
Research Article
Multiscale Feature Filtering Network for Image Recognition
System in Unmanned Aerial Vehicle

Xianghua Ma , Zhenkun Yang , and Shining Chen

School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Correspondence should be addressed to Xianghua Ma; xhuam@sit.edu.cn

Received 19 November 2020; Revised 28 December 2020; Accepted 3 February 2021; Published 19 February 2021

Academic Editor: Rui Wang

Copyright © 2021 Xianghua Ma et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For unmanned aerial vehicle (UAV), object detection at different scales is an important component for the visual recognition.
Recent advances in convolutional neural networks (CNNs) have demonstrated that attention mechanism remarkably enhances
multiscale representation of CNNs. However, most existing multiscale feature representation methods simply employ several
attention blocks in the attention mechanism to adaptively recalibrate the feature response, which overlooks the context in-
formation at a multiscale level. To solve this problem, a multiscale feature filtering network (MFFNet) is proposed in this paper for
image recognition system in the UAV. A novel building block, namely, multiscale feature filtering (MFF) module, is proposed for
ResNet-like backbones and it allows feature-selective learning for multiscale context information across multiparallel branches.
*ese branches employ multiple atrous convolutions at different scales, respectively, and further adaptively generate channel-wise
feature responses by emphasizing channel-wise dependencies. Experimental results on CIFAR100 and Tiny ImageNet datasets
reflect that the MFFNet achieves very competitive results in comparison with previous baseline models. Further ablation ex-
periments verify that the MFFNet can achieve consistent performance gains in image classification and object detection tasks.

1. Introduction

To understand the environment, unmanned aerial vehicles
(UAVs) need to integrate information from various sensors
such as cameras, lidar, radar, and GPS. *e information from
the camera provides a straightforwardway of visual perception,
which supports further advanced thinking and reasoning for
UAV. One of the important tasks in the visual perception of
UAV, image recognition [1, 2] has always been a research
hotspot. Convolutional neural networks (CNNs) have been
widely used in solving visual cognition tasks, such as image
classification [3, 4], object detection [5], and salient object
detection [6]. Unlike traditional hand-crafted features (e.g.,
HOG [7]), features learned by CNNs based on data require
minimal human involvement during training. *us, most of
the recent research on visual recognition is based on network
engineering. It is becoming increasingly important to design
better CNN architectures for visual recognition tasks.

Generally, for the design criterion of convolution net-
works, there are three important issues: depth, width, and

cardinality. In 2015, Simonyan and Zisserman [8] designed
an effective and very deep network by stacking blocks of the
same shape, which achieved the state-of-the-art perfor-
mance. However, as CNNs become increasingly deeper,
gradient propagation becomes more difficult. In order to
alleviate the problem of gradient disappearance caused by
the increase of network depth, He et al. [9] proposed a deep
residual learning approach, which referred to the input of
the layer to learn the residual function. Experiments showed
that this residual learning method can be easily optimized
and can obtain higher accuracy by increasing the depth.
Szegedy et al. [10] showed that width was another important
factor to improve the performance of CNNs. Compared with
shallower and less extensive networks, the main advantage of
this method was that it can significantly improve the ac-
curacy with a moderate increase in computing demand.
ResNeXt [11] employed the potential of grouped convolu-
tions and empirically showed that increasing cardinality was
more effective than going deeper or wider as capacity in-
creases. In 2016, Zagoruyko and Komodakis [12]

Hindawi
Complexity
Volume 2021, Article ID 6663851, 11 pages
https://doi.org/10.1155/2021/6663851

mailto:xhuam@sit.edu.cn
https://orcid.org/0000-0002-5805-9844
https://orcid.org/0000-0002-6377-6629
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6663851

demonstrated that using more channels and a wider con-
volution can improve detection accuracy. *en, Huang et al.
[13] proposed a dense convolutional network, which utilized
direct connections between any two layers with the same
feature map size to strengthen feature propagation. Ding
et al. [14] designed a novel convolutional network, which
used asymmetric convolutions to strengthen the square
convolution filters.

Other network studies [15–18] exploited the potential of
network from attention mechanism. For example, Hu et al.
[15] designed a novel squeeze and excitation (SE) block that
adaptively recalibrates channel-wise feature responses by
emphasizing the interdependent channel maps. After that,
Woo et al. [16] introduced a simple attention module called
CBAM, which exploited both spatial and channel-wise at-
tention to emphasize meaningful features along channel and
spatial axes. Li et al. [17] proposed selective kernel networks
(SKNets), which realized the adaptive receptive field sizes of
neurons in a nonlinear approach. Furthermore, previous
work [18] captured multiscale features through the additive
effects of feature-selective and spatial attention. Targets
appear at different scales in the image frame and are often
occluded by clutter, which is a major challenge for image
recognition algorithms in UAV applications. *erefore,
multiscale feature representation is particularly critical for
image recognition system in the UAV. However, most
existing multiscale feature representation methods using
attention mechanism simply employ several attention blocks
to adaptively recalibrate the feature response, which over-
looks the context information at a multiscale level.

