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With the aggravation of population aging, home health care (HHC) services are paid more and more attention by the elderly.
Previous studies aim at improving service quality and reducing cost, ignoring the coordinated and sustainable development of the
economy and environment. From the perspective of sustainable development, this paper first establishes a linear optimization
(LO) model considering transportation, time, and carbon emission costs. However, the uncertainty of service demand is a very
difficult problem for HHC research. Most of the previous studies only consider the deterministic model, which has difficulty
dealing with the uncertain situation. (erefore, a robust optimization (RO) model is proposed to resist uncertain disturbances by
introducing a robust uncertain set response. (e experimental results show that the increase of low-carbon transition cost only
increases the total cost of the LO model but has a significant positive impact on the RO model. With the increase of uncertainty,
the robust model will pay the cost of robustness, but it can obtain a higher service level (93.20% to 93.38%). In addition, when the
carbon tax increases, the total transportation cost does not increase but decreases, thus obtaining environmental benefits. When
the carbon tax increases by 25%, the average total cost of using the RO model is reduced by 8.274%. (e research results of this
paper can provide enlightenment and reference for the low-carbon transformation of HHC enterprises.

1. Introduction

(e aging of the population has become a major problem
restricting the development of the 21st century. As a new
type of service, home health care is quietly changing people’s
lives. In the past, researches only focused on how to improve
social welfare but ignored the coordinated development of
environmental ecology. (e concept of HHC first appeared
in 1945 [1]. Later, with the passing of the times and the
progress of technology, it gradually entered the life of or-
dinary residents [2]. HHC provides door-to-door services
such as health care for people who are dependent and
implements different types of care according to the needs of
specific people [3]. Fikar and Hirsch (2017) divide the HHC

service into three steps, which are collecting information,
formulating resource allocation, and path planning [4]. In
the context of the two eras, the increasing aging of the
population, and the substantial improvement in material
life, the demand for HHC services is rapidly increasing. In
recent years, the healthcare industry has become one of the
largest economic sectors in Europe and North America [5].
Cho et al. (2018) found that the effective implementation of
HHC work is of great help to improve the quality of people’
life [6]. At present, HHC can be regarded as a supplementary
form of public health under the auspices of the government.
(rough the door-to-door service, allowing the demanders
to receive treatment at home can alleviate the resource
shortage caused by the limited public health resources [7].
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While people enjoy the convenient services brought by
HHC, the increasing energy consumption and environ-
mental pollution problems are becoming increasingly
prominent. In recent years, environmental problems have
become increasingly prominent, and greenhouse gas
emissions have become more stringent. In the path planning
problem, we must not only consider economic costs, but
environmental costs are also an important factor that affects
path selection. How to find a balance between economy and
environment is worth exploring. At the strategic level, Wang
et al. (2018) found that cooperative strategies can minimize
carbon emissions and achieve green vehicle path planning
[8]. Yu et al. (2019) proposed an improved branching and
pricing algorithm to solve the routing problem of hetero-
geneous green fleet vehicles with time windows [9]. Bettinelli
et al. (2019) studied the problem of urban double-layer
logistics path planning and found that it is of positive sig-
nificance to coordinate the arrival of facility vehicles and
nursing staff with corresponding time constraints [10]. At
the same time, HHC is also facing general problems and
emerging challenges today. (e most important goal of an
HHC service company is to meet the needs of the demanders
in a timely manner. During this process, two main opera-
tional problems are often encountered. One is the delay in
service to the demanding personnel, and the other is the
travel of themedical team routing problem. Of these two, the
issue of time delay is particularly important, which not only
punishes service providers but also may lead to more serious
consequences for improper treatment of demanders.
(erefore, while the operating platform is pursuing profits,
how to effectively plan limited resources is the primary
factor that needs to be considered for HHC [11]. It can be
seen that the path planning of family medical and nursing
services has become a key issue for service providers to
reduce operating costs and improve service quality. In a
fiercely competitive market environment, HHC companies
of the traditional chain will face a severe impact from In-
ternet informatization, especially today, with the growing
development of technology and big data. HHC companies
that operate on network platforms may become the main
subject of industry [12, 13].

For the HHC service path planning problem, many
scholars have used different theoretical methods to study
operation options of nursing station selection and vehicle
route allocation. In general, those two well-known operation
options play a key role [14]. Shore (1999) explored a new
world of health care by creating a health policy imple-
mentation plan [15]. Matteo (2000) constructed an empirical
model of mixed determinants based on data from Canada’s
total health expenditure during the 1975–1996 decade and
the usage of hospitals, doctors, and drugs [16].

Current research results on path planning can be divided
into the following two categories, deterministic path plan-
ning models and uncertain path planning models. Moussavi
et al. (2017) outlined how to carry out planning activities in
the HHC structure, especially the route and arrangement of
nursing staff, and pointed out that patients are the core of the
decision-making system [14]. In terms of reality, at the same
time, it is considered that the route and arrangement of

nursing staff are the basic problems in transportation
planning during the path planning process. In the path
planning stage, under normal circumstances, decision
makers tend to consider relevant parameters as deterministic
values [17]. Some scholars have conducted in-depth research
on green logistics [18, 19]. However, in the actual market
operating environment, even with the support of advanced
network technologies such as big data and the Internet, some
parameters are still unpredictable, such as specific demand,
key parameters such as the customer’s waiting time; un-
controllable factors, such as road conditions, weather con-
ditions, and even emergency emergencies. (erefore, the
deterministic path optimization model has difficulty in
dealing with these unknown factors. (e application of
robust optimization can be used to deal with uncertainty [20,
21]. Since the robust optimization method does not depend
on the characteristics of the probability distribution of data,
it has unique advantages in solving uncertain problems [22].
In the path planning problem, scholars use robust optimi-
zation proposed by Ben-Tal et al. (2002) to deal with un-
certainty [23]. In the research field of uncertain decision-
making problems, compared with stochastic programming,
the robust optimizationmodel is more flexible.(e principle
of robust optimization is that the uncertainty of parameters
is irregular, which is the biggest difference between robust
optimization and stochastic programming. For robust op-
timization, there is no need to restrict the membership rules
of parameters, which avoids the controversy. (us, the
robust optimization is more general in describing ran-
domness, and the model is more compatible. In general,
robust optimization can adjust the size of the fluctuation
range space of parameters to meet the needs of different
decision makers for different risk attitudes.

