been released.

Table 1: /e CO2 emission coefficients of various energy sources.

Energy NCV CEF OR EF
Raw coal 20 908 26.37 0.94 1.900 3
Coal 20908 25.8 0.92 1.8300
Coke 28435 29.5 0.93 2.860 4
Crude oil 41816 20.1 0.98 3.020 2
Fuel oil 41816 21.1 0.98 3.170 5
Gasoline 43070 18.9 0.98 2.925 1
Kerosene 43070 19.5 0.98 3.017 9
Diesel 42652 20.2 0.98 3.095 9
Liquefied petroleum gas 50179 17.2 0.98 3.101 3
Refinery dry gas 46055 18.2 0.98 3.011 9
Natural gas 38931 15.3 0.99 2.162 2
Notes: (1) NCV comes from China “General Principles of Comprehensive
Energy Consumption Calculation” (GB/T 2589–2008); (2) CEF and OR
come from China’s “Provincial Greenhouse Gas Inventory Compilation
Guide” (NDRC Office [2011] No. 1041).
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Also, “bottom-up” quota allocation methodologies present
several limitations, which may result in oversupply of
quotas, insufficient demand, low CO2 price, and inactive
market due to excessively high emission limits. Because of
this, participants usually do not consider CO2 prices when
they are in the process of investment decision-making and
cannot effectively motivate participants to reduce
emissions.

/erefore, based on the operating experience of /e
European Union Emission Trading Scheme (EU ETS) and
Regional Greenhouse Gas Initiative (RGGI), we proposed a
more reasonable “top-down” allocation method in combi-
nation with China’s existing “bottom-up” quota allocation
method [32]. /is method was divided into two steps. /e
first step involved the development of a feature system that is
more suitable for China’s provincial carbon quota allocation.
/is was performed by selecting features that are related to
participating entities. For example, (a) the current emission-
control enterprises in China are mainly industrial enter-
prises; thus, the region that contains more industrial en-
terprises will have more quotas; (b) energy consumption,
including coal-fired energy that is used by emission-control
enterprises in production activities ranks first in regional
energy consumption; thus, energy structure and energy
consumption per unit GDP are both factors affecting re-
gional quotas. /e second step involves training suitable BP
to calculate nonpilot regional quotas based on historical
pilot regional quotas and feature system data.

Most ETS are based on total CO2 emission control.
Determination of total CO2 emissions should not only
consider the overall emission target, but also the regional
differences (level of economic development, technological
differences, and forest carbon sink).

Based on previous reports and considering different
factors included in the “top-down” quota control approach
adopted by the EU ETS after phase II [33–35], we divided the
features into three categories: (a) enterprise production, (b)
household consumption, and (c) regional environment.

(a) Household consumption: in 2019, 30% of China’s
CO2 emissions corresponded to consumer and
man-made emissions. Household consumption, as
the main body of society, is one of the main causes
of CO2 emissions. Regions with large populations
display frequent economic activities. /erefore,
resident consumption factors depend on per capita
GDP, energy consumption, carbon emissions,
cumulative carbon emissions, and disposable
income.

(b) Enterprise production: in 2019, 70% of China’s CO2
emissions were the result of industrial production or
generative emissions. Among them, the carbon di-
oxide emissions related to the power industry
accounted for more than 40%. In addition, those
from the steel industry, which are part of the
manufacturing industry, accounted for about 15%.
Industrial enterprises exceeding permitted size are
not only the main body of the industry but also the
main entities participating in the carbon emissions

trading market. /erefore, factors related to CO2
emissions from enterprises include the number of
industrial enterprises exceeding permitted size, full-
time equivalent of R&D personnel in industrial
enterprises exceeding designated size, industrial
structure, and energy structure, energy consumption
per GDP unit, energy consumption per unit of in-
dustrial added value, and electricity consumption
per GDP unit.