Based on this analysis, in this paper, a multiscale feature
filtering network (MFFNet) is proposed for image recog-
nition system in the UAV. In MFFNet, we propose a novel
building block, called multiscale feature filtering (MFF)
module. Our key idea is to retain important information
about smaller and insignificant objects by allowing feature-
selective learning for multiscale context information across
multiparallel branches. *ese branches employ multiple
atrous convolutions at different scales, respectively, and
further adaptively generate channel-wise feature responses
by emphasizing channel-wise dependencies.

It is possible to construct an MFF network (MFFNet) by
simply replacing the standard 3× 3 filters in ResNet-like
backbones with MFF modules. Besides, while the template
for the MFF module is generic, the role it performs varies at
different depths throughout the MFFNet. To compare the
difference between theMFFmodule and standard 3× 3 filter,
we visualize the class activation mapping using Grad-CAM
[19] and observe that the MFFNet-based CAM results tend
to focus on the whole object more than other baseline
networks. Experimental results on CIFAR [20], Tiny
ImageNet [21], PASCAL VOC 2007 [22], MS COCO [23],
and UAV123 [24] datasets show that our proposed method
can achieve consistent performance gains in image recog-
nition tasks.

*e rest of the paper is organized as follows: Section 2
introduces our proposed MFFNet and presents the details of
multiscale feature filtering (MFF) module. Section 3 shows
experimental settings and analyses experimental results.

Section 4 concludes this study and describes future work of
this paper.

2. Method

In this section, the MFFNet, a novel backbone network for
image recognition system in the UAV, is introduced. An
overview of MFFNet is depicted in Figure 1. A MARNet
contains four stages, and each stage contains multiple MFF
units. Each MFF unit consists of a sequence of a 1× 1
convolution, an MFF module, a 1× 1 convolution, and a
further skip layer. Figure 2 shows the schema of an MFF
unit.

Furthermore, we present the details of multiscale feature
filtering (MFF) module. *e MFF module consists of three
submodules: split module (SM), multiscale branch module
(MBM), and fusion module (FM).

2.1. MFFNet Architecture. MFF modules can be integrated
into a standard architecture, such as ResNet [9], by replacing
every 3× 3 layer with MFF modules. Here, MFF modules are
used with MFF units. By making this change to each such
module in the MFF unit, an MFFNet network can be
constructed. Further variants that integrate MFF modules
with ResNeXt [11], DenseNet [13], ShuffleNetV2 [25], and
MobileNetV2 [26] can be constructed by following similar
schemes. Like ResNet-50 and ResNeXt-50, MFFNet-50 and
MFFNeXt-50 can be constructed by simply stacking a set of
MFF units. MFFNet-50 can be obtained by changing the
number of MFF units per stage. MFFNeXt-50 can be ob-
tained from MFFNet-50 by changing the bottleneck width
[12] and cardinality [11] of the MFF units. *e cardinality, c,
is the number of groups within a filter, whereas the bot-
tleneck width, d, is the number of channels in a layer.

Table 1 shows the MFFNet-50 and MFFNeXt-50 ar-
chitectures with four phases, using 3, 4, 6, 3{ } MFF units. *e
filter sizes and feature dimensionalities of a residual block
are shown inside the brackets. *e number of stacked blocks
for each stage is shown outside the brackets. “B� 3” denotes
an MFF module with three branches, and “c� 32” suggests
grouped convolutions with 32 groups.

2.2.Multiscale Feature FilteringModule. *e structure of the
MFF module is illustrated in Figure 3. First, in MFF module,
given an input feature map, to obtain fine-grained multiscale
information, the SM divides the input feature map into
multiple feature map subsets. Second, to capture the objects
at different scales, the MBM employs multiple atrous con-
volutions with different rates. Meanwhile, these branches use
atrous convolutions instead of standard convolutions to
reduce the model’s parameters. Besides, the MBM further
selectively generates channel-wise feature responses by
emphasizing channel-wise dependencies. Once channel-
wise feature responses with different scales are captured, the
transformed features are connected by skip structures to
enhance feature propagation. *ird, a channel concatena-
tion operator is applied to fuse previously captured infor-
mation from different branches.

2 Complexity

2.2.1. Split Module. As shown in Figure 1, in split module
(SM), for any given input feature map X ∈ RH×W×C′ , where
X � [X1, X2, . . . , XC′], to obtain fine-grained multiscale
information, the SM first equally splits X into n feature map
subsets, such as the three feature map subsets shown in
Figure 1, namely, X1 ∈ RH×W×C, X2 ∈ RH×W×C, and
X3 ∈ RH×W×C, where C � (C′/3). H, W, and C denote the
height, width, and number of channels of the feature map,
respectively.

2.2.2. Multiscale Branch Module. *e multiscale branch
module (MBM) consists of three branches, namely,
A-branch, B-branch, and C-branch. Moreover, each branch
contains a feature filtering module (FFM). *e structure of
the feature filtering module (FFM) is depicted in Figure 4.

m
c

� Fgm U
c

(� max

H

i�1

W

j�1
U

c
(i, j)⎡⎢⎢⎣ ⎤⎥⎥⎦, (1)

In FFM, we selectively generate channel-wise feature
responses by emphasizing channel-wise dependencies.
Specifically, for the preprocessed feature map U ∈ RH×W×C,
firstly an FFM uses global average pooling and global max
pooling to generate two different channel-wise statistics as
n ∈ RC and m ∈ RC. *e global average pooling and global
max pooling operations are denoted as Fga and Fgm. Spe-
cifically, the c-th element of n and m is calculated as

n
c

� Fga U
c

(�
1

H × W

H

i�1

W

j�1
U

c
(i, j), (2)

+

C
onv 1 × 1

M
FF m

odule

C
onv 3 × 3

MFF unit

Stage1

Pooling

C
onvolution

Input

+

C
onv 1 × 1

M
FF m

odule

C
onv 3 × 3

MFF unit

Stage2

C
onv 1 × 1

M
FF m

odule

C
onv 3 × 3

MFF unit

Stage3

C
onv 1 × 1

M
FF m

odule

C
onv 3 × 3

MFF unit

Stage4

Pooling

Linear “Aeroplane”

Prediction

+ +

Figure 1: An MFFNet with four stages.