Robust optimization focuses on constructing uncertain
sets and describing uncertain problems, such as Box sets,
Ellipsoids, or Polyhedron, and measuring the risk through
changes in uncertain sets [24, 25]. One advantage of robust
optimization is that as long as the appropriate uncertainty
set is designed, the consistency between the robust corre-
spondence model and the original problem model can be
guaranteed [26]. (e research of robust optimization was
further developed. Montemanni (2005) proposed a branch
and bound algorithm for the robust spanning tree problem
[27]. Sarac et al. (2006) invented a branch-price algorithm to
solve and optimize the problem of abnormal airline routes
[28]. Subsequently, Zhang et al. (2007) established a mul-
tigranular robust routing model in a mesh network and
proposed a load balancing robust routing scheme [29].
Huang and Wang (2009) used the optimized genetic algo-
rithm to solve the robust optimal network solution of
multiobjective optimization and proved the convergence of
the algorithm through numerical experiments [30]. Some
scholars have studied the home health care routing problem
through an intelligent algorithm and verified the feasibility
of the paper model through practical cases [31–34]. In
addition, some scholars have studied uncertain decision-
making problems and multicriteria decision-making prob-
lems through robust optimization [35–38]. (erefore, based
on the above characteristics, the robust optimizationmethod
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has extensive research value in the theoretical and practical
fields. To the best of our knowledge, very few scholars
currently apply robust optimization theories and methods to
the path planning of HHC, and this article is to supplement
this, so it has considerable research value. (e main con-
tributions of this article are as follows:

(i) Taking carbon emission cost as an important ref-
erence factor for path planning

(ii) According to the actual situation, build a LO model
of HHC services

(iii) Introduce uncertain parameters to further expand
the LO model into three RO models and construct
different security level models through three un-
certain sets

(iv) In the case of numerical case analysis, use real case
data for analysis and provide routing planning
solutions for path planning decisions of actual HHC
services companies

It can be seen that the innovation of robust optimization
theory is of great significance and the application field is
extremely broad. At present, most HHC related studies only
consider deterministic models and less uncertainty. (ere-
fore, the decisions given in these solutions have limited
applicability in practical situations [39, 40]. In addition, even
though there are some researches on uncertainties in family
medical services, they have not intervened from the per-
spective of robust optimization. (erefore, from the per-
spective of robust optimization, this paper studies the path
planning of HHC under uncertain parameters. According to
the literature review, this article will be one of the first
important studies to apply robust optimization theory to
HHC path planning. Although the literature has elaborated
on the application of robust optimization theory, the model
is basically a single set of uncertain sets. As an improvement,
this paper will propose and construct a robust optimization
under multiple sets of uncertain sets, so the model has a
deeper and richer research level.

(e rest of this article is organized as follows. Section 2 is
the basic model. Section 3 describes the HHC path problem
and constructs the LO model to solve the two-level path
planning problem.Section 4 transforms the LO model into
three RO models.Section 5 conducts numerical experiments
and analyzes the results.Section 5 summarizes the research
work of this article and summarizes and proposes future
research directions.

2. Basic Model

(is paper studies the problem of two-level routing planning
for the HHC problem under uncertain environment (Fig-
ure 1). In this problem, two types of sites are considered:
home care and nursing stations and demand communities.
On the one hand, the home care station deals with the order
demand from the demand community. (e number of
nursing stations needs to be considered comprehensively to
minimize operation and management costs. On the other
hand, considering the cost minimization and demand

responsiveness, optimize the driving routing of service
personnel. On the basis of meeting the community needs to
the maximum extent, the driving cost of vehicles can be
reduced through reasonable planning routing. In our study,
cost types are considered including fixed cost, vehicle cost,
time cost, and transportation cost [41].(is paper studies the
optimal routing planning of M HHC stations and N de-
mand communities and establishes an optimization model
of HHC. (e purpose is to meet the needs of customers to
the maximum extent and minimize the total cost under the
constraints of nursing station, time, and road condition.

2.1. Symbolic Variable Description. (e parameters and
variables used in this model are described in Table 1.

2.2. Basic Assumptions. (e following assumptions for the
above routing planning problems are presented:

(i) (e problem of routing planning is to provide
medical and nursing services from one platform
nursing station to multiple communities in need

(ii) (e needs of all communities must be met
(iii) At least one nursing station provides nursing ser-

vices at each demand point
(iv) (e vehicles used are of the same model with the

same fuel consumption and load capacity
(v) Both the time window for the geographic location

and needs of the community are known
(vi) (e average speed of vehicles in different regions is

different, which depends on the road conditions and
time period in the region

2.3. Cost Analysis. (is study reflects the actual situation of
the medical care routing planning process under the op-
eration of a sharing platform. (e specific cost includes the
fixed cost of the medical care station, transportation cost,
vehicle carbon emission cost, and time cost.

Dn

D2

Dn – 1

D1

Platform

N1

Nm

N2
…

 …

Figure 1: Schematic diagram of routing planning for HHC.
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2.3.1. Fixed Cost. Considering the fixed cost, the fixed cost is
the infrastructure investment cost, including the loss cost of
office equipment, the basic water and electricity cost of the
nursing station, and the salary of management. (e fixed
cost of agricultural sharing platform operation is calculated
as follows:

Cf � 􏽘
m

i�1
cf⌈xi⌉, xi ∈ [0, 1], (1)

where, ⌈xi⌉means to round up the value, for example, if
xi � 0.1, then round up to 1; xi � 1.1 round up to 2. (e
actual meaning is that once the warehouse is selected, the
fixed cost will exist.

2.3.2. Vehicle Transportation Cost. In order to ensure the
accurate arrival of home care personnel, the transportation
cost is as follows:

Cv � cv 􏽘

m

i�1
􏽘

n

j�1

Dj

hv

􏼠 􏼡yijdij. (2)

2.3.3. Cost of Waiting Time. (e cost of waiting time is the
reward (or punishment) brought by the advance (or delay)
of time, and the specific form is as follows:

Ct � ct 􏽘

m

i�1
􏽘

n

j�1
⌈yij⌉

dij

vi

− t􏼠 􏼡, (3)

among them, ct is the unit reward (or punishment) cost
related to time, which is the time for a basic nursing home
visit, v the average speed of vehicles in the area of home care
station [42].

