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With the continuous development of software, it is inevitable that there will be various unpredictable problems in computer
software or programs that will damage the normal operation of the software. In the paper, static analysis software is taken as the
research object, the errors or failures caused by the potential defects of the software modules are analyzed, and a software analysis
method based on big data tendency prediction is proposed to use the software defects of the stacked noise reduction sparse
analyzer to predict.1is method can learn features from original defect data, directly and efficiently extract required features of all
levels from software defect data by setting different number of hidden layers, sparse regularization parameters, and noise ratio, and
then classify and predict the extracted features by combining with big data. 1rough experimental tests, the performance of the
presented method is better than that of the comparison method in correct rate, accuracy rate, recall rate, F1-measurement, AUC
value, and running time, which proves that the research results in this paper have more accurate failure prediction effect and can
timely eliminate software failures.

1. Introduction

1e application of software almost permeates every aspect of
people’s life. With the rapid development of the software
industry, the increasing demand, the integration of func-
tions, and the application of plug-ins make the scale of
software larger and larger and also make the software more
and more complex. Software failures may cause serious
economic losses to enterprises and even threaten people’s
lives [1]. In this paper, combining with the encoder model in
propensity prediction, aiming at the problems of slow
convergence speed of loss cost function and sparsity regu-
larization parameters and complexity and difficulty of pa-
rameter adjustment in traditional encoder, the loss cost
function and sparsity constraint method of encoder are
improved. At the same time, in order to reduce the influence
of noise on data, the method can learn features from original
defect data. By setting different number of hidden layers,
sparse regularization parameters, and noise adding ratio, the
required hierarchical features are directly and efficiently

extracted from the software defect data, and then the
extracted features are classified and predicted with logistic
regression classifier [2–4]. Since the development of software
defect prediction technology, it has been one of the research
hotspots in the field of software engineering. It is also called
two key technologies to improve software quality and re-
liability together with software defect detection technology
in which the software defect detection technology is mainly
to analyze the program modules that have failed to deter-
mine the specific location of the defect; the software defect
prediction technology mainly measures the program
modules that have not failed and predicts whether the
module contains undiscovered defects through the con-
structed software defect prediction model.

In recent years, many domestic and foreign research
scholars have devoted themselves to the research of software
defect prediction technology and have achieved quite ex-
cellent research results. At present, according to different
technologies, the existing software defect prediction tech-
nology can be simply divided into dynamic defect prediction
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technology and static defect prediction technology where
dynamic defect prediction technology is to study the life
cycle of the entire software system and predict the distri-
bution of software defects over time based on the time when
the software failure or system failure occurs; the static defect
prediction technology is based on measurement data related
to software defects such as the size and loop complexity of
the software system to predict the defect tendency, defect
density, or number of defects in software program modules.

1e proposed software defect prediction method is used
to predict the defects of the big data modeling platform
system. Firstly, based on the documents and program codes in
the development process of the big data modeling platform
system, the programmodules of the system are extracted, and
the metric elements are designed and measured to obtain the
characteristic data. Secondly, some program modules are
randomly selected from all the program modules for manual
testing and labeling. 1en, the defect data set of labeled
programmodules is used as the training set to build a software
defect prediction model to predict the defect tendency of
unlabeled program modules [5, 6].

2. An Encoder Based on Propensity
Prediction Mechanism

2.1. Loss Cost Function Based on Cross Entropy. In order to
overcome the problem of low parameter update efficiency
when using the cost function of square deviation in tradi-
tional encoders, it is hoped that the partial derivative of the
loss cost function is independent of the derivative of the
activation function [7], namely:
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In formula (1), ε is the sparse parameter, w is the weight
matrix, b is the bias vector, l is the activation function, and xi
is the training sample set. For each sample i of the input
layer, the feature yi of the hidden layer of the sample can be
obtained through coding operation and zi is the recon-
structed data of the sample [8, 9].
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Applying the cross-entropy function to the loss cost
function of the encoder, the cross-entropy cost function can
be expressed as follows:
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Its partial derivative is expressed as follows:
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In formula (4), f is the bias vector.
Compared with the square variance cost function, the

cross-entropy cost function has obvious advantages; its
partial derivative is independent of the derivative of the
activation function, so it will not be affected by the saturation
of sigmoid function. When the loss is large, the weight will
be updated quickly; when the error is small, the weight will
be updated slowly. Same as the cost function of square
deviation, the cost function of cross entropy also has two
properties:

(1) Nonnegative: within the scope of the definition
domain, its value is nonnegative

(2) 1e smaller the difference between reconstructed
data zi and input data xi is, the more its cost function
approaches to 0 [10–12]

2.2. Sparse Constraint Method Based on L1 Rule. By penal-
izing nonzero activation of hidden neurons in the encoder,
this paper proposes a sparse encoder (L1-SAE) based on the
L1 rule for sparse constraint [13].

