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As a tool for analyzing time series, grey prediction models have been widely used in various fields of society due to their higher
prediction accuracy and the advantages of small sample modeling. .e basic GM (1, N) model is the most popular and important
grey model, in which the first “1” stands for the “first order” and the second “N” represents the “multivariate.”.e construction of
the background values is not only an important step in grey modeling but also the key factor that affects the prediction accuracy of
the grey prediction models. In order to further improve the prediction accuracy of the multivariate grey prediction models, this
paper establishes a novel multivariate grey prediction model based on dynamic background values (abbreviated as DBGM (1, N)
model) and uses the whale optimization algorithm to solve the optimal parameters of the model. .e DBGM (1, N) model can
adapt to different time series by changing parameters to achieve the purpose of improving prediction accuracy. It is a grey
prediction model with extremely strong adaptability. Finally, four cases are used to verify the feasibility and effectiveness of the
model. .e results show that the proposed model significantly outperforms the other 2 multivariate grey prediction models.

1. Introduction

Time series prediction has always been an important issue
in economic, finance, marketing, as well as social prob-
lems. With the development of science and technology,
various forecasting methods emerge in endlessly. At
present, hundreds of tools for analyzing time series have
been developed, such as LR (linear regression), ARIMA
(autoregressive integrated moving average) [1], and
dendritic neuron model [2, 3]. However, these prediction
models can only be established under the condition of
large samples. As we all know, there are some applications
that are difficult to obtain large sample data in our real
life. For example, holing and sampling are an important
means to analyze the oil and gas reserves of some region;
however, the cost of holing is too high to drill many holes.
.erefore, we cannot obtain the large number of sample
data on oil and gas reserves. Faced with this small sample
situation, the traditional forecasting model is obviously
no longer applicable.

Grey prediction models play an important role in the
grey system theory, which was pioneered by Deng [4]. At
present, grey prediction models have been widely used in
various fields of society due to their high prediction accuracy
and the advantages of small sample modeling [5–12].
Depending on the number of variables required for mod-
eling, grey prediction models can be divided into univariate
grey prediction models and multivariable grey prediction
models. .e GM (1, 1) model is the most basic univariate
grey prediction model and is a model for predicting time
series with high uncertainty. .e GM (1, N) model is the
most basic multivariate grey prediction model, and it is used
to predict time series affected by several different factors. At
present, scholars mainly focus on the improvement of the
GM (1, 1) model, but there are few studies on the im-
provement of the GM (1, N) model. To fill this gap, Zeng
et al. established a new optimized grey prediction model and
confirmed the feasibility and effectiveness of the model
through examples [12]; in order to increase the adaptability
of the multivariable grey prediction model, Wang
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established a multivariable grey prediction model with
time power terms [13]; Xie et al. established a discrete
multivariate grey prediction model [14]; in order to
further improve the adaptability of the discrete multi-
variable grey prediction model, Ding et al. proposed a
discrete multivariable grey prediction model with time
power terms [15]; Considering that the discrete multi-
variable grey model has the problem of low model ac-
curacy, Ding et al. proposed a multivariate discrete grey
prediction model with time delay effect [16]; Ma et al.
established a new multivariable grey prediction model
with fractional order accumulation [17] and so on. .ese
improvements all further improved the accuracy of the
multivariable grey prediction model and expanded the
grey system theory.

.ere are countless measures to improve the GM (1,
N) model, but there are very few measures to optimize the
background values of the GM (1, N) model. In order to
make up for this shortcoming, this paper will establish a
new the background values of the multivariate grey
prediction model. .e rest of this paper is organized as
follows. .e preliminary knowledge required in this ar-
ticle are displayed in Section 2, including the concept of
basic multivariable grey prediction model, error analysis,
and the optimized GM (1, N) model. Section 3 introduces
the method of using the whale optimization algorithm to
solve the new model. In Section 4, the advantages of the
new model over the traditional grey model are illustrated
by four real cases. .e conclusion of this study is dis-
cussed in Section 5.