2.3.4. Vehicle Carbon Cost. Due to the government’s en-
vironmental protection requirements, a certain amount of
carbon emission tax should be levied on motor vehicles [5].
(e specific costs are as follows:

Cc � cc 􏽘

m

i�1
􏽘

n

j�1
edijEcDjyij. (4)

2.4. Basic Low-Carbon Linear Optimization Model. To sum
up, this paper constructs a low-carbon linear optimization
(LO) model [43], which aims to minimize the total cost on
the basis of meeting customer needs in the maximum extent.
(e specific model is as follows:

(Low-carbon LO model)

minCf + Cv + Ct + Cc, (5)

s.t. 􏽘
m

i�1
yij � 1, ∀j ∈ J, (6)

􏽘

n

j�1
Djyij ≤H

Max
i , ∀i ∈ I, (7)

⌈yij⌉ ·
dij

vj

􏼠 􏼡≤T
Max
t , ∀i ∈ I, ∀j ∈ J, (8)

Cc xi, Dj􏼐 􏼑≤E
Max
c , ∀i ∈ I, ∀j ∈ J, (9)

0≤yij ≤ 1, ∀i ∈ I, ∀j ∈ J, (10)

0≤ xi ≤ 1, ∀i ∈ I. (11)

(e specific objective functions and constraints of the
basic LO model are as follows. (e objective (5) is the
synthesis of the above cost analysis, including fixed cost,
transportation cost, vehicle carbon emission cost, and time
cost. Constraint (6) represents that all HHC services under
the platform of the region are provided by the nursing
station, without any other external diversion, and the needs
of any community under the platform must be met. Con-
straint (7) the ability of nursing service provided by nursing

Table 1: Parameters and variables.

Type Symbol Description

Decision variables xi xi ∈ [0, 1], continuous variable. If xi ≠ 0, select i

yij yij ∈ [0, 1], continuous variable. If yij ≠ 0, select ij

Basic parameters

Dj (e demand of HHC services
cf Fixed cost of nursing station

HMax
i Maximum resource allocation of nursing station i

hv Maximum load of HHC vehicle
cv Unit vehicle transportation fuel consumption cost
Ec Unit fuel consumption of nursing vehicles
ct Penalty cost per unit delay
ce Carbon tax
dij Distance between demand community and nursing station
vi Average speed of the area where nursing station i is located
t Arrival time of benchmark service personnel

TMax
t Maximum arrival time

Indicating parameters I Nursing station set, consisting of i

J Demand community aggregation, consisting ofj
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station was less than its maximum ability and constraint (8)
is a time constraint, that is, the time consumed by any
routing is less than its maximum travel period. Constraint
(9) is that the cumulative carbon emission is less than the
maximum limit. Constraint (10) means that the resource
allocation proportion on any routing is not less than 0 and
not more than 1; when yij � 0, it means that this line is not
selected; when yij � 1, it means that all the needs of the
community are supplied by i. Constraint 11) indicates that
the resource allocation variable of the nursing station is a
continuous fractional variable.

3. RO Models

In reality, due to the complexity of the external market
environment, it is very difficult to obtain the accurate value
or probability distribution of key parameters, especially for
demand [44]. (is leads to the low feasibility or even
nonexistence of the ideal model in the real society; that is to
say, the robustness of the routing planning scheme of the
basic model is low under the uncertain conditions.
(erefore, the research of robust optimization theory is
more attractive. In this section, using the theory of robust
optimization, the above-mentioned deterministic model is
transformed into a robust optimization model, so that the
uncertain parameters change in an uncertain set, so that the
probability distribution can also be carried out to the re-
search of routing planning with the independence of the
model. Robust optimization is one of the main methods to
achieve the goals [45]. (e greater the volatility of customer
demand, the greater the uncontrollability. (erefore, it is
defined as a random demand parameter 􏽥Dj � D0

j + 􏽢Dj, D0
j

as nominal demand, 􏽢Dj � εD0
j as demand fluctuation, and ε

as disturbance proportion. On this basis, the RO models of
Box, Polyhedron, and Ellipsoid set are established [43]. In
order to facilitate the description, this paper divides the
cost into two, one is nominal deterministic item CD(D0

j) �

Cv(D0
j) + Ct(D0

j) + Cc(D0
j), the other is CS( 􏽢Dj) � Cv( 􏽢Dj)+

Ct(
􏽢Dj) + Cc(

􏽢Dj), which is affected by uncertain
parameters.

3.1. Box-RO Model. In the Box-RO model, the uncertainty
requirement is 􏽥Dj, and the uncertainty set is Box [46].
According to the robust optimization theory, the robust
equivalent model is (12), UB � U∞ � ε: ‖ε‖∞ ≤Ψ􏼈 􏼉 �

ε: |εj|≤Ψ􏽮 􏽯and Ψ is the uncertain level parameter (i.e.,
safety parameter, SP). SP represents that at most Ψ pa-
rameters deviate from nominal value.

Theorem 1. According to the relevant theory of robust op-
timization, the equivalent robust correspondence of max{

cTx|Ax ≤B, l≤x≤ u} is 􏽐jaijxj + maxξ∈U􏽐j􏽢aijxjξij ≤B. &e
resulting Box-RO model is as follows:

(Box-RO model)

min ZB

s.t.

Cf + CD D
0
j􏼐 􏼑 + ψ CS

􏽢Dj􏼐 􏼑􏽨 􏽩≤ZB

􏽘

m

i�1
yij � 1, ∀j ∈ J

􏽘

n

j�1
D

0
jyij + ψ 􏽘

n

j�1

􏽢Djyij ≤H
Max
i , ∀i ∈ I

⌈yij⌉ ·
dij

vj

􏼠 􏼡≤T
Max
t , ∀i ∈ I, ∀j ∈ J

Cv xi, Dj􏼐 􏼑 + ψ CS
′ 􏽢Dj􏼐 􏼑􏽨 􏽩≤E

Max
e , ∀i ∈ I, ∀j ∈ J

0≤yij ≤ 1, ∀i ∈ I, ∀j ∈ J

0≤xi ≤ 1, ∀i ∈ I.

