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Current development in a deep neural network (DNN) has given an opportunity to a novel framework for the reconstruction of a
holographic image and a phase recovery method with real-time performance..ere are many deep learning-based techniques that
have been proposed for the holographic image reconstruction, but these deep learning-based methods can still lack in per-
formance, time complexity, accuracy, and real-time performance. Due to iterative calculation, the generation of a CGH requires a
long computation time. A novel deep generative adversarial network holography (GAN-Holo) framework is proposed for
hologram reconstruction. .is novel framework consists of two phases. In phase one, we used the Fresnel-based method to make
the dataset. In the second phase, we trained the raw input image and holographic label image data from phase one acquired
images. Our method has the capability of the noniterative process of computer-generated holograms (CGHs). .e experimental
results have demonstrated that the proposed method outperforms the existing methods.

1. Introduction

As holographic display can precisely retrieve the wavefront
details of a three-dimensional entity, it emerges as a potential
future display technology. Using a spatial light modulator
(SLM), the holographic display typically shows the digitally
produced interference pattern called the computer-gener-
ated hologram (CGH) to resolve electronically the wavefront
of the coherent light source. Computer-generated holog-
raphy (CGH) is a methodology for calculating the holo-
graphic interference pattern that produces a random optical
field by using digital computers. .ere are various iterative
methods that have been used for generating CGH, including
the Fresnel method [1] and the Gerchberg–Saxton (GS)
method [2], the optimal-rotation-angle method [3], iterative
finite-element mesh adaption [4], quantized kinogram by
genetic algorithm [5], and vectorial beam shaping [6].

Computer-generated holography has been widely used in
many areas, including three-dimensional augmentation
reality [7], holographic projection [8], holographic dynamic
display [9], virtual and optical information security [10], and
optical tweezers [11]. However, iterative methods have some
issues and one of the major issues concerning the generation
of CGH is the heavy computation power required; it is time-
consuming and uses a lot of computer processing power, so
we need to save computation time and cost, as the com-
putational cost is high [12].

In recent years, deep learning plays a key role in the
technological revolution and is widely used in industrial and
scientific research fields. So, deep learning is becoming a hot
topic in the field of optics, as this method is faster to compute
and could provide a new framework in holographic image
reconstruction. .ere are several deep neural network-based
projects that have been proposed and applied in optics fields.
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Generative adversarial network (GAN) [13] is a type of
neural network architecture for generative modeling and has
grown widespread attention. So, GAN is constructed of two
separate neural network models: one is called the generator
or generative network model and the second is called the
discriminator or discriminative network model. Both
models need to be trained, so the generator model learns to
generate samples, while the discriminator model learns to
discriminate or differentiate generated samples.

In this paper, we proposed a generative adversarial
network (GAN) based on GAN-Holo, a novel generative
adversarial network-based generative holography using deep
learning. Since we need to generate hologram from the
image, so by taking advantage of the deep neural network, a
noniterative method is introduced based on a generative
adversarial network (GAN), where our model GAN-Holo is
trained by using a series of MNIST images as input and
hologram images as ground truth. However, in our proposed
method, the training datasets were generated by the tradi-
tional iterative method, that is, the Fresnel method as shown
in Figure 1.After training GAN-Holo, the MNIST image can
be used as the input data for the GAN-Holo model, and the
hologram image can be predicted in the GAN-Holo output.
To obtain optimal results, experiments with various
hyperparameter settings are carried out.

.e contribution of this paper is that the GAN-Holo
model generates a reasonable hologram image quality with
image resolution 128 x 128 of the reproduced intensity
pattern and faster as compared to iterative CGH methods
with the use of less computational power which is verified by
experiments and simulations.

.e rest of the article is organized as follows: Section 2
analyzes previous related work. Section 3 explains the
proposed method in the form of Phase 1 (Principle of
Fresnel) and Phase 2 (GAN-Holo). Section 4 discusses the
experimental evaluation of GAN-Holo and presents the
results. Section 5 concludes the paper.