(c) Regional environment: in addition to factors related
to resident and enterprises, regional environment
also affects CO2 emissions and decomposition. We
considered three aspects, regional economic level,
technological level, and green resources, mainly
including total freight volume, total passenger vol-
ume, degree of openness to the outside world, total
gas supply, total supply of liquefied petroleum gas,
urbanization rate, technological level, green area,
and forest carbon sink. Specific explanations of
features are given in Table 2.

3.2. Empirical Model

3.2.1. Specifications of the Backpropagation Neural Network
Model (BP). Compared with the subjective weight as-
signment methods (AHP, Expert Evaluation Method,
TOPSIS, etc.) used in the formation of the “top-down”
model and reported in previous literature, BP involves a
multilayer feedforward network and error direction
propagation-learning algorithm. Because of its unique
adaptability, learning ability, and strong generalization
ability, it is widely used in the fields of automatic identi-
fication, predictive estimation, engineering, biology, and
medicine, among others. For the purpose of the present
research, BP can more objectively and accurately quantify
the impact of features on quotas and dynamically reflect the
nonlinear impact of features on quotas at different stages
[36]./erefore, after training the BP based on pilot regional
quotas and feature system data, we calculated the nonpilot
regional quotas.

BP is composed of an input layer, a hidden layer, and an
output layer. /ese three basic elements are fully connected
during the whole network training. For example, for a neural
network model with only one hidden layer, the process of BP
neural network is mainly divided into two stages.

/e first stage is the forward propagation of the signal,
from the input layer to the hidden layer and finally to the
output layer. Assuming that the number of samples is A,
input layer has m nodes, output layer has n nodes, and
hidden layer has p nodes; xai is the input/output of the input
layer, a� 1, 2, . . ., A, i� 1, 2, . . ., m; Baj, baj is the input/
output of the hidden layer, respectively, j� 1, 2, . . ., p; Yak,
and yak are the input/output of the output layer, respec-
tively, k� 1, 2, . . ., n; y∗ak is the expected label of the output
layer (historical quotas); wij and wjk are the weights from
input to hidden and hidden to output, respectively;，θj and
ck are the biases from input to hidden and hidden to output,
respectively.
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Input layer to hidden layer: determine input function,
Baj � xaiwij + θj, and then transform Baj into baj through
activation function baj � f(Baj).

Hidden layer to output layer: determine input function,
Yak � bajwjk + ck, and then transform Yak into yak through
activation function, yak � f(Yak), where yak is the final
result.

Later, the loss function is determined and loss is cal-
culated according to yak and y∗ak. When the loss is either
smaller than the set range or reaches the upper limit of the
number of iterations, the model ends the training; otherwise,
it enters a second stage.

/e second stage is the backpropagation of the loss. /e
loss information is returned along the original propagation
path through the learning signal. Starting from the last layer,
the weight and bias are corrected layer by layer, and finally
the loss is within the set range.

Weight and bias update formula:

W
l∗

� W
l
+ ΔWl

,

θl∗
� θl

+ Δθl
,

ΔWl
� − η

zLoss
zW

l
,

Δθl
� − η

zLoss
zθl

,

(3)

where Wl∗ and θl∗ indicate the updated weight and bias of
the l layer,Wl and θl indicate the original weight and bias of
the l layer, ΔWl and Δθl represent the correction part of
weight and bias of the l layer, and η is a fixed value that
indicates the learning rate.

/e fundamental part of backpropagation is to minimize
the loss through the update of weights and biases, using the
gradient descent method (actually using the chain partial
derivative). /e specific derivation process is given below.

/e following assumptions are considered:

/e activation function from the input layer to the
hidden layer is f(x) � (1/(1 + e− x)) (sigmoid).
/e activation function from the input layer to the
hidden layer is f(x) � x.
Loss function is Loss � (1/2) × 

n
k�1 (y∗ak−

yak)2 � (1/2) × 
n
k�1 e2ak, eak � y∗ak − yak.

/e weights update process of the hidden-output layer:

zLoss

zwjk

�
zLoss

zeak

×
zeak

zyak

×
zyak

zYak

×
zYak

zwjk

� eak ×(− 1) × 1 × baj � − bajeak,

w
∗
jk � wjk − η

zLoss

zwjk

� wjk + ηbajeak.