(12)

Proof. General Linear Programming (LP) problem is
max cTx|Ax≤B, l≤x≤ u􏼈 􏼉. Under uncertain conditions, the
uncertain Linear Programming (LP) problem can be
expressed as follows:

min
x

c
T
x + d: Ax≤B􏽮 􏽯􏼚 􏼛

(c,d,A,B)∈U
. (13)

Among them, the cost function is cTx + d, the basic
constraint isAx≤B, and the support set is U. Considering ith

row of matrixA, assume that element 􏽢aij inA is uncertain,
then define that 􏽥aij � aij + 􏽢aijξij, where 􏽥aijis true value of
parameter, aij is nominal value while 􏽢aijis fluctuation of
parameter, ξij is factor (ξ ∈ U, U is the uncertainty set), ξ can
take any possible value inU. So, (5) can be represented as (6).
(en, uncertain sets and their corresponding robust
equivalences are as follows:

􏽘
j

aijxj + max
ξ∈U

􏽘
j

􏽢aijxjξij ≤B.
(14)

And (6) is equivalent to􏽐Jaijxj + Ψ􏽐J􏽢aij|xj|≤B. Set
P∞ � [JL×L;O1×L],P∞ � [OL×1;Ψ]. . .∞ � [θL×1; t]: ‖θ‖∞􏼈

� t}, where L is the number of uncertain parameters.
(erefore, the inner layer maximization in (6) can be
rephrased as maxξ∈UB 􏽐j􏽢aijxjξij: P∞ξ + P∞ ∈ K∞Ψ􏽮 􏽯.
Define the dual variable as wi, λi, according to dual cone
theoryK∗∞ � [θL×1; t]: ‖θ‖l ≤ t􏼈 􏼉, then, minw,λ Ψλi: wij � 􏽢aij􏽮
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xj,∀j, 􏽐J|wij|≤ λi}, and minw,λ Ψ􏽐J|wij|: wij ≤ 􏽢aijxj,∀j􏽮 􏽯

are equal. (us, it can be reformed as Ψ􏽐J􏽢aijxj. So, (e-
orem 1 is proved.

3.2. Polyhedron-RO Model. If the uncertainty set of each
node is Polyhedron, and the Polyhedron set is defined by l1
norm: UP � U1 � ς: ‖ε‖1 ≤ Γ􏼈 􏼉 � ε · 􏽐 |εj|≤ Γj􏽮 􏽯, where Γ is
the uncertain horizontal parameter. (e Polyhedron-RO
model is given in the following theorem, where Γ represents
the SP of uncertain demand [47–50].

Theorem 2. &e equivalent robust correspondence of
max cTx|Ax≤B, l≤ x≤ u􏼈 􏼉 is􏽐jaijxj + Γipi ≤Bi, pi ≥ 􏽢aij|xj|.
&e resulting Polyhedron-RO model is as follows:

(Polyhedron-RO model)

minZp

s.t.

Cf + CD D
0
j􏼐 􏼑 + Γ CS

􏽢Dj􏼐 􏼑􏽨 􏽩≤Zp

􏽘

m

i�1
yij � 1, ∀j ∈ J

􏽘

n

j�1
D

0
jyij + Γ′CS

􏽢Dj􏼐 􏼑≤H
w
i , ∀i ∈ I

⌈yij⌉ ·
dij

vj

􏼠 􏼡≤T
Max
t , ∀i ∈ I, ∀j ∈ J

Cv xi, Dj􏼐 􏼑 + Γ′ CS
′ 􏽢Dj􏼐 􏼑􏽨 􏽩≤E

Max
e , ∀i ∈ I, ∀j ∈ J

0≤yij ≤ 1, ∀i ∈ I, ∀j ∈ J

0≤xi ≤ 1, ∀i ∈ I.

(15)

Proof. Constraint (16) is equivalent to constraint (14).

􏽘
j

aijxj + Γipi ≤Bi, pi ≥ 􏽢aij xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (16)

Defining that P1 � [JL×L;O1×L],P1 � [OL×1; Γ]. . .1 �

[θL×1; t]: ‖θ‖1 � t􏼈 􏼉, where L is the number of uncertain
parameters. (erefore, the problem of inner layer maxi-
mization in (14) can be rephrased as maxξ∈UP 􏽐J􏽮
􏽢aijxjξij: P1ξ + P1 ∈ K1Γ}. Define the dual variable aswi, λi,
according to dual cone theoryK∗1 � [θL×1;T]: ‖θ‖l ≤T􏼈 􏼉.

max
ξ∈UP

􏽘
J

􏽢aijxjξij: P1ξ + P1 ∈ K1
⎧⎨

⎩

⎫⎬

⎭

� min
ω,λ
Γλi: ωij � 􏽢aijxj ωi

����
����∞≤ λi􏽮 􏽯

� min
ω
Γmax

J
ωij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌: ωi � 􏽢aijxj􏼨 􏼩

� ΓPi, Pi ≥ 􏽢aij xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(17)

In summary, (eorem 2 can be proved.

3.3. Ellipsoid-RO Model. In the Ellipsoid-RO model, the
uncertain parameters are defined according to l2 norms,

UE � U2 � ς: ‖ε‖2 ≤Ω􏼈 􏼉 � ε
����
􏽐Jε2j

􏽱
≤Ω􏼚 􏼛, where Ω is the

adjustable uncertain parameter (safety parameter) and the
ball diameter of the uncertain set. (e Ellipsoid uncertainty
set of 􏽥Dj is UE � 􏽥D∈ R, 􏽐

n
j�1 [( 􏽥Dj − D0

j)/ 􏽢Dj]
2 ≤􏽮 Ω2}. Since

the model is a nonlinear constraint problem, set UE is
equivalent to the following form:UE � 􏽥D∈ R, ( 􏽥Dj−􏽮

Dj)
TC− 1( 􏽥Dj − Dj)≤Ω2}, where C is an n-order diagonal

matrix with element (nonzero) of 􏽢D
2
j , then C11 + CD(D0

j)+

Ω1
���������������������

􏽐
n
j�1

􏽢D
2
j(􏽐

m
i�1 􏽐

n
j�1 yijce)

2
􏽱

≤ZE. Let ri � 􏽐
m
i�1 􏽐

n
j�1 yijce,

P �

���������

􏽐
n
j�1

􏽢D
2
jr2ij

􏽱

, then the above formula is transformed to
C11 + CD(D0

j) +Ω1P≤ZE. Since the goal is to minimize the

total cost, then add relaxation constraint P≥
���������

􏽐
n
j�1

􏽢D
2
jr2ij

􏽱

,ri

≥􏽐m
i�1􏽐

n
j�1yijce.