2. Literature Review

In the research field of optics and computer vision, deep
learning models were used several years ago. .e authors in
[14] presented a novel deep learning approach to generate a
hologram. In this deep learning approach, the author pro-
posed a noniterative method using ResNet to generated the
holograms and then compared it with the iterative method
(Gerchberg–Saxton). In [15], to the best of our knowledge,
the authors presented a method to employ deep neural
networks to reduce losses in a JPEG compressed hologram,
as the reconstructed image of JPEG compressed hologram
suffers from extreme quality loss because, during the
compression process, certain high-frequency features in the
hologram will be lost. .e proposed framework in [16] is
called deep learning invariant hologram classification (DL-
IHC) and the authors introduced a self-attention to con-
volution neural network (CNN) to implement a classifica-
tion hologram of deformable objects. .e authors in [17]
presented a method of generating a multidepth hologram
and the strategy of its training by using a deep neural

network..e author trained the deep neural network in such
a way that, as an input, it takes images of different depths
and, as an output, it calculates the complex hologram. To
train the network with high performance and accuracy, the
proposed network and the dataset compositing were
structured with a different technique. Rather than a simple
image and hologram, the dataset consists of multiple input
images and their holograms. So, the strategy of the proposed
dataset enhances the accuracy of reconstructed images by
the network called deep learning holograms (DLHs).

In [18], the authors proposed a noniterative algorithm
based on a convolutional neural network with unsupervised
learning called DeepCGH that computes to enhance holo-
grams. In [19], a holographic vision system (HVS) was pro-
posed based on deep learning. .e proposed method HVS is
based on a hologram classification to identify holograms and
evaluatedwith the dataset of handwritten numerals. In [20], the
authors proposed a method that generates a binary hologram
based on deep learning. .is novel deep learning approach
generates binary hologram in the noniteration method. .e
generated binary holograms by neural network compared with
the previous methods and the results were faster than previous
work with enhanced quality. In [21], the authors presented
computer-generated holography (CGH) which is based on
deep learning. .e proposed method generates holograms
quite fast with high quality, so the performance of the proposed
technique is outperform because the baseline methods utilize
more computation power and time. In [22], the authors
proposed deep learning-based digital holographic microscopy
(DHM). .e network was trained with thousands of blurred
microparticle holograms flowing in a microtube. .e convo-
lution neural network (CNN) estimates the depth of the mi-
croparticles, Segnet and Hough transform used for the
detection of in-plane of microparticles. After training, the
performance of the proposedmethod to track the 3Dmotion of
microparticles was faster than the iterative method.

.e proposed framework in [23] for denoising digital
holograms based on deep learning is called the spectral
convolution neural network (SCNN). .e proposed tech-
nique uses just a single hologram to manage different
speckle-noise levels effectively instead of using traditional
filters to remove the speckle noise. .is novel technique is
faster than conventional approaches without losing output
performance. In [24], the authors introduced a novel
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Figure 1: Fresnel holography for a point.
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technique for the reconstruction of an object from a single
shot lensless measurement. .e proposed approach presents
a technique for mutually developing convolutional neural
networks and coded aperture to reconstruct an object. .is
novel method includes a deep learning system in which the
coded aperture is put as a first convolution layer is linked to
the coded aperture and the reconstruction network. In [25],
the authors proposed a novel algorithm denosing fringe
patterns. .e proposed algorithm recovers high-quality
fringe patterns compared with other denosing algorithms. In
[26], the authors presented a deep learning-based method
for denoising digital holographic speckle pattern interfer-
ometer (DHSPI) wrapped phase. .e method proposed is
very effective to extract the required information and reduce
speckle noise. .e application of the proposed method is to
detect defects in topography maps.

.e authors in [27] presented a novel approach based on
Super-Resolution Generative Adversarial Network (SRGAN)
called Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN), which is capable of generating an image
with better quality. In this approach, the authors thoroughly
studied how to improve the SRGAN and their losses.
Moreover, by introducing Residual in Residual Dense block
and to improve the perceptual loss made the ESRGAN ach-
ieves better quality with realistic results than SRGAN. In [28],
the author proposed an adversarial learningmethod for robust
satellite image superresolution reconstruction based on GAN
called Edge-Enhancement Generative Adversarial Network
(EEGAN). .e presented method consists of two networks:
the first network extracts features and gets an intermediate
high-resolution image and the second network enhances the
edge of the image then to combine the intermediate image and
the enhanced image gives a result with a clear image.

3. Proposed Method

In this section, the proposed model GAN-Holo is presented.
GAN-Holo consists of two phases as shown in Figure 2:
phase 1 and phase 2. Phase 1 consists of the principle of the
Fresnel method and phase 2 consists of the GAN-Holo
method. A detailed explanation is given below.