Conv 1 × 1

MFF module

Conv 3 × 3

Input feature map

Output feature map

+

Figure 2: An MFF unit.

Complexity 3

where U � [U1, U2, . . . , Uc]. Uc denotes the c-th feature map
channel in the feature map U. In addition, Uc(i, j) refers to
(i, j) − th pixel in Uc.

*en, to fuse the transformed feature information from
global average pooling and global max pooling, an element-
wise summation is used to obtain finer global channel-wise
statistics as z ∈ RC.

Table 1: *e third and fourth columns show the architecture of MFFNet-50 and MFFNeXt-50, respectively.

Layers Output size MFFNet-50 MFFNeXt-50 (32× 4d)
Convolution 112×112 Conv 7× 7, 64, stride 2

Pooling 56× 56 Max pool 3× 3, stride 2

Stage 1 56× 56
1 × 1, 64

MFF[b � 3], 64
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 128
MFF[b � 3, c � 32], 128

1 × 1, 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Stage 2 28× 28
1 × 1, 128

MFF[b � 3], 128
1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1, 256
MFF[b � 3, c � 32], 256

1 × 1, 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

Stage 3 14×14
1 × 1, 256

MFF[b � 3], 256
1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

1 × 1, 512
MFF[b � 3, c � 32], 512

1 × 1, 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

Stage 4 7× 7
1 × 1, 512

MFF[b � 3], 512
1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1, 1024
MFF[b � 3, c � 32], 1024

1 × 1, 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Classification layer 1× 1 Global average pool
1000 d fully connected, softmax

Split module (SM)

Element-wise summation Element-wise product Concatenation

X

H

C
W

H

C
W

H

H
W

H

C
W

H

C
W

H

C W

H

C
W

H

C
W

C
W

Fuse module (FM)

A-branch

B-branch

C-branch

1 × 1 × C

1 × 1 × C
1 × 1 × C 1 × 1 × C

C'

X1

X2

X3

Feature filtering module (FFM)

U1

W2

U2

H

C
W

U3

n1
z1 s1

V1

V2

H

W

V

H

C
W

V3

m1

F(3;1)

F(3;2)

F(3;3)

Fga
Fsum

Fmul

Fmul

Fcat

Fmul

Fex

z2 s2Fsum Fex

Fgm

1 × 1 × C

1 × 1 × C
1 × 1 × C 1 × 1 × C

z2 s2Fsum Fex

1 × 1 × C 1 × 1 × C

n2

m2

Fga

Fgm

1 × 1 × C

1 × 1 × C

n3

m3

Fga

Fgm

C′

Multiscale branch module (MBM)

Figure 3: *e structure of the multiscale feature filtering (MFF) module.

m
z s

U

H
W

C

1 × 1 × C

nFga Fsum Fex

1 × 1 × C
1 × 1 × C 1 × 1 × CFgm

Figure 4: *e structure of the feature filtering module (FFM).

4 Complexity

z � Fsum(n, m) � n⊕m, (3)

where Fsum indicates the element-wise summation operation
between channel-wise statistics n and m. Furthermore, in
order to make use of the previously fused feature infor-
mation, the previously global channel-wise statistics z is
forwarded to a Fex function, which is composed of one
dimensionality-reduction layer with parameters M1 and
reduction ratio l, dimensionality-increasing layer with pa-
rameters M2, sigmoid activation function, and ReLU acti-
vation function. *e final output of the FFM is computed as

s � Fex(z) � σ M2δ M1z((, (4)

where σ and δ are the sigmoid and ReLU activation function,
respectively. M1 ∈ R(C/l)×C and M2 ∈ RC×(C/l), where l� 16.

Employing large atrous rate enlarges the model’s re-
ceptive field, so that object coding can be performed at
multiple scales. As shown in Figure 5, A-branch, B-branch,
and C-branch employ three atrous convolutions with dif-
ferent atrous rates r, where r � 1, 2, 3{ }. In addition, these
branches use atrous convolutions with different rates instead
of standard convolutions to reduce the model’s parameters.

For any atrous convolution layer, the learned set of
convolution filters G � [G1, G2, . . . , Gc], where Gc ∈ RK×K×C

refers to the parameters of the corresponding c-th convo-
lution filter. Let I ∈ RH×W×C denote the input of the atrous
convolution layer. U � [U1, U2, . . . , Uc] are the output of the
atrous convolution layer. For the c-th filter at such a layer,
the corresponding output feature map channel is

U
c

� F(K;r) G
c
, I(, (5)

where F(K;r) denotes an atrous convolution layer with filter
size K×K and atrous rate r.