Theorem 3. &e equivalent robust correspondence of
max cTx|Ax≤B, l≤x≤ u􏼈 􏼉 isaT

i X +Ωi

�����

􏽢a2
i X2

􏽱

≤Bi. &e
resulting Ellipsoid-RO model is as follows:

(Ellipsoid-RO model)

minZe

s.t.

Cf + CD D
0
j􏼐 􏼑 +ΩP≤Ze

P≥

�������

􏽘

n

j�1

􏽢D
2
jr

2
ij

􏽶
􏽴

, ∀i ∈ I, ∀j ∈ J

ri ≥ 􏽘
m

i�1
􏽘

n

j�1
yijce

􏽘

m

i�1
yij � 1, ∀j ∈ J

􏽘

n

j�1
D

0
jyij +ΩP≤H

w
i , ∀i ∈ I

⌈yij⌉ ·
dij

vj

􏼠 􏼡≤T
Max
t , ∀i ∈ I, ∀j ∈ J

Cv xi, Dj􏼐 􏼑 +Ω′P≤E
Max
e , ∀i ∈ I, ∀j ∈ J

0≤yij ≤ 1, ∀i ∈ I, ∀j ∈ J

0≤ xi ≤ 1, ∀i ∈ I.

(18)

Proof. Constraint (19) is equivalent to constraint (14).

a
T
i X +Ωi

�����

􏽢a
2
i X

2
􏽱

≤Bi. (19)

(e uncertainty ellipsoid uncertainty set is defined as
follows:
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U
E

� ai ∈ R
n
: ai − ai( 􏼁

TΣ− 1
ai − ai( 􏼁≤Ω2􏽮 􏽯. (20)

Among them ai is nominal value, Σ is positive definite
matrix,Ω is SP. It can be converted to a sphere with radius of
Ω.

U
E

� ai ∈ R
n
: ai � ai + Δξ, ξ ≤Ω􏼈 􏼉. (21)

And, where Δ � 􏽐
1/2, the constraints max aT

i X≤B of (6)
can be translated.

max a
T
i X: ai − ai( 􏼁

TΣ− 1
ai − ai( 􏼁 ∈ Ω2􏽮 􏽯. (22)

As for Σ being positive, max aT
i X: (ai − ai)

TΣ−1􏽮 (ai −

ai) ∈ Ω2} is a convex problem. (erefore, LP can be solved
by Karush–Kuhn–Tucher (KKT) condition. Set a∗i is an
optimal solution, u∗ is Lagrange multiplier, and z∗ is an
optimal value, then,

minF a
∗
i( 􏼁 � −a

∗T
i X

s.t. g a
∗
i( 􏼁 � a

∗
i − ai( 􏼁

TΣ− 1
a
∗
i − ai( 􏼁 −Ω2 ≤ 0.

(23)

According to KKT condition,

L a
∗
i , u
∗
i( 􏼁 � f a

∗
i( 􏼁 + u

∗
i g a
∗
i( 􏼁,

s.t.
dL a
∗
i , u
∗
i( 􏼁

da
∗
i

� 0; a a
∗
i( 􏼁 � 0; u

∗ ≥ 0,

L a
∗
i , u
∗
i( 􏼁 � −a

∗T
i X + u

∗
a
∗
i − ai( 􏼁

TΣ− 1
a
∗
i − ai( 􏼁 −Ω2􏽨 􏽩,

s.t. − X + 2u
∗Σ− 1

a
∗
i − ai( 􏼁 � 0,

u
∗

a
∗
i − ai( 􏼁

TΣ− 1
a
∗
i − ai( 􏼁 −Ω2􏽨 􏽩 � 0,

u
∗ ≥ 0.

(24)

So,

a
∗
i − ai �

ΣX
2u
∗,

ΣX
2u∗

􏼒 􏼓
T

Σ− 1 ΣX
2u
∗􏼒 􏼓􏼢 􏼣 � Ω2.

(25)

(en,

ΣX
2u∗

􏼒 􏼓
T

Σ− 1 ΣX
2u
∗􏼒 􏼓􏼢 􏼣 � Ω2

⇒
1

2u
∗X

TΣTΣ− 1 1
2u
∗ ΣX � Ω2

⇒
1

2u
∗

( 􏼁
2X

TΣX � Ω2

⇒
1

2u
∗

( 􏼁
2 �
Ω2

X
TΣX

⇒
1

2u
∗ �

Ω
������������

(X/2)
TΣ(X/2)

􏽱 .

(26)

From (25) and (26), we get the following:

a
∗
i � ai +

Ω

2
������������

(X/2)
TΣ(X/2)

􏽱 ΣX � ai +
Ω

������
X

TΣX
􏽰 ΣX.

(27)

(erefore,

z
∗

� X
T
a
∗
i + X

T Ω�����
x

TΣx
􏽰 ΣX,

z
∗

� X
T
a
∗
i +Ω

������

X
TΣX

􏽱

.

(28)

Since Σi is a diagonal matrix of elements 􏽢a2
i , then,

a
T
i X +Ωi

������

X
TΣiX

􏽱

≤Bi

⇒a
T
i X +Ωi

�����

􏽢a
2
i X

2
􏽱

≤Bi.

(29)

Above all, (eorem 3 can be proved.

4. Case Analysis

In this section, an example is given to verify the effectiveness
of the robust optimization method in solving the routing
planning problem of HHC. In this paper, the HHC enter-
prise in Tangshan (China) is selected as a sample (Figures 2
and 3). (e company is engaged in HHC and nursing as-
sistance services to provide services for some communities
in Tangshan city. (e company is faced with double-level
planning problems in the operation process.

(e first level of planning is to determine the location of
the nursing station. On the basis of comprehensive con-
sideration of various location factors, the HHC and nursing
service company selected the following 6 nodes as alternative
nursing stations, namely, Concord nursing station, Fengnan
nursing station, workers’ nursing station, affinity source
nursing station, Fule nursing station, and Kaiping nursing
station, which are represented by N1, N2, . . . , N6 in the
following article. So, the first level of planning is to deter-
mine the choice of these nursing stations.