.e main contributions of this paper are drawn as
follows:

(1) .is paper proposes the idea of dynamic background
value and combines it with the grey prediction model

(2) .is paper uses the whale optimization algorithm to
solve the optimal parameters of the model

(3) .e model proposed in this paper is successfully
applied to the case of energy consumption in China

2. Preliminary Knowledge

2.1. $e Basic Multivariate Grey Prediction Model-GM (1, N)
Model
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is called the whitening differential equation of the multi-
variate grey forecasting model (GM (1, N) model).
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are called the background values. .e parameters
a, b1, b2, . . ., and bN of the GM (1, N) model are usually
estimated using the least square method, namely,
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.e discrete form of the solution of equation (2) can be
written as
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which is usually called the response function of the GM (1,
N) model. According to the first-order cumulative reduction
formula, the prediction formula of the GM (1, N) model can
be obtained, namely,

x
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1 (k), k � 1, 2, . . . , n, . . . , m,

(8)

where n is the number of samples needed to build the model
and m-n is the number of data that needs to be predicted.

2.2. Error Analysis of the GM (1, N) Model. According to
equation (7), it can be seen that the prediction accuracy of
the GM (1, N) model depends on the parameters
a, b1, b2, . . . , bN, and the parameters are closely related to the
background values. .erefore, the background values of the
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GM (1, N) model are the key factors that influencing the
prediction accuracy of the GM (1, N) model.

Considering the integration of equation (2) in the in-
terval [k − 1, k], it follows
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Comparing equation (2) with equation (10) shows that
the original GM (1, N) model uses z
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tively, which creates errors.

2.3.DynamicBackgroundValues. .is section will introduce
the preliminary knowledge needed to establish the opti-
mized GM (1, N) model.

According to the nature of grey modeling, we can know
that the time series X
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see that x(1)(t) is continuous in the interval [k − 1, k]; then,
according to the knowledge of advanced mathematics, the
following formula can be obtained:
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.is article provides a simple proof process, as shown in
Lemma 1.

Lemma 1 (the second mean value theorem). If function
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When Lemma 1 satisfies equation (12), we can get the
following equation:
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Using equation (11) to replace the equation (4) in the
GM (1, N) model, the background value of the optimized
GM (1, N) model is obtained, namely,
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It can be seen that the parameters λk− 1, k � 1, 2, . . . , n are
dynamic values, which will change with the change of
x
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.erefore, this article calls them dynamic background
values.

2.4. $e Optimized GM (1, N) Model Based on Dynamic
BackgroundValues. .is section will introduce in detail how
to optimize the GM (1, N) model.

Considering the integration of equation (2) in the in-
terval [k − 1, k], it follows
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According to formula (14) and the trapezoidal formula,
we can get the expression form of the parameter estimation
formula of the optimized GM (1, 1, N) model, namely,
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.e GM (1, N) model with the same parameter esti-
mation formula as formula (16) is called the optimized GM

(1, N) model based on dynamic background values (ab-
breviated as DBGM (1, 1, N) model).
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Similarly, according to the least square method, the
parameter estimation method of the DBGM (1, 1, N) model
can be obtained, namely,
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According to the first-order cumulative reduction for-
mula, the prediction formula of the DBGM (1, N) model can
be obtained, namely,

x
⌢(0)

1 (k + 1) � x
⌢(1)

1 (k + 1) − x
⌢(1)

1 (k), k � 1, 2, . . . , n, . . . , m,

(20)

where n is the number of samples needed to build the model
and m-n is the number of data that needs to be predicted.

3. Solving Method of the DBGM (1, N) Model

3.1.Method forDeterminingParameters λk of theDBGM(1,N)
Model. It should be noticed that the parameters λk have
been assumed to be given before we build the proposed

model. Actually, selection of the optimal values of λk is also a
significant issue, as it plays an important role in improving
accuracy of the DBGM (1, N) model. In this section, we will
present the details on how to compute the optimal values of
λk based on the whale optimization algorithm. .e objective
of the optimal values of λk should make the proposed model
have the highest accuracy with the given sample. .erefore,
we just establish an optimization problem of which the
objective is to minimize the error of the proposed model by
changing the values of λk, and the constraints follow the
modeling steps of the proposed model. In this paper, we
choose the mean absolute percentage error (MAPE) as the
criteria to evaluate the validation error of the proposed
model, and then mathematical formulation of the optimi-
zation problem can be written as
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It can be seen that the abovementioned planning
problem is very complicated, and conventional methods
cannot be used to solve this planning problem. .erefore,
this article will introduce how to use the whale algorithm to
solve this planning problem (see the next section for details).