1e sparse encoder based on L1 rule does not force all
hidden neurons to share the same degree of sparsity but
directly applies the average activation of hidden neurons to
the sparsity constraint [14]. 1e expression of L1 rule is as
follows:
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In formula (6), ρ is a sparsity parameter, which is a small
value close to 0; αjrepresents the activation degree of hidden
neuron j under the given input of x; and δ is the number of
hidden layer neurons in the encoder [15, 16].

1e overall cost function of the sparse encoder based on
L1 rule is as follows:

τl1−SAE λ, λ′(  � τAE λ, λ′(  + β
δ

j�1
ρj. (7)

In formula (7), τl1−SAE(λ, λ′) is the loss cost of the en-
coder, τAE(λ, λ′) is the second term for the sparsity penalty
term, and the sparsity regularization parameter β is the
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weight of the sparsity penalty item to control the relative
importance of the sparsity penalty item.

In the sparse encoder based on KL divergence, two super
parameters need to be set in advance: sparse regularization
parameter β and sparsity parameter ρ, while in the sparse
encoder based on L1 rule, only one super parameter needs to
be set in advance: sparse regularization parameter β. Using
fewer super parameters can significantly reduce the time
needed to adjust model parameters [17–19].

1e sparse encoder based on L1 rule has the following
advantages:

(1) L1 rule is a convex quadratic optimization problem,
which can be well realized and solved

(2) 1e sparse degree of hidden neurons in the sparse
encoder can be learned

(3) Using fewer super parameters can significantly re-
duce the difficulty of parameter adjustment during
training the model [20–22]

2.3. Improved Denoising Sparse Autoencoder (DSAE). An
improved denoising sparse autoencoder (DSAE) is pre-
sented in this paper. First, noise processing is performed on
the original data, and then sparse coding training is per-
formed on the noise data after noise addition, which makes
the encoder to learn to remove noise and obtain the original
data without noise pollution, forcing the encoder to learn
more robust representation of the original data and im-
proving the generalization ability of the encoder [23–25].

1e improved DSAE structure is shown in Figure 1.
In Figure 1, xi is the original data, xi is the noise data after

noise processing, yi is the feature of hidden layer, and zi is the
reconstructed data. 1ere are usually two ways to add noise
as follows:

(1) Gaussian noise (GN): noise obeying Gaussian dis-
tribution is added to sample xi;

(2) Masking noise (MN): some values in sample xi are
randomly selected and set to 0; the loss cost between
reconstructed data and input data of the improved
DSAE model is as follows:
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1en, the loss cost function of the improved DSAE in the
whole training sample set is as follows:
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When the DSAE is trained, the back propagation al-
gorithm and gradient descent method are used to iterate and
update the network parameters so as to learn the encoder
with optimal network parameters [26]. 1e specific algo-
rithm of training encoder is shown in Algorithm 1.

1e algorithm flow of training encoder is shown in
Figure 2.

1e algorithm flow of training the analyzer is both left-
saturated and right-saturated. 1erefore, the sigmoid
function is saturated. And if and only when its value ap-
proaches, the derivative is 0, so the sigmoid function is soft
saturated.

1e advantages of the sigmoid function are as follows:

(1) 1e input data are compressed to (0, 1), and the
sigmoid function has monotonic continuity, opti-
mization, and stability

(2) 1e derivative is easy to implement

However, the sigmoid function also has disadvantages
that cannot be ignored:

(1) 1e amount of calculation is too large. When using
the backpropagation algorithm to calculate the
gradient, the derivation process involves division;

(2) When the input data are very large or very small, due
to its soft saturation, the gradient disappears and the
training of the deep network cannot be completed.