(e second level is routing planning. In this medical
nursing system, there are 6 alternative nursing stations, 8
demand communities, and 48 alternative routings corre-
sponding to different operating costs. (e eight demand
communities are Luanxing community, Hongda community,
Fulianyuan, Shengtai manor, Tianheyuan community, Jiarun
Rainbow City, Guzhen new town, and Yuehua new building,
which are expressed in D1, D2, . . . , D8 later. (e setting of
transportation cost is based on the comprehensive calculation
of the real-time oil price in Tangshan, the actual distance
between the demand community and the nursing station. It
even involves factors such as traffic congestion and time limit.
(erefore, the choice of routing is second level planning based
on the comprehensive consideration of relevant costs.

4.1. Related Data. (e basic data information includes the
nominal demand of the demand community, the maximum
service supply of the medical care and nursing station, the
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traffic conditions of the area, and the fixed operating costs, as
shown in Table 2.

(e actual distance between nodes obtained directly
through Google map is shown in Table 3. Other parameters
of the model are as follows: the benchmark door-to-door
service time is 20mins, the time delay cost is 10 CNY/hour,
and the maximum delay time is 60mins. If it is overdue, the
demand community will cancel the demand service order.
(e carbon tax is 2.1 CNY/kg, and the fuel consumption per
unit distance vehicle is 8.33 L/100 km. In addition, the CO2
emission coefficient is 0.16 L/h ∗ t, and the CO2 emission
factor is 2.51 kg/L [42].

4.2. Optimal Solution. In this section, we use MATLAB as
the programming platform, use Gurobi (9.0.2) program-
ming to solve the above model and compare LO with three
RO models.

4.2.1. Algorithm and Optimal Result of Models. (e specific
calculation process is shown in Table 4:

(rough the above algorithm, the optimal solution of the
LO model is 7.2665E+ 03 CNY, time consuming 4.535591 s.
(e routing planning scheme of the LO model is shown in

Figure 4. (e wider the routing line width is, the larger the
proportion of this routing is. As can be seen from Figure 4, in
the second level of routing planning, HHC and nursing
stations are the main ones, accounting for 38.3% and 32.5%
of the total demand, respectively, and they are responsible
for the supply of main service personnel. Although this can
ensure the stable supply, there is a certain space for im-
provement in the routing planning, such as over long-dis-
tance service, which increases the transportation cost in a
large amount that is not conducive to the operation of the
company, so it is necessary to optimize the distribution
routing.

(e algorithm is shown in Table 5. And the results of the
models are shown in Table 6.

4.2.2. Box-RO Model. In the Box-RO model, the influence of
Ψ on the lowest total cost is constantly changing. (e cal-
culation results of the Box-RO model are shown in Table 6.
(e total cost of the HHC care planning network raises with
the trend of increase. When Ψ � 0, the model is equivalent to
the LO model, and the total cost is 7.6213E+ 03 CNY. As
shown in Figure 5, the Box-RO model is similar to the LO
model: (i) In the selection of nursing sites, the first level
planning needs to add two nodes, from 4 nursing stations to 6
nursing stations. (ii) In the second layer of routing planning,
the number of routings increases from 16 to 19. (e routing
planning is more complex, and its total cost also increases. As
a whole, there are many long-distance transmission lines.

Table 2: Basic parameters.

Communities D1 D2 D3 D4 D5 D6 D7 D8

Nominal demand 125 95 140 135 160 155 175 130
HHC station N1 N2 N3 N4 N5 N6 — —
Maximum service 225 260 240 235 180 225 — —
Average speed 45 40 50 65 35 40 — —
Fixed costs 750 650 550 450 420 480 — —

Table 3: Distance between nodes.

dij D1 D2 D3 D4 D5 D6 D7 D8

N1 35.40 5.40 2.40 8.10 17.90 11.60 14.70 16.90
N2 36.80 13.30 8.50 15.50 29.10 10.80 23.90 24.90
N3 33.10 5.90 6.50 4.50 17.70 14.00 10.80 18.20
N4 26.90 14.60 22.10 15.10 6.10 22.00 12.30 7.30
N5 19.80 23.80 29.10 22.10 12.50 34.80 15.10 9.70
N6 24.10 12.20 15.70 10.40 17.20 26.00 4.20 5.50

Figure 2: Actual map location.

D3

D5 D1

N4

N6

N3N1

N5

D8

D7

D4

D2
D6

N2

Figure 3: Relative location.

Table 4: Algorithm steps of LO model.
Step 1 Input initial value and relevant parameters;

Step 2
Input parameter variable constraints, carbon emission

constraints, time window constraints, and other
constraints;

Step 3 Set the solution environment and solve it through
the solver Gurobi;

Step 4 If step 2 is satisfied, terminate, no, execute step 1;
Step 5 Output the optimal solution and running time.
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4.2.3. Polyhedron-RO Model. In the Polyhedron-RO
model, the impact of Γon the total cost is constantly
changing. (e calculation results of the Polyhedron-RO
model are shown in Table 6. (e total cost of the HHC care
planning network raises with the trend of increase Γ.
When Γ � 0, Polyhedron-RO model is equivalent to the
LO model. As shown in Figure 6, the Polyhedron-RO
model compares the Box-RO model with the LO model:

(i) In the first level planning, there are two more nursing
stations than the LO model. (ii) In the second layer of
planning, the number of routings is increased to 21
compared with the Box-RO model. In terms of the pro-
portion of each routing, the proportion of long-distance
line transportation is reduced and the proportion of
short-distance transportation is increased, which has a
positive role in promoting the routing optimization.

2km

D3

D5
N5

N4

D8

N6
D7

D1

N3

N2

D4

D2
D6

Opencyclemap

Figure 4: Distribution routing in LO model.

Table 5: Algorithm steps of RO model.

Step 1
Input initial value, given the parameters:

UB � ε: ‖ε‖∞ ≤Ψ􏼈 􏼉 � ε: |εj|≤Ψ􏽮 􏽯;UP � ς: ‖ε‖1 ≤ Γ􏼈 􏼉 � ε: 􏽐 |εj|≤ Γj􏽮 􏽯;UE � ς: ‖ε‖2 ≤Ω􏼈 􏼉 � ε
����
􏽐Jε2j

􏽱
≤Ω􏼚 􏼛;

Step 2 If the random number satisfies the condition, step 3; otherwise, return step 1;

Step 3
Input parameter and constraints;

#1 Box-RO and Polyhedron-RO model direct input constraints;
#2 Ellipsoid-RO after the model further relax the parameter constraints;

Step 4 If meets step 3, terminate; else, execute step 1;
Step 5 Set the solution environment and solve it through the solver Gurobi;
Step 6 Output the optimal solution and running time.