3.2. $e Whale Optimization Algorithm. Inspired by the
social behavior of humpback whale groups, Mirijalili and
Lewis proposed the whale optimization algorithm
(WOA) in 2016 [18]. At present, WOA has been widely
used in bioinformatics [19], image processing [20], and

other fields due to its excellent performance. At the same
time, WOA is also used to solve nonlinear programming
problems which are more complex than problem (21)
[21]. .erefore, this paper chooses WOA to solve the
nonlinear programming problem (21). .e main idea of
WOA is as follows.

When whales prey, they move in a spiral to surround the
school of fish currently considered the best target. .en,
these whales update their positions based on the candidate
target. .is behavior can be expressed by a mathematical
formula, namely,
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(i) represents the current position of the whales,
P
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(i) represents the current best position of the whales, r
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a random number in the interval [0, 1], l is a stochastic
number in the interval [− 1, 1], β is an arbitrary constant
which determines the shape of the spiral movement, T is the
maximum number of iterations of the algorithm, and ξ is a
probability to choose a movement strategy from encircling
and spiral moving behaviors. When the norm of D

→
is greater

than 1, the position of all whales is updated based on the
position of a whale randomly selected. .is model can also
be expressed by mathematical formulas, namely,

P
→

(i + 1) � P
→

r(i) − C
→

· 2P
→

r(i) · r
→

− P
→

(i)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (23)

where P
→

r(i) is the position of a randomly selected whale in
the herd.

Since the original WOA is designed for unconstrained
planning problems, it cannot be directly used to solve op-
timization problems with constraints. .erefore, a fitness
function needs to be established to calculate the fitness of
each whale agent. According to the nonlinear programming
problem described in Section 4.1, the fitness function can be
described as

fitness �
1

n − 1
􏽘

n

t�1

x
(0)
1 (t) − x

⌢(0)

1 (t)

x
(0)
1 (t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%. (24)

It is worth noting that the authors use the WOA algorithm
to solve the model which does not mean thatWOA is the most
suitable algorithm for solving the model. .e WOA algorithm
is used only for the purpose of solving model parameters. In
fact, there is a more complete algorithm than the WOA al-
gorithm. For example, the performance of Chaotic Local
Search-based Differential Evolution Algorithms for Optimi-
zation proposed in reference [22]and the aggregate learning
gravitational search algorithm with self-adaptive gravitational
constants proposed in reference [23] is better than WOA, and
readers can refer to it by themselves.

3.3.$eComputational Steps. According to the principles of
the DBGM (1, N) model, the computational steps can be
summarized as follows:

Step 1. Calculate the parameters λk of the model according
to the method described in Section 3.1.

Complexity 5



Step 2. Bring the parameters λk obtained in Step 1 into
equation (14) to calculate the dynamic background values.

Step 3. Bring the dynamic background values into equation
(17) to calculate the least squares parameters of the DBGM
(1, N) model.

Step 4. Put the least squares parameters obtained in Step 3
into equation (19) to get the predicted results of the DBGM
(1, N) model

Step 5. Compute the predicted values of x
⌢(0)

1 (k + 1) using
the 1-IAGO equation (20)

3.4. Evaluation Indices of the Modeling Accuracy. .e mean
absolute percentage error (MAPE) and the absolute per-
centage error (APE) are used to assess the accuracy of the
prediction models, which are defined as follows:

MAPE �
1
n

􏽘

n

k�1

x
(0)
1 (k) − x

⌢(0)

1 (k)

x
(0)
1 (k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

APE(k) �
x

(0)
1 (k) − x

⌢(0)

1 (k)

x
(0)
1 (k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%,

(25)

where x
(0)
1 (k) is the original series and x

⌢(0)

1 (k) is the fitted or
predicted series.

4. Application

In this section, the advantages of the DBGM (1, N) model
over the other grey models are demonstrated by four real
cases. .ese models include the GM (1, N) model, ARIMA,
ANN, and the optimized GM (1, N) model based on the
Simpson formula (abbreviated as Model 1) [24] (only op-
timization measures of the same type are meaningful for
comparison; the authors only found an article discussing
optimizing the background value of the GM (1, N) model;
therefore, this article chooses to use the model proposed in
this document for comparison). Table 1 briefly lists the basic
information for each data set.

4.1. SelectionMethodofNof$reeModels. As we all known, a
country’s energy consumption is closely related to the
country’s economic situation and population..erefore, this
article chooses the population and GDP as the influencing
factors; that is, China’s electricity consumption is set to
X

(0)
1− case: 1, China’s energy consumption is set to X

(0)
1− case: 2,

China’s per capita living energy consumption is set to
X

(0)
1− case: 3, China’s per capita living electricity consumption is

set to X
(0)
1− case: 4, the population is set to X

(0)
2 , and the GDP is

set to X
(0)
3 .