(3) Its output is not 0 as the mean value, which will allow
the neurons in the next layer to get the nonzero mean
value of the output of the previous layer as input, so
that the trained network parameters tend to be all
positive or all negative. As a result, the z-shaped drop
occurs when the gradient descent method is used to
optimize the network parameters.

3. Software Defect Prediction Based on Stacked
Denoising Sparse Autoencoder (sDSAE)

3.1. sDSAE. Multiple improved denoising sparse encoders
are stacked layer by layer to build a deep neural network
model, and an improved stacked denoising sparse autoen-
coder (sDSAE) can be obtained, which can obtain deeper
feature information of the input data. 1e feature infor-
mation acquired by the deeper level has the stronger feature
expression ability [27].

Figure 3 shows a three-layer sDSAE structure based on
the stacked improved denoising sparse encoder.

In the training sDSAE, the characteristics of the first
layer of the encoder are taken as the input of the second layer
of the encoder, and the greedy training method of layer by
layer is adopted to train each layer of the deep neural

fθ fθ′

yi

xi zix~i

l (xi, zi)

Figure 1: Structure of denoising sparse autoencoder (DSAE).
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network successively, and then the entire deep neural net-
work is trained to obtain network parameters. In other
words, firstly, the original training data xi are used as the
input of the first-order analyzer to train the first-order
feature x1

i of the original data, and then the first-order
feature x1

i is used as the input of the second-order analyzer to
train the second-order feature x2

i of the original data, and so
on. Taking the (n − 1) feature xn−1

i as the input of the nth
level analyzer, the n-order feature xn

i of the original data can
be trained [28].

Assuming that a deep neural network model is com-
posed of sDSAE and logistic regression classifier, the
training of the whole model can be divided into two pro-
cesses: unsupervised pretraining process and supervised
fine-tuning process. Among them, the specific steps to re-
alize the supervised fine-tuning process are as follows:

Step 1. A feedforward pass is performed, and a layer-by-
layer greedy algorithm is used to train the 2L layer and 3L
layer of the sDSAE until the output layer Lln to obtain the
network parameters of all layers.

Step 2. 1e loss cost is calculated between the classification
result of the output layer logistic regression classifier and the
corresponding label of the input data.

Step 3. 1e residual δni is calculated for the output layer, and
the calculation formula is as follows:

Input: training data x, the number of input layer nodes inputSize, the number of hidden layer nodes hiddenSize, the weight attenuation
coefficient θ, the sparse regularization constant β, the maximum number of iterations of the optimization loss cost function maxIter

Output: optimal network parameters w, b
(1) Initialize the encoder’s network parameters: weight matrix (w, w′), bias vector (b, b′)
(2) Initialize iteration numberi � 1, overall cost � 0;
(3) Noise processing is carried out on training data x to obtain noise data xt;
(4) for i � 1: max Iter optimizes the network parameters of the encoder by iterative methods
(5) By coding the noise data xt, the feature y of the hidden layer is obtained.
(6) In the decoding operation, the feature y of the hidden layer is decoded to obtain the reconstructed data z;
(7) Calculate the overall cost of the encoder;
(8) Calculate the partial derivativeΔwΔb of the loss cost function
(9) Calculate the gradient of network parameters ∀w,∀w′,∀b,∀b′;
(10) Update network parameters w, w′, b, b′;
(11) End for loop
(12) Output the optimal network parameters w and b.

ALGORITHM 1: Specific algorithm of training encoder.

Start

Add noise to x

Decoding operation, get 
reconstructed data z

Calculate the overall cost

i < maxIter?

Output: network parameters 
w, b

Initialize w, w′, b, b′
Initialize i = 1, cost = 0

Input: x, inputSize, 
hiddenSize, λ, β, maxIter

Encoding operation, get 
hidden feature y

End

N

Y

Update w, w′, b, b′

Calculate Δw, Δb

Update i = i + 1

Calculate Δw, Δw′, Δb,
Δb′

Figure 2: Algorithm flow of training encoder.
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Figure 3: 1ree-layer sDSAE structure.
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δni � − ∀ani · j(  · f′ zni( . (10)

1e characteristic representation of the last layer of the
sDSAE will be input to the output layer; that is, the output
layer is the classifier, so the derivation process needs to be
handled separately. In the logistic regression classifier, I is
used to represent the label corresponding to the input data
andQ is used to represent the conditional probability vector,
and then ∀j � λt(i − Q) [29] is used in the formula.