Table 6: Operation results of RO models.

Box-RO model Polyhedron-RO model Ellipsoid-RO model
SP Total cost Time Cost Time Cost Time
0 7.2665E+ 03 4.747611 7.2665E+ 03 4.688161 7.2665E+ 03 4.493691
1 7.8087E+ 03 4.297063 7.6183E+ 03 4.454975 7.4332E+ 03 4.348147
2 7.8420E+ 03 4.471258 7.6719E+ 03 4.528155 7.4520E+ 03 5.021394
3 7.9285E+ 03 4.146447 7.8808E+ 03 4.411533 7.5019E+ 03 4.091843
4 7.9541E+ 03 4.098501 7.9590E+ 03 4.387638 7.5282E+ 03 4.187512
5 8.0119E+ 03 4.602096 8.1480E+ 03 4.467358 7.6244E+ 03 4.949629
6 8.1215E+ 03 4.465805 8.4583E+ 03 4.248660 7.7855E+ 03 4.498152
7 8.1620E+ 03 4.049612 8.5868E+ 03 4.267902 7.9260E+ 03 4.522854
8 8.2755E+ 03 4.012588 9.0733E+ 03 4.258624 8.1003E+ 03 4.320861
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4.2.4. Ellipsoid-RO Model. In the Ellipsoid-RO model, the
effect of the security parameter Ω on the lowest total cost is
changing. (e calculation results of the Ellipsoid-RO model
are shown in Table 6. Similarly, the total cost of the HHC
care planning network increases with the increase of Ω. At
that time, Ω � 0, the Ellipsoid-RO model was equivalent to
the LO model, with the same total cost. (e difference
between the Ellipsoid-RO model, Box, and Polyhedron-RO
model is as follows.

(e Ellipsoid-RO model’s route planning plan is shown in
Figure 7. In the first stage planningBox � 6⇔Polyhedron

� 6>Ellipsoid � 5>MILP � 4, and 5 nursing stations are
selected for the Ellipsoid-ROmodel. By comparison, it is found
that in the RO model, the performance is the best, next to the
LOmodel. In the second level planning, the number of routings
is reduced to 18. (e proportion of service in each routing
shows a trend of transferring to short-distance routing, and the
proportion of HHC service supply undertaken by short-dis-
tance routing increases. (erefore, the first stage of vehicle
mileage efficiency is higher; the second stage of the distribution
route is more accurate, showing better optimization
performance.
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Figure 5: Routing planning of Box-RO model.
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Figure 6: Routing of Polyhedron-RO model.
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4.3. Sensitivity Analysis. (is section compares the perfor-
mance of each model, including efficiency, uncertainty, and
the degree of demand fluctuation.

4.3.1. Efficiency Comparison. (is section analyzes the op-
eration efficiency of the four models. In order to take
comparison conveniently, run the model in the same
computer environment at the same time, we set the safety
parameter as the only variable, and then observe the running
time of the model.

Figure 8 shows the operational efficiency of the four
robust optimization models. Among them, the Box-RO
model has the highest operation efficiency and the fastest
convergence speed (lower than the LO model as a whole:
4.535591 s). (e Polyhedron-RO model is the most stable
with little fluctuation (the peak value is 4.688161 s, the low
value is 4.24866 s). (e operation fluctuation degree of the
robust optimization model of Ellipsoid is the largest (the
peak is five-point zero two one three nine four s. (e low
value is 4.091843 s) maximum amplitude is 0.9296 s. Due to
the small scale, there is little difference in the calculation
time. However, when the constraints and variables in the
model increase to tens of thousands or even tens of thou-
sands, the operation efficiency will be significantly different.

4.3.2. Impact of Carbon Emission Restrictions. (rough the
above comparative analysis, it is found that the performance
of the Ellipsoid-RO model is superior. (erefore, under the
Ellipsoid-RO model, the impact of carbon emissions on the
total cost is analyzed. Under the same parameters
(ε � 0.10,Ω � 4), with the change of carbon tax as the only
variable, the calculation results are shown in Table 7. When

the carbon tax increases by 25% (2.0–2.50), the cost of using
robust optimization model decreases by 8.274%.

With the increase of carbon emission tax, the HHC en-
terprises have to change their own routing distribution scheme
and change the focus of resource allocation from N2, N5 to
N4, N6. (e main reason is that the carbon emission cost of
N4, N6 vehicles driving in the relatively close distance to the
demand community can be significantly reduced. Fortunately,
the total cost of distribution also shows a downward trend
when we choose a closer route. In this way, we can not only
save the cost of product distribution and transportation but
also get better environmental benefits, which is conducive to
the sustainable development of the ecological environment.
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Opencyclemap
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Figure 7: Routing scheme of Ellipsoid-RO model.
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4.3.3. Impact of Demand Fluctuation and SP. In this section,
the impact of demand fluctuation on total cost in three RO
models is compared and analyzed. Under the condition of
fixed safety parameter (ψ � Γ � Ω � 4), the impact of
fluctuation on cost is explored. (e calculation results are
shown in Figure 9. Although the total cost of the ROmodel is
higher than that of the deterministic LO model, even in the
worst situation, the routing planning scheme can still be
given. In addition, the increasing trend and proportion are
quite different. Among them, the Polyhedron-ROmodel and
Box-RO model have greater randomness, and the Ellipsoid-
RO model has strong ability to resist uncertainty. Careful
observation shows that the growth rate is slightly different.
(e cost of the Polyhedron-RO model increases sharply,
while that of the Ellipsoid-RO model increases slowly.

Figure 10 analyzes the impact of the change of safety
parameters on the total cost, and it can be seen that with the
increase in SP, the overall logistics distribution cost shows an
upward trend. Different RO models have different rising
rates of cost, and the LO model is not affected by the safety
parameters and maintains a low level; Polyhedron-RO
model has the highest increasing rate of cost, and the most
robust cost is paid for improving the safety level; Box-RO
model is in the middle, and Ellipsoid model is the most
stable, and lowest robust cost is paid for increasing SP.