(4)

/e weight update process of the input-hidden layer:

Table 2: Specific explanation of features.

Feature Explanation
GDP per capita GDP/population
Energy consumption per capita Energy consumption/population
Degree of opening to the outside world Total import and export/GDP
Carbon emissions per capita Total CO2 emissions/population
Cumulative carbon emissions per capita Cumulative CO2 emissions/Cumulative population

Total passenger volume /e number of passengers actually carried by the means of transport in a certain
period of time

Disposable income per capita Disposable income/population
Industrial structure Added value of tertiary industry/GDP
Energy consumption per unit of GDP Energy consumption/GDP
Energy consumption per unit of industrial added
value Energy consumption/industrial added value

Electricity consumption per unit of GDP Electricity consumption/GDP
Energy structure Coal-fired energy/energy consumption

Total freight volume In a certain period of time, the actual weight of the cargo carried by the means of
transport

/e number of industrial enterprises above
designated size

Including independent auditor industrial enterprises and affiliated industrial
production units

Full-time equivalent of R&D personnel in
industrial enterprises above designated size

/e number of full-time staff plus part-time staff is converted to the total number of
full-time staff based on workload

Technological level Number of patents granted/10,000 people
Forest carbon sink Forest area/total land area

Green area Including park area, production green area, protective green area, subsidiary green
area, and other green area

Total gas supply Refers to the amount of natural gas supplied by gas units during the reporting period

Total supply of liquefied petroleum gas Refers to the amount of liquefied petroleum gas supplied by gas units during the
reporting period

Urbanization rate Urban population/population
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zLoss

zwij

�
zLoss

zeak

×
zeak

zyak

×
zyak

zYak

×
zYak

zbaj

×
zbaj

zBij

×
zBij

zwij

� eak ×(− 1) × wjk × baj 1 − baj  × xai

� − baj 1 − baj wjkxaieak,

w
∗
ij � wij − η

zLoss

zwij

� wij + ηbaj 1 − baj eakwjkxai.

(5)

In the same way, the updated value of the bias can be
obtained:
Hidden-output layer: c∗k � ck + ηeak

Input-hidden layer: θ∗j � θj + ηbaj(1 − baj)wjkeak

3.2.2. Key Parameters. According to the model principle
previously mentioned, there are 5 key parameters that de-
termine the learning effect of the BP: activation function, loss
function, learning rate, the number of hidden layer nodes,
and gradient descent algorithm.

(1) Activation function:
For the BP both, the hidden layer and the output
layer need to use an activation function.
For the hidden layer, the activation function is
generally a nonlinear function. /e reason for this is
that, if the activation function is a linear function, the
output is a linear combination of the input, which is
equivalent to the effect of the no hidden layer (the
hidden layer is invalid). /e introduction of a
nonlinear function as the hidden layer activation
function makes the network more powerful, in-
creases its ability to learn complex data, and reflects
the nonlinear relationship between input and output.
/erefore, we introduced four nonlinear activation
functions that are widely used (Tables 3 and 4).
Although ReLU has two problems, it is currently the
most commonly used activation function for BP. In
addition, it is the default activation function used by
most feedforward neural networks.
For the output layer, the choice of its activation
function depends on whether the problem is a re-
gression problem or a classification problem. In the
event, it is a classification problem, the sigmoid
activation function represents a good choice; for
regression problems, a linear activation function is
more appropriate.