3.1. Principle of the FresnelMethod. As we use the traditional
Fresnel zone method to create the dataset for training our
proposed model GAN-Holo, in this section, we will discuss
the Fresnel method. As shown in Figure 1, such holograms
are classified as Fresnel zone plates.

To produce the Fresnel zone, it is important to consider
the distance between each pixel of the Fresnel zone plate and
the point of source. We can deduce the phase of the
wavefront from this distance:

r �
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ϕ � ϕ ref + cos
2πr

λ
􏼒 􏼓,

(1)

where ϕ ref is the wavefront and λ is the wavelength of the
illuminating light. P(x, y, z) is a random point on the

Fresnel zone plate which is generated by the random object
point O(x0, y0, z0). .en, we take the cosine of two-phase
differences to generate a hologram later.

3.2. GAN-Holo. GAN has already been applied in many
applications such as videos, images, labels, and text, as well
as in several other nonapplication specific processes. In this
paper, we proposed GAN-Holo architecture to generate
hologram images, which is based on a generative adversarial
network (GAN).

GAN-Holo architecture for generating hologram can be
defined as follows: GAN-Holo is a deep convolutional neural
network architecture, which consists of two networks in-
cluding generator (G) and discriminator (D) as shown in
Figure 3(a), competing against each other. .e role of G is to
create data in such a way so that it can fool the discriminator,
and D is the one that discriminates between two classes of
real and fake images. GAN-Holo structure that is going to be
implemented for generating hologram can be defined as
follows: as there are two types of deep neural networks, G
and D, G maps random Gaussian noise z under the con-
dition of observed image x to the hologram h:

G : x, z{ }⟶ h. (2)

In training the generator network, we aim to fool the
discriminator, so that the discriminator cannot be able to
decide whether the generated hologram image is real or fake:

LG(G, D) � 􏽘 logD(x, G(x; z)), (3)

where G is trying to force D to accept the generated ho-
logram images as real outputs. But at the same time, D is
trained to classify fake hologram images from the real ones:
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Figure 2: .e proposed method.
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Figure 3: (a) .e general structure of GAN-Holo; (b) generator; and (c) discriminator.
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LD(G, D) � 􏽘 logD(x, h) + log(1 − D(x, G(x, z))). (4)

In the above equation, the first part represents the
training of the discriminator that is to train the discrimi-
nator network with real input images and real label images
(holograms), while the second part is to train the generator
network to create fake hologram images.

GAN consists of two “adversarial” networks: the one
generative network G that generates the hologram images
and the second discriminator network D that estimates the
probability of the generated hologram image coming from G
or training data. Both G and D are trained at the same time:
we refine parameters for D to maximize logD(x, h) and
refine parameters for G to minimize log(1 − D(G(x, z))), as
these two are players for the max–min game with the value
function V (D, G) and the objective function of this
max–min game would be as

min
G

max
D V(D, G) �

min
G

max
D Ex∼pdata(x)[logD(x, h)]􏼐

+ Ez∼pz(z)[log(1 − D(G(x, z))]􏼑.
(5)

In Figure 4, the black curve (pdata) represents real data
points, the green curve (pg) represents distribution gener-
ated by GAN-Holo, and the blue curve (D (x)) is the
confidence of the discriminator. In Figure 4(a), the pg is
almost similar to pdata and D is not good to discriminate. D
is trained enough to discriminate pdata from pg in
Figure 4(b). After training G, G (z) is guided by the gradient
of D to change those regions which are the same as the
original data. In Figure 4(d), after a few more steps of
training pg� pdata, at this point, both G and D cannot
improve more and the discriminator cannot differentiate
between the real data and the generated data by G.

.e network architecture of GAN-Holo is illustrated in
Figure 3(a). GAN-Holo consists of a generator (Figure 3(b))
and a discriminator (Figure 3(c))..e generator consists of a
contracting path (upper side) and an expensive path
(downside). .e generator consists of a total of 22 convo-
lution layers..e contracting path follows the architecture of
a convolution network. .e contracting part consists of
repeated two 3 x 3 convolutions, each followed by ReLU
(rectified linear unit), batch normalization, and 2 x 2 max
pooling for downsampling. After each max pooling, the
number of featuremaps gets double, as shown in Figure 3(b),
the generator is starting with 64 feature maps and then 128,
and so on. Upsampling of feature maps happens in the
expansive path that halves the number of feature channels

followed by a 2 x 2 convolution, which is called upconvo-
lution. From contracting path, a concatenation occurs with
the corresponding copy and crop feature map (skip con-
nection) and two 2 x 2 convolutions. Each convolution is
followed by ReLU (rectified linear unit) and batch nor-
malization. .e copy or crop feature map is necessary to
prevent the loss in every convolution..e final layer consists
of 1x1 convolution which is used to map feature vector to the
desired number of classes..e discriminator in Figure 3(c) is
a standard convolution neural network architecture with 8
convolution layers.