In A-branch, for the input feature map subset X1 ob-
tained from the split module, an atrous convolution layer
with filter size 3× 3 and atrous rate r� 1 is conducted to
generate the output feature map U1 of a specific scale. For
the c-th filter at such a layer, K� 3 and r� 1 are put into
equation (5) to obtain the c-th output feature map channel.

U
c
1 � F3×1 G(1)

c
, X1(, (6)

where F(3;1) denotes an atrous convolution layer with filter
size 3× 3 and atrous rate r� 1. G(1) denotes the learned set
of F(3;1). G(1) � [G(1)1, G(1)2, . . . , G(1)c] and X1 � [X1

1,

X2
1, . . . , Xc

1].
Further, in order to take advantage of the information

aggregated in the feature filtering module (FFM), the feature
map U1 is sent to the FFM. *e output of the FFM in
A-branch is denoted as s1. *e final output V1 of the
A-branch is obtained by rescaling the feature map U1 with
an element-wise multiplication operation.

V1 � Fmul U1, s1(� U1 ⊗ s1, (7)

where Fmul indicates the element-wise multiplication
operation.

In B-branch, to enhance feature propagation, firstly we
fuse the output V1 of the A-branch and the feature map
subset X2 obtained from the split module by using an el-
ement-wise summation operation. *us, the fusion output
feature map W1 of V1 and X2 is computed as

W1 � Fsum V1, X2(� V1 ⊕X2. (8)

*en, an atrous convolution layer with filter size 3× 3
and atrous rate r� 2 is conducted to generate the output
feature map U2. For the c-th filter at such a layer, K� 3 and
r� 2 are put into equation (1) to obtain the c-th output
feature map channel.

U
c
2 � F(3;2) G(2)

c
, W1(, (9)

where F(3;2) denotes an atrous convolution layer with filter
size 3× 3 and atrous rate r� 2. G(2) denotes the learned set
of F(3;2). G(2) � [G(2)1, G(2)2, . . . , G(2)c] and W1 � [W1

1,

W2
1, . . . , Wc

1].
Similar to the A-branch, in order to take advantage of the

information aggregated in the feature filtering module
(FFM), the feature map U2 is sent to the FFM.*e output of
the FFM in B-branch is denoted as s2. *e final output V2 of
the B-branch is obtained by rescaling the feature map U2
with an element-wise multiplication operation.

V2 � Fmul U2, s2(� U2 ⊗ s2. (10)

For the C-branch, similar to the B-branch, firstly we fuse
the output V2 of the C-branch and the feature map subset X3
obtained from the split module by using an element-wise
summation operation. *us, the fusion output feature map
W2 of V2 and X3 is computed as

W2 � Fsum V2, X3(� V2 ⊕X3. (11)

*en, an atrous convolution layer with filter size 3× 3
and atrous rate r� 3 is conducted to generate the output
feature map U3. For the c-th filter at such a layer, K� 3 and
r� 3 are put into equation (1) to obtain the c-th output
feature map channel.

r = 1
r = 2 r = 3

Conv
filter: 3 × 3

Rate: 1

Feature map Feature map Feature map

Conv
filter: 3 × 3

Rate: 2

Conv
filter: 3 × 3

Rate: 3

Figure 5: Atrous convolution with filter size 3× 3 and different
rates. A-branch: atrous convolution with filter size 3× 3 and rate
(r)� 1. B-branch: atrous convolution with filter size 3× 3 and rate
(r)� 2. C-branch: atrous convolution with filter size 3× 3 and rate
(r)� 3.

Complexity 5

U
c
3 � F(3;3) G(3)

c
, W2(, (12)

where F(3;3) denotes an atrous convolution layer with filter
size 3× 3 and atrous rate r� 3. G(3) denotes the learned set
of F(3;3). G(3) � [G(3)1, G(3)2, . . . , G(3)c] and W2 � [W1

2,

W2
2, . . . , Wc

2].
*e final output V3 of the C-branch is obtained by

rescaling the feature map U3 with an element-wise multi-
plication operation.

V3 � Fmul U3, s3(� U3 ⊗ s3, (13)

where s3 is the output of the FFM in the C-branch.

2.3. Fusion Module. As shown in Figure 1, in order to take
advantage of the feature information aggregated in the
multiscale branch module (MBM), the outputs of A-branch,
B-branch, and C-branch are forwarded to the fusion module
(FM), which is implemented by a concatenation function.
*e output of FM is V, which can be calculated by

V � Fcat V1, V2, V3(� V1 ⊙V2 ⊙V3, (14)

where Fcat denotes the concatenation operation between
feature maps.

3. Experimental Results and Analysis

In this section, we describe experiments that study the ef-
fectiveness of MFF modules for a range of tasks, datasets,
and model architectures. Besides, all models are imple-
mented by using the PyTorch framework.

For image classification tasks, we evaluate all models on
the CIFAR-100 and Tiny ImageNet datasets. *e objects in
the CIFAR-100 and Tiny ImageNet datasets have features of
different scales, which can effectively verify the effectiveness
of our proposedMFFNet in the UAV. For benchmarking, we
evaluate the single-crop top-1 error rate and adopt the same
data augmentation scheme used in [9, 27]. Moreover, we
train the network using stochastic gradient descent with
momentum 0.9, weight decay 0.0001, and a mini-batch size
of 32 on 1 RTX 2080Ti GPU. For the CIFAR-100 and Tiny
ImageNet datasets, every model is trained for 200 epochs.
We start with a learning rate of 0.1, which is divided by 10 at
60, 120, and 160 epochs, respectively.