Step 4. 1e residuals for all hidden layers are calculated in
the sDSAE; let l � n, −1 , n, −2 , l, 2 , then

δl � w′( 
tδl+1  · f′ zi( . (11)

Step 5. Partial derivatives are calculated by using residuals as
follows:

∀wt j λ, λ′(  � δl+1 αl( 
t
,

∀bt j λ, λ′(  � δl+1.
(12)

Step 6. Network parameters are updated as follows:

Δwt
� Δwl

+ ∀wl j λ, λ′( ,

Δbt
� Δbl

+ ∀bl j λ, λ′( .
(13)

1e above is an iterative step in the fine-tuning process.
1rough multiple iterations and updates, fine-tuning can
obtain better network parameters and improve network
performance.

1e algorithm flow of training the sDSAE is shown in
Figure 4.

1e training stack noise reduction sparse analyzer has
significant effects in the feature space relatedmodels (such as
image matching and speech recognition), while the unre-
lated models in the feature space (such as software defect
prediction and text classification) may loss important in-
formation.1e reason is that for models that are unrelated in
the feature space, multigranularity scanning reduces the
importance of features at both ends of the feature space to a
certain extent. In multigranularity scanning, both the first
feature and the last feature are scanned only once; that is,
both features are used only once. If the importance of the
first feature or the last feature is very high, multigranularity
scanning cannot effectively use this important feature.

3.2. Software Defect Prediction Method Based on sDSAE.
In this paper, the sDSAE with four hidden layers is designed
for feature extraction of software defect data, and a software
defect prediction model is used to classify and predict
extracted defect characteristics with logistic regression
classifier. Its model structure is shown in Figure 5 [30].

1e entire deep network including the logistic regression
classifier is fine-tuned to obtain the optimal network pa-
rameters. 1e overall algorithm flow of software defect
prediction based on sDSAE is as follows. (Algorithm 2).

4. Experimental Setup and Result Analysis

4.1. ExperimentalDataSet. In this paper, the performance of
the software defect prediction model is evaluated by using
eclipse defect data set, which is one of the most widely
studied public data sets in the field of software defect pre-
diction and can be available from EclipseBugData.

1ere are six ARFF files in the Eclipse data set, corre-
sponding to the defect records of the three versions (Eclipse
2.0, Eclipse 2.1, and Eclipse 3.0) of the Eclipse defect data set at
two granularities (files, packages). 1e defect data records are
divided into prerelease defects and postrelease defects; pre-
release defects refer to defects found during the development
process, and postrelease defects are defects found during the
user’s use phase.1is experiment uses three versions of defect
data records under the granularity of files and takes the defect
tendency of the programmodules after the software release as
the prediction target. 1e class label hasDefects, which
converts the defect number to the meaning of whether a
software module has defects, is as follows:

hasDefects �
0, post � 0,

1, otherwise.
 (14)

1e statistical information of the Eclipse defect data set
files granularity is shown in Table 1.

Start

Initialize i = 1, logsiticCost = 0

Calculate the output of the 
entire network

Calculate the loss cost 
logsiticCost

i < maxIter?

Output: network parameters 
after fine-tuning

Pre-train the stacked 
autoencoder to get the 

network parameters of all 
hidden layers

Input: x, maxIter

Use forward propagation to 
calculate the output of each 

layer

End

N

Y

Update network parameters

Calculate the residual of 
each hidden layer

Update i = i + 1

Use residuals to calculate 
partial derivatives

Figure 4: Algorithm flow of training sDSAE.
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4.2. Experimental Environment and Methods. 1e experi-
mental environment is shown in Table 2.

In this experiment, because the feature number of defect
data set is 200, the number of input layer nodes is set to 200;
since there is no uniform rule for the depth selection of the
model, which is usually determined by the experimental data
and task requirements, the number of hidden layer nodes
and hidden layer nodes are set according to the specific
situation in the experiment; the weight attenuation coeffi-
cient lambda is set to 1e− 3. In order to make the symmetry
of analyzer invalid and get better training effect, the weight

matrix of analyzer is usually initialized randomly instead of
all zero.