(2) Loss function:
With regards to the problem and the output layer
activation function to match different loss functions,

(1) Cross-entropy function: it is suitable for binary
classification problems, and the output layer
activation function is sigmoid

(2) Log-likelihood cost: it is suitable for multi-
classification problems, and the output layer
activation function is softmax

(3) Mean square error (MSE): it is suitable for re-
gression problems, and the output layer activa-
tion function is a linear function

(3) Learning rate:
/e learning rate value is an important part of the
BP, which represents the speed of information ac-
cumulation in the neural network over time, and its
value is between [0, 1]. Under ideal circumstances,
we would start with a large learning rate and
gradually reduce the speed until the loss value no
longer diverges (if the learning rate is set too low, the
training progress will be very slow because only very
few adjustments to the weight of the network are
made. However, if the learning rate is set too high, it
may bring undesirable consequences on the loss
function (Figure 1)).

(4) /e number of hidden layer nodes:
/e number of hidden layer nodes has a great in-
fluence on the prediction accuracy of BP; if the
number of nodes is too small, the network cannot
perform a proper learning process, and it will need
more times to train. In addition, the training ac-
curacy is also affected. When the number of nodes is
too large, the training time increases and the network
will result in overfitting. However, there is no
conventional formula for determining the number of
nodes. Some empirical formulas are given below for
reference: l< n − 1 l<

�������
(m + n)


+ a, l � log2 n,

l≥ k × n/(n + m), where n indicates the number of
input layer nodes, l indicates the number of hidden
layer nodes,m is the number of output layer nodes, a
represents a constant between 0–10, and k corre-
sponds to the number of samples.
In fact, the number of hidden layer nodes can be
roughly calculated according to the reference for-
mula. Later, trial and error is used to find the optimal
number of nodes. Generally speaking, the BP error
shows a trend where it first decreases and later in-
creases with the increase of hidden layer nodes.

(5) Gradient descent algorithm:
We introduce six well-known gradient descent al-
gorithms (Tables 5 and 6).
According to this analysis, there are no perfect key
parameters that can suit all conditions. /e appro-
priate selection of key parameters depends on the
specific problem of study. In the present research, we
studied a regression problem. /us, we chose ReLU
and f(x) � x as the activation function and MSE as
the loss function. Also, Adam may be appropriate as
the gradient descent algorithm; however, the
learning rate and the number of hidden layer nodes
cannot be determined in advance. In summary, the
final determination of all key parameters needs BP
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Table 3: Activation functions and figures.

Name Function Derivative function

Sigmoid

S(x) � (1/(1 + e− x)) S′(x) � S(x)(1 − S(x))
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1.1
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Sigmoid Sigmoid derivative

S(x)
S′(x)

Softmax

Softmax(Zi) � (eZi /
C
c�1 eZc ) � pi (zsoftmax(Zi)/zZj) �

pi(1 − pi), j � i,

− pj · pi, j≠ i.


e ÷

e

e

÷

÷Z3

Z2

Z1

So�max layer as the output layer

So�max Layer

eZ1

eZ2

eZ3

+

3

1

–3

20

0.05

2.7

0.88

0.12

≈0

y1 = eZ1/∑ eZj3
j=1

y2 = eZ2/∑ eZj3
j=1

y3 = eZ3/∑ eZj3
j=1

∑ eZj3
j=1

Probability
1 > yi > 0(i)

(ii) ∑ yi = 1i

tanh

tanh(x) � ((ex − e− x)/(ex + e− x)) T′(x) � 1 − (T(x))2

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

T(x)
T′(x)

–1
–0.8
–0.6
–0.4
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1
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training. For this reason, the determination of key
parameters is provided in Section 4.

4. Empirical Results and Analysis

We focused on the allocation of regional carbon quotas, which
is a regression problem, and our goal was to minimize the loss
rate while ensuring that the test set results meet the realistic
expected range in China. /erefore, based on experience and
BP training, we chose MSE as the loss function and Adam [37]
as the gradient descent algorithm in the backpropagation

process, the final learning rate was 0.009, and number of it-
erations were 5000. Other parameters are shown in Table 7.

/e total loss rate of the benchmark model was 0.02419.
And the comparison between the results of the training set
and the historical quotas are shown in Table 8 (benchmark
model in Table 8). /e test results are shown in Table 9
(benchmarkmodel in Table 9). After adding up the historical
quotas in pilot regions and the estimated quotas in the
nonpilot regions, national quotas were obtained. /e
resulting national quotas are displayed in Table 10
(benchmark model in Table 10).