4. Experimental Demonstration

In this section, we present the dataset used in the process of
our training and testing setup. .e real ground-truth ho-
lograms were generated by the Fresnel method using
MATLAB..e training datasets are composed of images “x”
which were a handwritten digit dataset and hologram “h”
and the number of pairs was 64,000, which were split into
80% for training and 20% for validation. All input 2D images
and output hologram images were scaled to 128×128 res-
olution..e pixel counts for a small percentage of the dataset
for testing setup were conducted after the training process.
For optimizing the network, a learning algorithm called
“Adam” was used with an initial learning rate of 0.0001,
batch size 8, and the number of epochs was 100..e code for
GAN-Holo was implemented with PyTorch v1.2.0 library
and Python 3.5 on Ubuntu operating system and the code
for the dataset was implemented in MATLAB.

To display the hologram on a system shown in Figure 5,
we use He–Ne Laser with the power of 15mW. .e SLM is
phase-only liquid-crystal-on-silicon (LCoS) SLM (Holoeye
Pluto VIS) with 1920×1080 pixels and an 8 μm pixel pitch.
.e refresh rate is 60Hz. .e SLM is capable of working in
phase-only modulation mode with a modulation depth of
more than 2π for visible light.

To evaluate the performance of GAN-Holo for generating
hologram, we used data for testing the trainedGAN-Holo that
is not included in the training data. In Figure 6, there are four
sets of images with a different handwritten digit predicted by
the GAN-Holo..e four target intensity patters in Figure 6(a)
consist of three digits; those were randomly chosen from
MNIST handwritten digit dataset, the ground truth of the
target intensity pattern of the hologram in Figure 6(b), the
reconstructed images of hologram in Figure 6(c), the holo-
gram of theGSmethod in Figure 6(d), and their reconstructed
images of hologram in Figure 6(e), the hologram images were

D (x)

p data

pg

(a) (b) (c) (d)

Figure 4: Illustrating a GAN-Holo learning to map uniform noise to the normal distribution.
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predicted by the training network GAN-Holo in Figure 6(f)
and the reconstructed images of hologram in Figure 6(g). .e
root mean square error (RMSE) between the reconstructed
images of the hologram of target intensity patterns in Figure
6(c) and the reconstructed image of the proposed method
results in Figure 6(e) is 0.07. .e RMSE between Figures 6(c)
and 6(g) is 0.09.

For generating a single hologram, when using a computer
with IntelCoreTM i7-7820X CPU@3.60GHz×; 13, the
GeForce GTX 1080 (NVIDIA) and memory 16GB, the
computational time based on GAN-Holo and the Fresnel
method was 5ms, 16ms, and 94ms, respectively. .erefore,
the GAN-Holo method compared to the conventional iter-
ative methods calculates holograms with a shorter compu-
tational time..e time took for training GAN-Holo was 20 h.

5. Conclusions

In this paper, we proposed a GAN-Holo method based on a
deep convolution neural network for the generation of CGHs,

which is a noniterative method. After comparing our results
with the traditional iterative method, that is, the Fresnel
method, the demonstration showed that our proposedmethod
compared with the iterative method has reasonable results
with 3 times shorter computation time. Furthermore, the
proposedmethod, that is, GAN-Holo for calculating the CGH,
which is based on the generative adversarial network has stable
performance and there is no need to adjust parameters.

Data Availability

No data were used to support this study. We have conducted
the simulations to evaluate the performance of the proposed
technique. However, any query about the research con-
ducted in this paper is highly appreciated and can be asked
from the principal author Aamir Khan upon request.
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Figure 6: Test result by the GAN-Holo. (a) Target intensity patterns. (b) Hologram of target intensity patterns. (c) .eir reconstructed
images. (d) Hologram of the Gerchberg–Saxton (GS) method. (e) .eir reconstruction images. (f ) Proposed method results. (g) .eir
reconstructed images.
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