4.2. Case 1: Forecasting China’s Electricity Consumption.
With the continuous progress of human society and the
continuous improvement of living standards, the problem of
energy shortage has become a hot issue that humans pay

close attention to. As one of the most important energy
sources, electricity plays an important role in the power
system and is the main driving force for the development of
the country and society. Especially, short-term electricity
demand forecast is more important in power system
planning, including the scheduling of fuel purchases, the
economic dispatch of production capacity, and power sys-
tem management. However, unlike other energy sources,
electricity cannot be stored on a large scale. If the power
consumption is overestimated, the power system operators
will be misled to make inappropriate decisions, resulting in
increased operating costs and wasted energy. If the power
consumption is underestimated, consumers will face elec-
tricity shortage. Bunn and Farmer pointed out that for every
1% increase in the forecast error of power production, the
operating value will be lost by 10 million dollars [25].
.erefore, the power market needs an accurate and effective
forecasting method to predict the electricity consumption.

In this section, the DBGM (1, N) model will be used to
forecast China’s electricity consumption. .e raw data of
China’s electricity consumption from 2005 to 2017 are
collected from the official website National Bureau of Sta-
tistics of China, which are listed in Table 1 (http://www.stats.
gov.cn/english/). .e points from 2005–2011 are used for
building the prediction models, and the last 6 points are used
for testing the prediction accuracy of the models. .e
prediction results of the five prediction models are shown in
Table 2. .e parameters of the three grey prediction models
in this case are shown in Table 3. .e graphs of the predicted
values and MAPEs of the three prediction models are also
plotted in Figure 1 (it is worth noting that only the indicators
of the three grey prediction models are given in the figure;
the purpose is to let people more intuitively see the degree of
difference between three models of the same type).
According to the predicted results shown in Table 2, it can be
seen that the predicted results of the DBGM (1,N) model are
the closest to the actual values, while the performance of
ANN is the worst. It can also be seen from the curves shown
in Figure 1 that the predicted values of the DBGM (1, N)
model are the closest to the actual values. .erefore, the
DBGM (1, N) model shows the best prediction performance
in this case.

4.3. Case 2: Forecasting China’s Energy Consumption. As a
basic resource, energy not only plays an important role in
promoting economic development but also is closely related
to people’s daily life; the production and consumption of
energy also have an important impact on the ecological
environment. Scientific and accurate prediction of energy
consumption is the premise of formulating energy devel-
opment plan. In this section, the DBGM (1, N) model will be
used to forecast China’s energy consumption. .e raw data
of China’s energy consumption from 2005 to 2019 are
collected from the official website National Bureau of Sta-
tistics of China, which are listed in Table 1 (http://www.stats.
gov.cn/english/). .e points from 2005–2011 are used for
building the prediction models, and the last 8 points are used
for testing the prediction accuracy of the models. .e
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prediction results of the five prediction models are shown in
Table 4. .e parameters of the three grey prediction models
in this case are shown in Table 5..e graphs of the predicted
values and MAPEs of the three prediction models are also
plotted in Figure 2. According to the predicted results shown
in Table 4, it can be seen that the predicted results of the
DBGM (1,N) model are the closest to the actual values, while
the performance of ANN is the worst. It can also be seen
from the curves shown in Figure 2 that the predicted values
of the DBGM (1,N) model are the closest to the actual values.
.erefore, the DBGM (1,N) model shows the best prediction
performance in this case.

4.4. Case 3: Forecasting China’s per Capita Living Energy
Consumption. With the advancement of urbanization,
economic growth, and the improvement of the living
standards of residents, the demand for energy in China has
been greatly increased, in which the energy consumption of
residents shows the characteristics of rapid growth, ac-
counting for a large proportion of China’s total energy
consumption.Whether the future energy supply can support
the sustainable growth of China’s economy has become a
topic of concern at home and abroad..erefore, it is of great
practical significance to accurately predict the per capita
living energy consumption in the future for maintaining the

Table 1: .e raw data of national electricity consumption (X
(0)
1− case: 1) (10

2 million kilowatt hours), national energy consumption (X
(0)
1− case: 2)

(104 tons of standard coal), per capita living energy consumption (X
(0)
1− case: 3) (kg standard coal), per capita living electricity consumption

(X
(0)
1− case: 4) (kWh), GDP (X

(0)
1 ) (100 million yuan), and population (X

(0)
2 ) (104) of China.