For object detection tasks, all models are trained in the
PASCAL VOC 2007 and MS COCO datasets with 1 RTX
2080Ti GPU and the mini-batch size is 2 images. We use a
weight decay of 0.0001 and a momentum of 0.9. In addition,
all models are trained for 80k iterations with a learning rate
of 0.002 and then for 30k iterations with 0.0001. Other
implementation details are as in [28]. Besides, in order to
verify the effectiveness of our proposed method, we further
test the MFFNet on the UAV123 dataset, which is captured
from a low-altitude aerial perspective.

3.1. Experiments onTiny ImageNet. We evaluate our method
on the Tiny ImageNet dataset, which contains 100k training
images, 10k validation images, and 10k test images in 200

classes. Each class has 500 training images, 50 validation
images, and 50 test images. An input image is 224× 224
pixels randomly cropped from a resized image. We use
ResNet-50, ResNet-101, and ResNeXt-50 as the represen-
tatives for the residual model architecture. In addition, we
compare the results with those from the SENet and SKNet
model architectures, which are based on attention mecha-
nisms. We compare the single-crop top-1 error rate of each
baseline and its MFFNet counterpart on the Tiny ImageNet
dataset. As shown in Table 2, MFFNeXt-50 achieves sig-
nificant performance gains over ResNeXt-50, with a re-
duction of 3.82% in the error rate. Compared with ResNet-
50, MFFNet-50 is better by 1.04%. Meanwhile SENet-29
(16c× 32d) achieves 33.67% error and MFFNeXt-50
(32c× 4d) achieves 32.76% error. MFFNeXt-50 is better than
SKNet-29 (16c× 32d) by 2.27%. Besides, MFFNeXt-50
(32c× 4d) achieves a top-1 error rate of 32.59%, although
SENet-29 (16c× 32d) needs 26.88% more parameters.

*e top-1 testing error rate versus number of epochs for
the different architectures is shown in Figure 6. SKNet-29
(16c× 32d) needs 27.45M parameters, whereas MFFNeXt-
50 (32c× 4d) needs only 25.43M trainable parameters and
achieves a higher accuracy. *e results show that MFF
modules consistently improve the performance of state-of-
the-art CNNs.

3.2. Experiments on CIFAR-100. To further evaluate the
performance of the MFFNet, we conduct experiments on
CIFAR-100.*is dataset consists of 60k 32× 32 color images
drawn from 100 classes. *ere are 50k training images and
10k testing images. *e 100 classes in CIFAR-100 are
grouped into 20 superclasses. Each image has a fine label and
a coarse label. We use implementations of ShuffleNetV2 1 ×,
MobileNetV2 1 ×, ResNet-50, ResNeXt-50, ResNet-101, and
DenseNet-BC-121 (k� 12) as the representative models.
Similar to ShuffleNet [3], ShuffleNetV2 1 × and Mobile-
NetV2 1×mean scaling the number of filters by 1 time.

Table 3 shows more results of single-crop testing on
CIFAR-100. Note that while ResNet-50 achieves a 21.55%
error rate, MFFNet-50 achieves a 21.06% error rate.
Moreover, MFFNeXt-50 (32c× 4d) outperforms ResNeXt-
50 (32c× 4d) by achieving 20.03% top-1 error. For light-
weight models, we compare ShuffleNetV2 1×with MFF and
MobileNetV2 1×with MFF to the original ShuffleNetV2
1× and MobileNetV2 1×, ShuffleNetV2 1×with MFF and

Table 2: Single 224× 224 cropped top-1 error rate (%) and
complexity comparisons on the Tiny ImageNet validation set. #P is
the number of parameters. Atrous rate r � 1, 2, 3{ }.

Models #P Top-1 error rate (%)
ResNet-50 24.59 35.97
ResNet-101 43.24 35.15
ResNeXt-50 (32c× 4d) 24.21 34.91
SENet-29 (16c× 32d) 34.78 33.87
SKNet-29 (16c× 32d) 27.45 33.55
MFFNet-50 25.82 35.03
MFFNet-101 44.86 33.84
MFFNeXt-50 (32c× 4d) 25.43 32.59

6 Complexity

MobileNetV2 1×with MFF outperform original Shuf-
fleNetV2 1× and MobileNetV2 1× by 0.96% and 0.94%,
respectively.

In addition, for densely connected models, we choose a
DenseNet-BC network with 121 layers. DenseNet-BC-121
(k� 12) withMFF achieves a performance gain of 1.29% over
DenseNet-BC-121 (k� 12). *e top-1 testing error rate
versus number of epochs for the different architectures is
shown in Figure 7. We can clearly see that MFFNeXt-29
(2c× 64d) outperforms ResNet-101 by achieving 19.78%
top-1 error, although ResNet-101 needs more parameters.

3.3. Ablation Studies on CIFAR-100. To further validate the
effectiveness of the MFFNet, we undertake ablation studies
on the CIFAR-100 dataset. We first evaluate the trade-off
between cardinality c and bottleneck width d. Next, in MFF
module, we investigate the impact of changes in the com-
plexity on performance by combining different atrous rates
r.