Table 3: Continued.

Name Function Derivative function

ReLU

ReLU(x) � max(0, x) ReLU′(x) �
0, x≤ 0,

1, x> 0.


–8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8

R(x)
R′(x)

0
1
2
3
4
5
6
7
8
9

ReLU ReLU derivative

Table 4: Advantages and disadvantages of activation functions.

Name Advantages Disadvantages

Sigmoid

(1) It can smoothly map the real-number field to [0, 1]

(1) Gradient vanishing, that is, in the process of
backpropagation, the derivative will gradually become 0; thus,
the parameters cannot be updated and the neural network
cannot be optimized

(2) Monotonically increasing, continuous derivable, and its
derivative form is very simple

(2) Nonzero-centered: the output value of the function is always
greater than 0, which will slow down the convergence speed of
the model training

(3) Suitable for handling binary classification problems (3) Exponentiation is relatively time-consuming

Softmax

(1) It maps the output value to (0, 1), and the sum of the
mapped output value is 1 (1) /e operation of Softmax involves the calculation of

exponential function; in consequence, an “overflow problem”
for computers occurs(2) It divides the entire hyperspace according to the number of

classifications
(3) Suitable for multiclassification problems (2) Not suitable for face recognition tasks

tanh

(1) It can smoothly map the real-number field to [− 1, 1] (1) Gradient vanishing, that is, in the process of
backpropagation, the derivative will gradually become 0; thus,
the parameters cannot be updated and the neural network
cannot be optimized

(2) Solve nonzero-centered problem

(3) Suitable for handling binary classification problems

ReLU

(1) Solve the gradient vanishing in the positive interval (1) Nonzero-centered
(2) /e calculation is simple, no exponential calculation is
required, and the activation value can be obtained with only
one value

(2) Dead ReLU problem: it is “vulnerable” during training; when
x< 0, the gradient is 0; the gradient of these nodes and
subsequent nodes are always 0, and no longer responds to any
data, causing the corresponding parameters to never be updated(3) /e convergence speed is much faster than sigmoid and

tanh
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A small learning rate
requires many updates

before reaching the
minimum point

J (θ)

θ

(a)

The optimal learning
rate swiftly reaches the

minimum point

J (θ)

θ

(b)

Too large learning rate
causes drastic updates

which lead to divergent
behaviors

J (θ)

θ

(c)

Figure 1: /e loss function results of different learning rates.

Table 5: Gradient descent functions and parameter description.

Name Gradient descent function Parameter description

BGD θ∗ � θ − η · g
⌢

� θ − η · ∇θJ(θ)
g
⌢ denotes gradient estimate

θ denotes weight

SGD θ∗ � θ − η · g
⌢

� θ − η · ∇θJ(θ; x(i); y(i))
g
⌢ denotes gradient estimate

θ denotes weight

Momentum
vt � cvt− 1 + η · ∇θJ(θ) vt denotes gradient estimate

θ∗ � θ − vt θ denotes weight

AdaGrad
g
⌢

t,i � ∇θJ(θi) g
⌢

t,i denotes gradient estimate
θ∗t+1,i � θt,i − (η/

����������

g
⌢

t,i · g
⌢

t,i + ε


) · g
⌢

t,i θt,i denotes weight

RMSprop

gt � ∇θJ(θt− 1) c � 0.9E[g2]t denotes Exponential weighted average
E[g2]t � cE[g2]t− 1 + (1 − c)g2

t gt denotes gradient estimate

θ∗t+1 � θt − (η/
���������
E[g2]t + ε


)gt θt denotes weight

Adam

gt � ∇θJ(θt− 1)

β1 � 0.9
β2 � 0.999
ε � 10e − 8

mt � β1mt− 1 + (1 − β1)gt

gt denotes gradient estimate θt denotes weight
vt � β2vt− 1 + (1 − β2)g2

t

m
⌢

t � (mt/(1 − βt
1)), v

⌢

t � (vt/(1 − βt
2))

θ∗t+1 � θt − (η/(
�����

v
⌢

t + ε


))m
⌢

t

Table 6: Advantages and disadvantages of gradient descent algorithms.