Year X
(0)
1− case: 1 X

(0)
1− case: 2 X

(0)
1− case: 3 X

(0)
1− case: 4 X

(0)
2 X

(0)
3

2005 24940.32 261369.00 211.00 221.30 185998.90 130756.00
2006 28587.97 286467.00 230.00 255.60 219028.50 131448.00
2007 32711.81 311442.00 250.00 308.30 270704.00 132129.00
2008 34541.35 320611.00 254.00 331.90 321229.50 132802.00
2009 37032.14 336126.00 264.00 366.00 347934.90 133450.00
2010 41934.49 360648.00 273.00 383.10 410354.10 134091.00
2011 47000.88 387043.00 294.00 418.10 483392.80 134735.00
2012 49762.64 402138.00 313.00 460.40 537329.00 135404.00
2013 54203.41 416913.00 335.00 515.00 588141.20 136072.00
2014 56383.69 425806.00 346.10 526.00 644380.20 136782.00
2015 58019.97 429905.00 365.40 551.70 686255.70 137462.00
2016 61297.09 435819.00 393.20 610.80 743408.30 138271.00
2017 64820.97 448529.14 415.60 654.30 831381.20 139008.00
2018 — 464000.00 — — 914327.10 139538.00
2019 — 486000.00 — — 988528.90 140005.00

Table 2: .e predicted values and APEs of the GM (1, N) model, Model 1, and DBGM (1, N) model in Case 1.

Year Data GM (1, N) ARIMA Model 1 ANN DBGM (1, N)
Value Value Value Value Value

2005 24940.32 24940.32 24919.06 24940.32 31149.99 24940.32
2006 28587.97 24931.51 28617.08 35977.41 31664.68 28547.98
2007 32711.81 34392.70 32264.73 37604.89 32710.67 32714.83
2008 34541.35 36093.31 36388.57 37705.47 34539.62 34848.43
2009 37032.14 37382.43 38218.11 38617.09 37030.69 36456.12
2010 41934.49 41668.96 40708.90 41350.29 39477.81 40315.03
2011 47000.88 46814.53 45611.25 44572.92 41220.20 44824.68
MAPE 4.0662% 2.2833% 10.1342% 7.6900% 1.8476%
2012 49762.64 50647.92 50677.64 46989.86 42196.80 48177.3
2013 54203.41 54266.48 54354.40 49273.87 42672.16 51340.08
2014 56383.69 58269.41 58031.16 51796.65 42887.64 54837.29
2015 58019.97 61264.64 61707.92 53702.03 42982.16 57458.68
2016 61297.09 65341.15 65384.68 56281.35 43023.03 61022.74
2017 64820.97 71566.98 69061.44 60161.17 43040.58 66450.42
MAPE 4.6395% 4.1010% 7.6026% 24.9576% 2.5233%

Table 3: .e parameters of the DBGM (1, N) model in case 1.

λ1 0.246498517196419 λ4 0.165930206117063
λ2 0.260923125460083 λ5 0.13367356521186
λ3 0.175425341050139 λ6 0.146453282407925
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healthy, sustainable, and stable development of China’s
social economy.

In this section, the DBGM (1, N) model will be used to
forecast China’s per capita living energy consumption. .e
raw data of China’s per capita living energy consumption
from 2005 to 2017 are collected from the official website
National Bureau of Statistics of China, which are listed in
Table 1 (http://www.stats.gov.cn/english/). .e points from
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Figure 1: Schematic of the prediction results and MAPEs of the three prediction models (Case 1).

Table 4: .e predicted values and APEs of the GM (1, N) model, Model 1, and DBGM (1, N) model in Case 2.