In the experiment, the network parameter optimization
method is designated as L-BFGS, which uses the quasi-
Newton method and limited memory BFGS algorithm to
update the weights and limits the maximum number of
iterations maxIter to 400. 1e weight attenuation coefficient
LogisticLambda of the logistic regression classifier is set to
1e-4, and the loss cost function is also optimized by min-
Func, the optimization method is L-BFGS, and the maxi-
mum number of iterations LogisticMaxIter is set to 100.

Layer 2 DSAE

Layer 4 DSAE

Layer 1 DSAE

Layer 3 DSAE

Training data

Second-order feature 
representation

Fourth-order feature 
representation

First-order feature 
representation

Third-order feature 
representation

Test data Trained sDSAE Feature representation

Logistic regression classifier

Figure 5: Software defect prediction model structure based on sDSAE.

Input: training data defectData, label defectLabel corresponding to training data, test data testData, number of input layer nodes
inputSize of sDSAE, number of hidden layer nodes hiddenSizeL1, hiddenSizeL2, hiddenSizeL3, hiddenSizeL4, weight attenuation
coefficient lambda, sparse regularization parameter beta, masking noise the masking rate noiseRatio, the maximum number of
iterations maxIter to minimize the loss cost function, the weight attenuation coefficient of logistic regression classifier
LogisticLambda, the maximum number of iterations LogisticMaxIter.
Output: predicted defect tendency label predLabel, predicted defect tendency probability value predScore.

(1) 1e software defect data defectData are preprocessed to obtain the processed training data trainData. 1e preprocessing process
mainly includes removing invalid data and data standardization. 1e data standardization process refers to the process of making
the training data conform to the standard normal distribution;

(2) Take the processed training data trainData as the input of the first layer of sDSAE and train to obtain the first-order feature
sae1Features of the defect data;

(3) Take the first-order feature sae1Features of the defect data as the input of the second layer of sDSAE and train to obtain the second-
order feature sae2Features of the defect data;

(4) Similar to Step 3, the third-order features sae3Features and fourth-order features sae4Features of the defect data can be obtained,
respectively;

(5) 1e labels of each order feature and the software defect data obtained from Steps 2–4 are used as the logistic regression
classification 1e input of the processor to construct a software defect prediction model

(6) “Fine-tuning” the constructed predictionmodel through the back propagation algorithm and gradient descent method to optimize
the network parameters of each prediction model;

(7) 1e test data testData are preprocessed in the same way as the training data and then input to each trained prediction model to
obtain the probability value predScore of the predicted defect tendency;

(8) If predScore≥ 0.5, then predLabel� 1; otherwise, predLabel� 0.

ALGORITHM 2
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1e hyperparameters of the deep stacked forest algo-
rithm are set according to the settings of the deep forest
algorithm, as shown in Table 3.

1e difference is that in the deep stacked forest, when
sampling randomly, three scales and three times are used to
sample the original features. 1e sampling scales are (d/18,
d/10, d/5). 1e corresponding sampling times are 200, 100,
and 50, respectively.

Since the file-level data of the Eclipse defect data set are
the same in structure, one version of the defect data is taken
as the training data set training model. First, the Eclipse file-
level defect data sets are preprocessed; that is, the number of
module defects post is converted to whether there are defects
in the class label hasDefects. 1en, the gcForest algorithm is
used to construct a software defect prediction model and
classify and predict the training set 9 times. Finally, the DSF
algorithm is used to build a software defect prediction model
and classify to predict. When the training data set and the
test data set are from the same version, ten-fold cross-val-
idation is used.

4.3. Experimental Results. An encoder with only one hidden
layer is used to construct a software defect prediction model.
1e number of hidden layer nodes of the encoder is set to 100.
1e loss cost function uses the squared difference cost
function and the cross-entropy cost function, respectively,
and the prediction results have high correct rate, accuracy
rate, recall rate, F1-measure, AUC value, and running time
(average running time is taken during ten-fold cross-vali-
dation). 1e experimental data results are shown in Table 4,
and the comparative test results are shown in Figure 6.

1e encoder is used to extract the features of software
defect data.1ere is no need to define the features in advance
but only input the defect data into the network. 1e encoder
will learn to obtain the feature representation of the defect
data, and the obtained feature representation will be clas-
sified and predicted by logistic regression classifier, which
can achieve good prediction effect.