Name Advantages Disadvantages

BGD /e principle of gradient descent is simple
(1) Calculation is very slow
(2) Difficult to handle a large dataset
(3) Cannot add new data to update the model

SGD (1) Compared with BGD, SGD training speed is faster (1) Frequent updates may cause severe oscillations in
the loss function(2) New data can be added to update the model

Momentum (1) Consider the speed of the previous step and the new gradient
(2) Can speed up the convergence and suppress the shock

AdaGrad (1) Compared with SGD, it adds a denominator (1) If gradient update is frequent, it may cause the
subsequent gradient updates be slow or disappear(2) Handle the case where the number of gradient updates is small

RMSprop

(1) Similar to momentum, it can reduce fluctuations
(2) Overcome the problem of the sharp decrease or disappearance of
gradient in AdaGrad
(3) It performs better than SGD, momentum, and AdaGrad, based on
the nonstationary objective function

Adam

(1) Combine momentum and RMSProp
(2) Integrate the contents of gradient descent, momentum, Adagrad,
and RMSprop with certain improvement
(3) Easy to use, insensitive to gradient scaling, can be used for large
data, processing sparse data, easy to adjust hyperparameters, etc.
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Table 7: Parameters of the benchmark model.

Layer Function Activation
Import-hidden (8, 6) ReLU
Hidden-export (6, 1) f(x) � x

Table 8: Comparison between model results and historical quotas.

Year Region Historical quotas
Benchmark model New model

Training results Loss Training results Loss

2014

Beijing 0.5 0.5114 0.0114 0.502 0.002
Tianjing 1.6 1.7397 0.1397 1.584 − 0.016
Shanghai 1.5 1.7795 0.2795 1.4785 − 0.0215
Hubei 3.24 3.0159 − 0.2241 3.2485 0.0085

Guangdong 3.88 3.6819 − 0.1981 3.8754 − 0.0046
Shenzhen 0.33 0.3623 0.0323 0.3169 − 0.0131
Chongqing 1.3 1.3283 0.0283 1.2949 − 0.0051

2015

Beijing 0.5 0.5441 0.0441 0.5144 0.0144
Tianjing 1.6 1.7312 0.1312 1.6169 0.0169
Shanghai 1.6 1.6728 0.0728 1.6214 0.0214
Hubei 3.24 3.0162 − 0.2238 3.1589 − 0.0811

Guangdong 4.08 3.8977 − 0.1823 4.0595 − 0.0205
Shenzhen 0.33 0.3623 0.0323 0.3182 − 0.0118
Chongqing 1.25 1.419 0.169 1.3037 0.0537

2016

Beijing 0.5 0.4536 − 0.0464 0.4882 − 0.0118
Tianjing 1.6 1.5162 − 0.0838 1.5506 − 0.0494
Shanghai 1.5 1.4923 − 0.0077 1.5099 0.0099
Hubei 2.8 2.9384 0.1384 2.8715 0.0715

Guangdong 4 4.0552 0.0552 4.0141 0.0141
Shenzhen 0.3 0.3636 0.0636 0.3209 0.0209
Chongqing 1.3 1.4176 0.1176 1.2564 − 0.0436

2017

Beijing 0.5 0.3623 − 0.1377 0.4946 − 0.0054
Tianjing 1.6 1.363 − 0.237 1.6399 0.0399
Shanghai 1.6 1.2582 − 0.3418 1.5741 − 0.0259
Hubei 2.5 2.5891 0.0891 2.4883 − 0.0117

Guangdong 4.2 4.5011 0.3011 4.208 0.008
Shenzhen 0.3 0.3623 0.0623 0.3043 0.0043
Chongqing 1.3 1.2166 − 0.0834 1.2883 − 0.0117

Unit of quotas: 100 million tons.