Year Data GM (1, N) ARIMA Model 1 ANN DBGM (1, N)
Value Value Value APE Value

2005 261369.00 261369.00 261128.60 261369.00 276860.63 261369.00
2006 286467.00 252668.07 282314.70 306444.41 294299.11 285217.83
2007 311442.00 338789.79 307412.70 308711.04 311258.56 311142.17
2008 320611.00 337353.50 332387.70 326945.24 323401.10 320592.66
2009 336126.00 339555.68 341556.70 337062.90 330319.83 329890.45
2010 360648.00 360915.57 357071.70 359276.85 333759.28 351505.13
2011 387043.00 387839.38 381593.70 385095.99 335353.26 376658.27
MAPE 4.5170% 1.5034 1.8314% 4.5898% 1.2686%
2012 402138.00 408286.88 407988.70 404479.99 336067.92 395545.34
2013 416913.00 427683.99 428934.30 422803.23 336383.56 413399.32
2014 425806.00 449124.28 449880.00 443035.25 336522.05 433112.87
2015 429905.00 465330.08 470825.70 458348.46 336582.63 448035.34
2016 435819.00 487260.64 491771.30 479052.75 336609.10 468210.02
2017 448529.14 520214.04 512717.00 510087.60 336620.66 498445.42
2018 464000.00 551023.68 530792.00 539078.33 336625.71 526687.47
2019 486000.00 578574.13 548891.00 565001.18 336627.91 551940.77
MAPE 10.4272% 9.2494% 8.5923% 23.0402% 6.7569%

Table 5: .e parameters of the DBGM (1, N) model in case 2.

λ1 0.282647400815219
λ2 0.233990774241901
λ3 0.17280982915996
λ4 0.21819042078408
λ5 0.142141297016142
λ6 0.170299848104227
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2005–2011 are used for building the prediction models, and
the last 6 points are used for testing the prediction accuracy
of the models. .e prediction results of the five prediction
models are shown in Table 6. .e parameters of the three
grey prediction models in this case are shown in Table 7..e
graphs of the predicted values and MAPEs of the three
prediction models are also plotted in Figure 3. According to
the predicted results shown in Table 6, it can be seen that the
predicted results of the DBGM (1,N) model are the closest to
the actual values, while the performance of ANN is the
worst. It can also be seen from the curves shown in Figure 3
that the predicted values of the DBGM (1, N) model are the
closest to the actual values. .erefore, the DBGM (1, N)
model shows the best prediction performance in this case.

4.5. Case 4: Forecasting China’s per Capita Living Electricity
Consumption. In this section, the DBGM (1, N) model will
be used to forecast China’s per capita living electricity
consumption. .e raw data of China’s per capita living
electricity consumption from 2005 to 2017 are collected
from the official website National Bureau of Statistics of
China, which are listed in Table 1. .e points from
2005–2011 are used for building the prediction models, and
the last 6 points are used for testing the prediction accuracy
of the models. .e predicted results of the five prediction
models are shown in Table 8. .e parameters of the three
grey models in this case are shown in Table 9. .e graphs of
the predicted values and MAPEs of the three prediction
models are also plotted in Figure 4. According to the
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Figure 2: Schematic of the prediction results and MAPEs of the three prediction models (Case 2).
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Table 6: .e predicted values and APEs of Model 1, DBGM (1, N) model, and DBGM (1, N) model in Case 3.

Year Data GM (1, N) ARIMA Model 1 ANN DBGM (1, N)
Value Value Value Value Value

2005 211.00 211.00 210.80 211.00 214.90 211.00
2006 230.00 206.44 224.83 256.41 226.84 229.97
2007 250.00 276.90 243.83 247.59 240.81 250.05
2008 254.00 270.27 263.83 257.71 253.96 255.31
2009 264.00 267.61 267.83 263.51 264.06 261.84
2010 273.00 277.92 277.83 275.74 270.67 277.20
2011 294.00 292.30 286.83 289.90 274.55 295.07
MAPE 5.1927% 2.0483% 2.7487% 2.0576% 0.5455%
2012 313.00 303.56 301.78 300.65 276.69 308.52
2013 335.00 314.35 321.67 310.83 277.82 321.25
2014 346.10 326.28 335.50 322.06 278.41 335.30
2015 365.40 335.39 349.33 330.64 278.72 345.96
2016 393.20 347.65 363.17 342.18 278.87 360.35
2017 415.60 365.78 377.00 359.18 278.95 381.82
MAPE 7.7820% 5.3251% 9.0282% 22.3174% 5.0765%

Table 7: .e parameters of the DBGM (1, N) model in case 3.

λ1 0.237863478530702
λ2 0.221644977938906
λ3 0.197341998072282
λ4 0.202700462830069
λ5 0.204137880434895
λ6 0.212239660389898
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Figure 3: Schematic of the prediction results and MAPEs of the three prediction models (Case 3).
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Table 8: .e predicted values and APEs of GM (1, N) model, Model 1, and DBGM (1, N) model in case 4.