It shows that the prediction model using the square
difference cost function and the cross-entropy cost function
is basically the same in the prediction accuracy rate and

remains above 0.8, indicating that the prediction models
using the two cost functions have high predictive capabil-
ities; 1e prediction model using the cross-entropy cost
function is better than that using the square error cost
function, the prediction model of the function has advan-
tages in prediction accuracy, recall, F1-measure, AUC value,
and running time, and the running time of the prediction
model using the cross-entropy cost function is only about 1/
3 of the running time of the prediction model using the
square deviation cost function.

In the experiments, the deep stacked forest algorithm
mainly studies the influence of tree number andmodel depth
on predictive model performance in the stacked forest
structure and the effects of random sampling and stacked
forests on the performance of prediction models in the deep
stacked forest.

4.3.1. ?e Effect of the Depth of the Stacked Forest and the
Number of Trees on the Performance of the Prediction Model
in the Deep Stacked Forest Algorithm. In order to verify the
influence of the depth of the stacked forest and the number
of trees on the performance of the prediction model, a
software defect prediction model based on the stacked forest
is constructed where the depth of the stacked forest is one,
two, three, and four layers and the number of trees is 500.
1e prediction results are compared on the correct rate,
accuracy rate, recall rate, and running time (the average
running time was taken during ten-fold cross-validation).
1e experimental results are shown in Figure 7.

In Figure 7, for stacked forests of the same depth, when
the number of trees in the forest is less than 200, the
prediction accuracy and accuracy rates are basically in-
creasing, and the prediction recall rate is basically de-
creasing; when the number of trees in the forest is greater
than 200, its predictions of correct rate, accuracy rate, and
recall rate are all stable. When the number of trees in the
forest is less than 200, the learning ability of the random
forest and the completely random tree forest in the stacked
forest increases as the number of trees increases, so that the
stacked forest can learn more detailed data information.
1erefore, the performance of the prediction model in-
creases as the number of trees in the forest increases. When
the number of trees in the forest is greater than 200, the
learning ability of the random forest and the completely
random tree forest in the stacked forest has reached sat-
uration, and increasing the number of trees will not in-
crease the learning performance. 1erefore, the
performance of the prediction model is stable, but it can be
seen from the comparison figure of the running time that

Table 1: Statistical information of Eclipse defect data set files granularity.

Data set Feature number Number of samples Number of defects Defect rate (%)
Eclipse2.0 200 6854 725 10.58
Eclipse2.1 200 5578 695 12.46
Eclipse3.0 200 6940 763 10.99

Table 2: Experimental environment configuration.

Configuration Model
CPU Intel i7-10700, 8 cores 16 threads 4.8GHz
RAM 32G DDR4-3200
Operating system Windows 7 enterprise edition
Application MATLABR R2020a

Complexity 7



Table 3: Hyperparameter settings of gcForest and DSF.

Deep Forest (gcForest) Deep stacked forest (DSF)
Forest type: Forest type:
Random forest, completely random tree forest Random forest, completely random tree forest
Forest during multigranularity scanning: Forest at random sampling:
Number of forests: 2 Number of forests: 2
Trees in the forest: 20 Trees in the forest: 20

1e size of the sliding window:
d/18
d/10
d/5

⎧⎪⎨

⎪⎩ 1e size of the sliding window:
d/18
d/10
d/5

⎧⎪⎨

⎪⎩
Number of forests: 4 Random sampling times: 200, 100, 50 cascade forest:
Trees per tree in the forest: 200 Number of forests: 4, trees per tree in the forest: 200

Table 4: Experimental data results.