Table 9: Test quotas of nonpilot regions.

Region
Benchmark model New model

2014 2015 2016 2017 2014 2015 2016 2017
Hebei 4.4742 4.7213 4.6639 3.7958 4.2489 4.2512 3.9389 3.4056
Shanxi 8.7874 9.5514 9.9179 7.9321 6.7575 7.2639 7.4857 6.0955
Inner Mongolia 5.4541 5.3178 5.8367 6.0577 5.4135 5.2643 5.3196 5.8676
Liaoning 5.7035 5.2196 6.768 5.4917 5.9595 5.5083 5.8179 5.1618
Jilin 3.3295 3.1944 3.2286 2.8011 4.5732 4.651 4.5139 4.3528
Heilongjiang 4.5658 4.7666 5.3126 4.6711 5.1161 5.3088 5.5612 5.4386
Jiangsu 4.9033 4.9379 4.9276 4.5071 3.4851 3.6938 3.7096 3.6284
Zhejiang 4.3896 4.3216 4.0597 3.9379 4.2172 4.3214 4.0143 4.036
Anhui 3.6231 3.673 3.5841 3.1743 3.64 4.0833 3.8208 3.1997
Fujian 2.9149 2.9427 2.7986 2.5997 3.558 3.5671 3.3428 3.4086
Jiangxi 2.1524 2.3186 2.408 2.1446 3.5334 3.5535 3.4032 3.2111
Shandong 7.08 7.0777 7.2947 6.766 5.6471 5.6322 5.4154 5.0304
Henan 3.6061 3.7802 3.8308 3.2201 3.1582 3.2654 3.3632 2.937
Hunan 2.1693 2.3032 2.3678 2.1815 2.6993 2.8095 2.894 2.9341
Guangxi 2.0799 1.991 2.083 2.0383 3.2628 3.1519 3.0473 3.0321
Hainan 7.092 7.7761 7.7654 5.8029 6.1714 6.5658 6.6143 5.6134
Sichuan 3.0356 2.9589 2.8458 2.523 1.9639 2.1027 2.0326 1.9373
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/e results of the benchmark model indicated that,
during the initial stage of China’s unified carbon emission
market (3-4 years), the national quota will increase and, after
an adaptation period, China’s total quota and regional
quotas will begin to decrease. /is will stimulate enterprises
to accelerate emission reduction and prove China’s deter-
mination to achieve carbon peaks before 2030 and carbon
neutrality by 2060.

5. Further Analysis: Build a Comprehensive
Feature System

It is unreasonable to allocate regional quotas only consid-
ering the factor of corporate CO2 emissions. In addition to
corporate production factors, regional CO2 emissions
should also consider regional human activities and the role
of forests in reducing those emissions. /us, we believe that,
in addition to the CO2 emissions reported by enterprises,
quotas in China’s pilot regions should also take into account
other features such as forest carbon sinks, population, and
natural endowments. Based on the comprehensive factors of
these three aspects, the regional quotas were determined.
/erefore, we added other factors related to people and
regions (see Section 3.1.2, for details) into the feature system.
Subsequently, we chose MSE as the loss function, Adam as
the gradient descent algorithm, and trained BP to obtain the
final learning rate (0.003), number of iterations (5000), and
other parameters (Table 11).

/e total loss rate of the new model was 0.00089, and
the results of the comparison between the training set and
historical quotas are shown in Table 8 (new model in
Table 8). /e test results are displayed in Table 9 (new
model in Table 9). After adding up the historical quotas in
pilot regions and the estimated quotas in the nonpilot
regions, the national quota was obtained (new model in
Table 10).

While using the comprehensive feature system, the new
model displayed a lower loss rate than that obtained with the
benchmark model, and the calculated national quota was
closer to the CO2 emissions reported by China. /ese results
indicated that the feature system has a certain degree of
rationality and accuracy. Similarly, the calculation results of
the model presented a trend, where the amount of national
carbon quotas initially increased and later began to decrease.