Year Data GM (1, N) ARIMA Model 1 ANN DBGM (1, N)
Value Value Value Value Value

2005 221.30 221.30 221.11 221.30 227.42 221.30
2006 255.60 240.94 254.10 327.40 257.01 254.83
2007 308.30 373.94 288.40 327.10 293.95 308.64
2008 331.90 395.49 341.10 346.53 332.40 326.09
2009 366.00 392.20 364.70 361.35 365.54 340.84
2010 383.10 409.90 398.80 396.04 389.77 379.82
2011 418.10 438.25 415.90 436.52 405.44 425.65
MAPE 10.8605% 2.1255% 7.9417% 1.8593% 1.9500%
2012 460.40 461.18 450.90 466.67 414.78 459.69
2013 515.00 484.34 483.70 495.11 420.08 491.80
2014 526.00 510.89 516.50 526.56 423.00 527.31
2015 551.70 531.08 549.30 550.18 424.59 553.90
2016 610.80 558.72 582.10 582.25 425.44 590.06
2017 654.30 600.59 614.90 630.96 425.90 645.26
MAPE 4.9114% 3.5171% 2.3079% 22.7027% 1.6802%

Table 9: .e parameters of the DBGM (1, N) model in case 4.

λ1 0.248960151416752
λ2 0.169312447148524
λ3 0.0630113530345103
λ4 0.0678129171926627
λ5 0.0386927228323062
λ6 0.0455837881864904
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Figure 4: Schematic of the prediction results and MAPEs of the three prediction models (Case 1).
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predicted results shown in Table 8, it can be seen that the
predicted results of the DBGM (1,N) model are the closest to
the actual values, while the performance of ANN is the
worst. It can also be seen from the curves shown in Figure 4
that the predicted values of the DBGM (1, N) model are the
closest to the actual values. .erefore, the DBGM (1, N)
model shows the best prediction performance in this case.

5. Conclusions

In this paper, we proposed a novel multivariate grey
model based on dynamic background values (abbreviated
as DBGM (1, N) model), along with a whale algorithm-
based algorithm to optimize its unknown parameters. .e
DBGM (1, N) model can adapt to different time series by
changing parameters to achieve the purpose of improving
prediction accuracy. It is a grey prediction model with
extremely strong adaptability. In order to verify the
feasibility and effectiveness of the DBGM (1,N) model, the
DBGM (1, N) model, GM (1, N) model, ARIMA, ANN,
and Model 1 (Model 1 is another optimized GM (1, N)
model proposed in this paper, that is, the optimized GM
(1, N) model based on the Simpson formula) are applied to
four real cases. .e results of four cases show that the
prediction accuracy and fitting accuracy of the DBGM (1,
N) model proposed in this paper have been greatly im-
proved compared with those of the GM (1, N) model, and
the prediction accuracy of the DBGM (1, N) model is the
highest among the five prediction models. .erefore, it
can be seen that the DBGM (1, N) model proposed in this
paper has certain practical value. It is worth noting that
the method of optimizing the background values of the
multivariable grey prediction model proposed in this
paper can not only be used to improve the prediction
accuracy of the grey prediction models but also help solve
the function approximation problem of definite integral.

Although the DBGM (1,N) model proposed in this paper
has high prediction accuracy, it is still not very perfect. If it
can be combined with fractional accumulation operator, can
the prediction accuracy of the model be further improved?
How to combine it with the fractional accumulation oper-
ator is also a problem. In addition, the grey multivariate
prediction model is more reasonable and scientific than the
univariate grey prediction model. However, the grey mul-
tivariate prediction model still has a shortcoming. When
using the multivariate grey prediction model to predict the
dependent variable, it is necessary to provide independent
variable data; that is, if you want to predict the dependent
variable data for the next 5 years, then you must provide the
independent variable data for the next five years. So, how to
obtain the independent variable data in the next five years is
still a question. .is problem exists not only in grey mul-
tivariate prediction models but also in other prediction
models that need to consider influencing factors. Is it
possible to use a univariate grey prediction model to predict
the data of the independent variables before making pre-
dictions and then use the predicted data of the independent
variables to build a multivariate grey prediction model for
prediction?

Data Availability

.e raw data of China’s energy consumption from 2005 to
2019 are collected from the official website National Bureau
of Statistics of China,WhichWebsite is http://www.stats.gov.
cn/english/.
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