Index
1e prediction model of the squared

difference cost function
1e prediction model of cross-entropy cost

function
Prediction interval Average Prediction interval Average

Correct rate 0.83–0.88 0.85 0.83–0.88 0.85
Accuracy 0.28–0.59 0.40 0.29–0.60 0.41
Recall rate 0.19–0.43 0.28 0.20–0.45 0.30
F1-measure 0.25–0.49 0.33 0.26–0.52 0.34
AUC value 0.66–0.83 0.72 0.68–0.84 0.73
Operation hours 41 s–103 s 64 s 11 s–31 s 19 s
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Figure 6: Continued.
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Figure 6: Effect of different cost functions on prediction model performance: (a) accuracy prediction comparison; (b) comparison of
accuracy prediction; (c) recall prediction comparison; (d) forecast F1-measure comparison; (e) AUC value prediction comparison; (f ).
comparison of runtime forecasts
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the running time of the prediction model basically has a
linear growth relationship with the number of trees in the
forest. It is concluded that when the number of trees in the
forest is 200, the performance of the stacked forest reaches
the best. As for the number of identical trees in the stacked
forest, the deeper the stacked forest is, the more accurate
the prediction rate remains, and the prediction accuracy
rate shows a downward trend, but the prediction recall rate
shows an increasing trend. It is concluded that the three-
layer depth of the stacked forest is the best choice.

4.3.2. ?e Effect of Cascaded Forest and Stacked Forest on the
Performance of the Prediction Model. A software defect
prediction model based on deep stacked forests does not
perform feature transformation on random sampling and
only uses stacked forests for layer-by-layer learning. It is
compared with the software defect prediction model based
on deep forest which does not use multigranularity scan and
only uses cascade forest. 1e experimental results are
compared with correct rate, accuracy rate, recall rate, F1-
measure, AUC value, and running time (average running
time is used for ten-fold cross-validation). 1e experimental
results are shown in Figure 8.

In Figure 8, the result of using cascading forest is that the
prediction correct rate is between 0.84 and 0.89 and the
average is 0.86; the accuracy rate is between 0.30 and 0.67, and
the average is 0.48; the recall rate is between 0.15 and 0.40, and
the average is 0.25; the running time is between 402s and 688s,
and the average value is 533s.1e result of using stacked forest

is that the prediction correct rate is between 0.84 and 0.89 and
the average is 0.86; the accuracy rate is between 0.31 and 0.68,
and the average is 0.49; the recall rate is between 0.14 and 0.41,
and the average is 0.25; the running time is between 382s and
662s, and the average value is 510s.

1e above data shows that the employ of stacked forests
and cascaded forests has the same performance in prediction
correct rate, accuracy rate, and recall rate. However, using
stacked forests has an advantage in predicting running time
than using cascading forests, which can indicate that the
prediction models using stacked forests are better than those
using cascaded forests.

Comparing the two prediction models based on random
sampling and the two prediction models based on multi-
granularity scanning, it can be found that the prediction
accuracy rate is equivalent, the prediction accuracy rate is
slightly reduced, the prediction recall rate and runtime ef-
ficiency are different degrees of improvement, and especially
the increase in running time is larger. It can be explained that
the prediction model based on random sampling is superior
to the prediction model based on multigranularity scanning.
Comparing the two prediction models based on stacked
forests and the two prediction models based on cascaded
forests, it can be seen that the accuracy of prediction is
equivalent, the accuracy and recall of prediction are im-
proved to different degrees, and only a slight decrease in
running time is not obvious. It can be explained that the
prediction model based on stacked forest has better per-
formance than the prediction model based on cascaded
forest.
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Figure 7:1e effect of the depth of the stacked forest and the number of trees on the performance of the predictionmodel: (a) comparison of
accuracy prediction; (b) accuracy prediction comparison; (c) horizontal convergence of mine crossing; (d) comparison of runtime forecasts
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5. Conclusion

By improving the loss cost function and sparsity constraint
method of the traditional encoder, the improved encoder
uses cross-entropy loss cost function and L1 sparsity con-
straint rule and improves the robustness of the sparse en-
coder in order to eliminate the influence of noise on data. In
the experiment, the prediction model of the squared dif-
ference cost function is used for comparative testing. 1e
experimental data show that the prediction model based on
the sDSAE for feature extraction is better than the prediction
model without feature extraction or feature extraction based
on PCA. Although the prediction accuracy and accuracy are
slightly decreased, the prediction recall rate is greatly im-
proved. More importantly, there is a significant improve-
ment in the comprehensive evaluation index F1-measure,
and the feature is based on the sDSAE. 1e extracted pre-
diction model has a significant improvement in predicting
AUC value than the prediction model based on PCA for
feature extraction. It is proved that the feature extraction

method proposed in this paper has a positive meaning for
the performance improvement of the software defect pre-
diction model.
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