3.3.1. Cardinality versus Width. To study the effects of the
cardinality c and the width of the bottleneck d, we start from
the three-branch case and fix the setting atrous rates
r � 1, 2, 3{ }. We first evaluate the trade-off between cardi-
nality c and bottleneck width d. Table 4 shows the results.
MFFNeXt-29 (2c× 64d) has a top-1 error of 19.78%, which is
2.78% lower than that for MFFNeXt-29 (1c× 64d). We can
see that as the cardinality c increases from 1 to 4 for constant
bottleneck width, the error rate falls. In addition, as the
bottleneck width d increases from 24 to 64 for constant
cardinality c, the error rate again decreases.

We also note that increasing cardinality c can achieve
much better results than going wider. For instance,
MFFNeXt-29 (2c× 40d) performs better than MFFNeXt-29
(1c× 64d), even though it has 66.33% fewer parameters.
MFFNeXt-29 (2c× 64d) needs 9.37M parameters, whereas
MFFNeXt-29 (4c× 40d) needs only 9.21M trainable pa-
rameters and achieves a higher accuracy.

3.3.2. Combinations of Different Atrous Rates. Next, we
investigate combinations of different atrous rates.*e atrous
rate r is used to control the receptive field size. MFFNet uses
3× 3 filters with different atrous rates r. To limit the search

SKNet-29 (16c × 32d)
MFFNeXt-50 (32c × 4d)

20 40 60 80 100 120 140 160 180 2000
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

To
p-

1
te

st
er

ro
r (

%
)

Figure 6: Top-1 testing error rate versus number of epochs for Tiny
ImageNet. *e numbers of parameters for SKNet-29 (16c× 32d)
and MFFNeXt-50 (32c× 4d) are 27.45M and 25.43M, respectively.

Table 3: Single 224× 224 cropped top-1 error (%) and complexity
comparisons on CIFAR-100. Atrous rate r � 1, 2, 3{ }.

Models #P Top-1 error rate (%)
ShuffleNetV2 1 × 1.36 30.58
MobileNetV2 1 × 2.37 30.21
ResNet-50 23.68 21.55
ResNet-101 42.70 21.25
ResNeXt-50 (32c× 4d) 23.14 20.59
ResNeXt-29 (2c× 64d) 9.22 22.63
ResNeXt-29 (4c× 64) 36.58 21.29
DenseNet-BC-121 (k� 12) 7.05 22.93
ShuffleNetV2 1 ×+MFF 1.41 29.62
MobileNetV2 1 ×+MFF 2.53 29.27
MFFNet-50 24.86 21.06
MFFNet-101 44.23 20.31
MFFNeXt-50 (32c× 4d) 24.61 20.03
MFFNeXt-29 (2c× 64d) 9.37 19.78
MFFNeXt-29 (4c× 64d) 37.85 17.36
DenseNet-BC-121 (k� 12) +MFF 7.59 21.54

ResNet-101
MFFNeXt-29 (2 × 64d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p-

1
te

st
er

ro
r (

%
)

20 40 60 80 100 120 140 160 180 2000
Epochs

Figure 7: Top-1 testing error rate versus number of epochs for
CIFAR-100. *e numbers of parameters for ResNet-101 and
MFFNeXt-29 (2c× 64) are 42.70M and 9.37M, respectively.

Complexity 7

space, we use only four different atrous rates, r� 1, 2, 3, and
4. To study their effects, we change the other three branches
for the 3× 3 filter with r� 1 in the first filter branch of the
MFF modules. Tables 5 and 6 show the top-1 error rate for
MFFNeXt-29 (2c× 64d) and MobileNetV2 1×with MFF.
We can make three major observations as follows:

(1)First, when the number of branches in an MFF
module b� 2, the top-1 error rate for MFFNeXt-29
(2c× 64d) gradually decreases as the atrous rate in
the second branch increases. Moreover, MFFNeXt-
29 (2c× 64d) achieves the lowest top-1 error for
r � 1, 4{ }. In contrast, the top-1 error rate of
MobileNetV2 1×with MFF gradually increased as
the atrous rate in the second branch increased.

(2) Second, when the number of branches in an MFF
module b� 3, MFFNeXt-29 (2c× 64d) achieves the
lowest top-1 error rate for r � 1, 2, 4{ }. However,
MobileNetV2 1×with MFF has the lowest top-1
error rate for r � 1, 2, 3{ }.

(3) *ird, when the number of branches in an MFF
module b� 4, MFFNeXt-29 (2c× 64d) and Mobile-
NetV2 1×with MFF do not achieve the lowest top-1
error rate. For example, MFFNeXt-29 (2c× 64d)
with b� 3 achieves higher accuracy, although
MFFNeXt-29 (2c× 64d) with b� 4 needs 22.63%

more parameters. MobileNetV21×withMFF for r �

1, 2, 3{ } outperforms MobileNetV2 1×with MFF for
r � 1, 2, 3, 4{ } by above 0.91% accuracy.

3.3.3. Class Activation Mapping. To intuitively understand
the multiscale representation ability of MFFNet, we visualize
the class activation mapping (CAM) using Grad-CAM for
different networks. Grad-CAM uses gradients to calculate the
importance of the spatial locations in convolutional layers.