6. Conclusions and Future Work

/e whole world is expecting China to lead the economic
recovery and green development after the global epidemic.
It also expects China’s 14th Five-Year Plan to become the
Guide for green recovery. In the same year, China estab-
lished a unified national carbon emissions market. /is
represents not only China’s further exploration of the
carbon emissions trading system to achieve green devel-
opment but also one of the important tools for China to
achieve two low-carbon goals. In addition, quota allocation
is an important factor that determines the functionality of
Chinese carbon market. In order to calculate other regional
quotas, we trained a BP benchmark model. For this pur-
pose, we considered historical quota data of China’s 7-
carbon emissions trading market pilot regions from 2014 to
2017 and selected suitable features that fit China’s “bottom-
up” total control method. Later, we built a feature system
that included human, corporate, and regional factors,
retrained the model, and recalculated quotas for other
regions. /e results are presented herein. First, both, the
benchmark model results and the results obtained using the
comprehensive feature system showed that within the
sample interval, the amount of China’s national carbon
quotas displayed an initial increase to later decrease.
Second, the model trained with the characteristic data of
the feature system built in the present research displayed a
lower loss rate as compared with the benchmark model.
/ese results demonstrated that the feature system pro-
posed in this paper fits not only the actual situation of

Table 9: Continued.

Region
Benchmark model New model

2014 2015 2016 2017 2014 2015 2016 2017
Guizhou 3.3924 3.2882 3.5977 2.4839 3.4729 3.4067 3.4404 2.8913
Yunnan 1.1869 0.9986 1.1944 1.1038 2.698 2.6555 2.7258 2.5445
Shaanxi 4.4716 4.4987 4.5698 3.7151 2.7507 2.9126 2.689 2.6752
Gansu 3.9962 4.2983 4.357 3.2307 2.3042 2.6187 2.6927 2.0599
Qinghai 0.3623 0.3623 0.8758 0.3623 2.0744 1.9919 2.1466 2.0002
Ningxia 8.9951 9.0065 8.892 9.0385 4.9634 5.1076 5.0497 5.1049
Xinjiang 8.286 8.2076 9.1625 6.5578 3.6802 3.9403 4.236 3.8333
Unit of quotas: 100 million tons.

Table 10: National quota.

National quota

Benchmark model 2014 2015 2016 2017
118.4012 120.1122 124.3424 108.137

New model 2014 2015 2016 2017
107.6989 110.2274 109.2749 102.3993

Unit of quotas: 100 million tons.

Table 11: Parameters of the new model.

Layer Function Activation
Import-hidden (21, 19) ReLU
Hidden-export (19, 1) f(x) � x
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China’s CO2 emissions and quotas but also that the
framework of the system is reasonable and accurate. /ird,
the feature system and training model proposed in the
present article combined with the original “bottom-up”
total control and post adjustment method can be used by
Chinese CO2 emission decision makers to obtain advanced
predictions. We have provided the content of China’s
carbon emissions trading quota system, which can promote
the operation of China’s carbon emissions market, en-
courage participants in market transactions to reduce
emissions, and accelerate China’s low-carbon
development.

Of course, we also admit that, in the future, the
feature system and model proposed in this article can be
further improved and perfected as follows. First, the
indicators related to enterprises in the currently con-
structed feature system are substitute indicators because
the specific transaction data and enterprise-related data
of China’s carbon emission market have not been unified
and officially announced. /erefore, once the data is
available, this part of the indicators will increase or
decrease. Second, at present, China’s national unified
carbon emissions trading market has just started, and the
main participants are enterprises, with less individual
participation. At the same time, the central government
has not issued a policy about people’s low-carbon life.
/erefore, when China’s emission reduction program
enters the critical stage in the future, the features related
to people will increase or decrease. /ird, the current BP
neural network model has only three layers. In the future,
with the improvement of feature data, a certain number
of hidden layers may be further increased to train a
model with low loss rate and stronger generalization
ability.
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