Figure 8 compares the CAM for representative backbone
networks. *e areas that have a larger impact on the clas-
sification are covered with lighter colors. We can clearly see
that the MFFNet-based CAM results tend to focus on the
whole object more than ResNet.

3.3.4. Object Detection. *e PASCAL VOC 2007 and MS
COCO datasets are in 20 and 80 object categories, respec-
tively. *e PASCAL VOC 2007 dataset has about 5k trainval
images and 5k test images.We use the 5k trainval images and
5k test images for training and 5k test images for validation.
*e MS COCO dataset has 80k images for training, 40k for
validation, and 20k for testing. We used the 80k training set
plus a 35k validation subset for training and a 5k validation
subset for validation. We adopt Faster-RCNN [28] as our
detection method and evaluate the average precision (AP)

Table 4: Single 224× 224 cropped top-1 error (%) and complexity comparisons on CIFAR-100. Atrous rate r � 1, 2, 3{ }.

Models #P Top-1 error rate (%)
MFFNeXt-29 (1c× 24d) 0.43 27.61
MFFNeXt-29 (1c× 40d) 1.05 24.73
MFFNeXt-29 (1c× 64d) 3.98 22.56
MFFNeXt-29 (2c× 24d) 0.76 24.03
MFFNeXt-29 (2c× 40d) 1.34 20.62
MFFNeXt-29 (2c× 64d) 9.37 19.78
MFFNeXt-29 (4c× 24d) 3.67 20.45
MFFNeXt-29 (4c× 40d) 9.21 19.01

Table 5: Results for MFFNeXt-29 (2c× 64d) for combinations of different atrous rates.

Models r� 1 r� 2 r� 3 r� 4 #P Top-1 error rate (%)
MFFNeXt-29 (2c× 64d) Y Y N N 6.63 20.77
MFFNeXt-29 (2c× 64d) Y N Y N 6.63 20.24
MFFNeXt-29 (2c× 64d) Y N N Y 6.63 20.01
MFFNeXt-29 (2c× 64d) Y Y Y N 9.37 19.78
MFFNeXt-29 (2c× 64d) Y Y N Y 9.37 19.49
MFFNeXt-29 (2c× 64d) Y N Y Y 9.37 19.75
MFFNeXt-29 (2c× 64d) Y Y Y Y 12.11 19.83

Table 6: Results for MobileNetV2 1×with MFF for combinations of different atrous rates.

Models r� 1 r� 2 r� 3 r� 4 #P (M) Top-1 error rate (%)
MobileNetV2 1 ×+MFF Y Y N N 2.44 29.65
MobileNetV2 1 ×+MFF Y N Y N 2.44 29.59
MobileNetV2 1 ×+MFF Y N N Y 2.44 30.25
MobileNetV2 1 ×+MFF Y Y Y N 2.53 29.27
MobileNetV2 1 ×+MFF Y Y N Y 2.53 29.79
MobileNetV2 1 ×+MFF Y N Y Y 2.53 30.21
MobileNetV2 1 ×+MFF Y Y Y Y 2.61 30.18

8 Complexity

Table 7: Object detection. *e detector is Faster-RCNN. Atrous rates r � 1, 2, 4{ }.

Backbone Dataset AP (%) Inference (ms)
ResNet-101 VOC 2007 71.4 73.9
MFFNet-101 (ours) VOC 2007 72.8 75.5
ResNet-101 COCO 25.6 135.3
MFFNet-101 (ours) COCO 26.9 138.5

Input image

ResNet-50

MFFNet-50

Motorcycle CarAirplane Horse Bird Bear

Figure 8: Grad-CAM visualization results, using ResNet-50 and our proposed MFFNet-50 with atrous rates r � 1, 2, 4{ } as the backbone
networks.

Figure 9: Detection examples generated by MFFNet-101 as backbone networks on UAV123 dataset. MARNet-101 is trained on the VOC
2007 trainval + test.

Complexity 9

for PASCAL VOC 2007 and MS COCO. Moreover, ResNet-
101 and MFFNet-101 are used as our backbone networks.

On the PASCAL VOC 2007 dataset, MFFNet-101 out-
performs ResNet-101 by 1.4% on AP. On the MS COCO
dataset, we improve ResNet-101 by 1.3%. Table 7 shows that
MFFNet-101 has a little longer inference latency than ResNet-
101 but is more accurate. For instance, on the PASCAL VOC
2007 dataset, we improve the ResNet-101 baseline by 1.4% for
AP for only 1.6ms of additional inference latency. On the MS
COCO dataset, MFFNet-101 has an AP of 26.9%, which is
1.3% higher than the ResNet-101 baseline of 25.6% for only
3.2ms of additional inference latency. *ese results dem-
onstrate the general performance improvement of using MFF
modules in object detection. Figure 9 shows detection ex-
amples generated by our proposed MFFNet-100 as backbone
networks on UAV123 dataset. It can be seen that our method
is able to detect target objects successfully regardless of their
shapes, sizes, orientations, and appearances.

4. Conclusions

To address the multiscale recognition problem in the UAV
visual perception, this paper establishes a new convolutional
network architecture (MFFNet). In MFFNet, the MFF
module is designed by employing multiple atrous convo-
lutions at different rates with feature-selective learning
ability. *e MFF module is implemented via three opera-
tions: split module (SM), multiscale branch module (MBM),
and fusion module (FM). In addition, MFF module can
selectively generate channel-wise feature responses by em-
phasizing channel-wise dependencies. We further explore
the effect of atrous rate on the multiscale representation
ability of CNNs. Image classification results on CIFAR-100
and Tiny ImageNet datasets demonstrate that our proposed
method achieves very competitive results on various
benchmarks. Grad-CAM visualization results demonstrate
that the MFFNet-based CAM results tend to focus on the
whole object more than other baseline networks. *at is, the
MFFNet has a stronger multiscale representation ability,
which can achieve better recognition accuracy in the UAV.
Experimental results on PASCAL VOC 2007, MS COCO,
and UAV123 datasets show that our proposed method
achieves consistent performance gains in object detection,
which is beneficial to expanding the application of UAV.We
will further explore the effect of multiscale representation on
image recognition results in future work.

Data Availability

*e detailed mechanism model and model parameters of
MFFNet are given in the article. *e results are computed
on the PyCharm software with the model and given pa-
rameters, while the relevant results are also given in the
article.

Conflicts of Interest

*e authors declare no conflicts of interest.

Acknowledgments

*is work was supported by the National Major Science and
Technology Projects of China (Grant no. 2019ZX04026001).

References

[1] A. Zeggada, S. Benbraika, F. Melgani, and Z. Mokhtari,
“Multilabel conditional random field classification for UAV
images,” IEEE Geoscience and Remote Sensing Letters, vol. 15,
no. 3, pp. 399–403, 2018.

[2] A. Zeggada, F. Melgani, and Y. Bazi, “A deep learning ap-
proach to UAV image multilabeling,” IEEE Geoscience and
Remote Sensing Letters, vol. 14, no. 5, pp. 694–698, 2017.

[3] A. Krizhevsky, I. Sutskever, N. V. Lake Tahoe, and
G. E. Hinton, “ImageNet classification with deep convolu-
tional neural networks,” in Processing Advances in Neural
Information Processing Systems, pp. 1097–1105, MIT press,
London, UK, 2012.

[4] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An ex-
tremely efficient convolutional neural network for mobile
devices,” in Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, Salt
Lake City, UT, USA, 2018.

[5] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stron-
ger,” in Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6517–6525,
Honolulu, HI, USA, July 2017.

[6] G. Li and Y. Yu, “Contrast-oriented deep neural networks for
salient object detection,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 29, no. 12, pp. 6038–6051,
2018.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proceedings of the 2005 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 886–893, San Diego, CA, USA, June 2005.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference on Learning Representations,
ICLR 2015, pp. 1409–1556, San Diego, CA, USA, May 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Las Vegas, NV, USA, June 2016.

[10] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9,
Boston, MA, USA, June 2015.

[11] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Pro-
ceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5987–5995, Honolulu, HI,
USA, July 2017.

[12] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
2016, https://arxiv.org/abs/1605.07146.

[13] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261–2269, Honolulu, HI, USA, July
2017.

[14] X. Ding, Y. Guo, G. Ding, and J. Han, “ACNet: strengthening
the kernel skeletons for powerful CNN via asymmetric
convolution blocks,” in Proceedings of the 2019 IEEE/CVF

10 Complexity

https://arxiv.org/abs/1605.07146

International Conference on Computer Vision (ICCV),
pp. 1911–1920, Seoul, South Korea, October 2019.

[15] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7132–7141, Salt
Lake City, UT, USA, June 2018.

[16] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: con-
volutional block attention module,” https://arxiv.org/abs/
1807.06521.

[17] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern Recognition (CVPR), pp. 510–519, Seattle,
WA, USA, July 2019.

[18] X. Ma, Z. Yang, and Z. Yu, “FSRFNet: feature-selective and
spatial receptive fields networks,” Applied Sciences, vol. 9,
no. 19, p. 3954, 2019.

[19] R. R. Selvaraju, M. Cogswell, A. Das et al., “Grad-CAM: visual
explanations from deep networks via gradient-based locali-
zation,” in Proceedings of the 2017 IEEE International Con-
ference on Computer Vision (ICCV), pp. 618–626, Venice,
Italy, October 2017.

[20] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Technical Report, University of
Toronto, Toronto, Canada, 2009.

[21] L. Yao and J. Miller, “Tiny ImageNet classification with
convolutional neural networks,” CS 231N, vol. 2, p. 8, 2015.

[22] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “*e Pascal visual object classes (VOC) chal-
lenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[23] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context,” in Proceedings of the European
Conference on Computer Vision, pp. 740–755, Springer,
Zurich, Switzerland, September 2014.

[24] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and
simulator for UAV tracking,” in Proceedings of the European
Conference on Computer Vision, pp. 445–461, Amsterdam,
Netherlands, October 2016.

[25] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet v2:
practical guidelines for efficient CNN architecture design,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 116–131, Munich, Germany,
September 2018.

[26] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. C. Chen, “MobileNet v2: inverted residuals and linear
bottlenecks,” in Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520,
Salt Lake City, UT, USA, June 2018.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826, Las
Vegas, NV, USA, June 2016.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137–1149, 2017.

Complexity 11

https://arxiv.org/abs/1807.06521
https://arxiv.org/abs/1807.06521