4.3.4. Service Level and Responsiveness of Routing Planning.
In this section, three robust optimization models are ana-
lyzed by the level of service (SL). Due to the high re-
quirements for the arrival time of service personnel in the
process of HHC care, this section compares the service
quality level of the model through the time difference and
analyzes the advantages and disadvantages of different
models. (e calculation of service level is as follows:

S �
􏽐I,J 1 − yij

􏽥Djdij/vi − t􏼐 􏼑/t􏼐 􏼑

(I + J)􏽐J
􏽥Dj

× 100%, (30)

where I, J represents the number of arcs in the model. (e
computer simulation results under different parameters are
shown in Figures 11 and 12.

Figure 11 shows the influence of random demand
fluctuation on the model under the condition of fixed safety

parameters (Ψ � Γ � Ω � 3), and the following conclusions
can be obtained: (i) (e service level of the LO model is not
affected by random parameters, and of course, it cannot
solve the routing planning problem under uncertainty.
However, as the data are all determined, the service level is
also the highest (SL� 93.38%). (ii) (e service level of the
three RO models shows a downward trend with the increase
of random demand volatility. (e larger the amplitude of
random parameter fluctuation, the lower the service level.
(iii) Different RO models are also affected by uncertain
parameters. (e relative ratio shows that the Ellipsoid-RO
model has strong robustness, the Polyhedron-RO model is
in the middle, the Box-RO model is the most affected by
volatility, which means that Box-RO model has the weakest

Table 7: (e impact of carbon emission.

Carbon
tax Cost N1 N2 N4 N5 N6

2.00 7.5282E+ 03 25.89% 22.03% 18.35% 15.34% 18.39%
2.05 7.6461E+ 03 27.13% 21.78% 18.45% 14.09% 18.55%
2.10 7.6522E+ 03 28.56% 21.45% 18.69% 13.18% 18.12%
2.15 7.6816E+ 03 29.75% 21.16% 19.04% 12.45% 17.60%
2.20 7.4781E+ 03 30.08% 20.57% 19.08% 11.12% 19.15%
2.25 7.4197E+ 03 30.79% 19.34% 20.13% 10.13% 19.61%
2.30 7.2870 E+03 31.09% 18.94% 21.76% 9.45% 18.76%
2.35 7.2014E+ 03 31.25% 18.21% 22.48% 8.07% 19.99%
2.40 7.1650E+ 03 31.76% 17.09% 23.93% 7.96% 19.26%
2.45 6.9652E+ 03 32.26% 16.72% 24.17% 7.13% 19.72%
2.50 6.9053E+ 03 32.97% 16.18% 24.46% 6.23% 20.16%
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ability to resist changes in market environment, while the
Ellipsoid-RO model has the best performance.

Figure 12 is an analysis of the impact of security pa-
rameters on the service level of the model under the condition
of fixed random demand volatility (ε � 0.15). Fortunately,
with the increase of security parameter level, service level
shows an increasing trend. To a certain extent, it can make up
for the robust cost (total cost increase) caused by uncertainty
and also alleviate the loss of service level caused by stochastic
demand volatility. (rough careful comparison, it is found
that the Ellipsoid-ROmodel still has strong robustness. When
the security parameters increase from 1 to 8, the logistics
service level increases from 93.30% to 93.38%, which is the
same as the LO model. (erefore, in the actual market ap-
plication, the decision maker of routing planning can de-
termine the corresponding safety parameter level according to
the preset expected service level.(ese studies have important
reference significance for decision-making.

(e following main conclusions can be drawn: (1) (e
basic LO model is idealized due to the market environment.
In comparison, it can give the lowest total cost and the
highest service level, but because the ideal data set is ex-
tremely difficult to obtain, or even unavailable, so the
practical feasibility of the LO model is not high. (2) On the
whole, three ROmodels will pay a certain robust price due to
the impact of random demand fluctuations, such as in-
creased costs, reduced service levels, and increased com-
putational complexity, but they can solve the problem of
uncertainties. (e problem of path planning has a certain
degree of robustness. (3) In terms of details, different RO
models are also affected by uncertain demand parameters. In
comparison, the Ellipsoid-RO model has strong robustness,
the Polyhedron-RO model is centered, and the Box-RO
model is most affected by volatility.(is means that the Box-
RO model has the weakest ability to resist changes in the
market environment, while the Ellipsoid-RO model per-
forms best. (4) Considering the large environmental back-
ground of the sustainable development of the economic
environment, the carbon tax is studied as a cost, and it is
found that when the carbon emission tax amount is in-
creased, the company is also forced to choose a better
distribution path, which not only benefits the company to
save the cost but also can obtain certain environmental
benefits. (is discovery can provide some inspiration and
reference for the low-carbon transformation and develop-
ment of HHC enterprises.

5. Conclusion

Nowadays, China’s economic development level is con-
stantly improving, and the application of science and
technology is constantly being updated. Especially under the
severe situation that the proportion of the elderly population
is constantly rising at present, the demand of all residents for
community HHC is increasing accordingly. In addition,
under the background of internationalization and global-
ization of the coordinated and sustainable development of
the economic environment, the low-carbon economicmodel
has also become an emerging development keyword for the
HHC service industry. (erefore, from the perspective of a
low-carbon economy, this study comprehensively considers
fixed costs, transportation costs, time delay penalty costs,
and carbon emission costs to explore path optimization
management.

First, this paper establishes a basic linear optimization
model. Under relatively ideal data, the programming al-
gorithm is programmed through theMATLAB platform and
finally solved by Gurobi with the feasible path planning
scheme given. In order to prevent the alienation effect of
uncertain demand parameters on the results, this article
further splits random demand into nominal demand and
random demand, and constructs corresponding uncertain
sets, transforming linear optimization model into three
robust optimization models, respectively, and then apply
them to the path optimization problem of home health care
service enterprise in Tangshan city. (rough the case
analysis of this paper, some valuable research results are
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obtained, which can provide some enlightenment and ref-
erence for the low-carbon transformation and development
of family health care enterprises.

Although this study considers various major factors,
there are still some shortcomings, for example, the appli-
cation of information technology, Internet of technology,
and 5G technology in the path planning of home health care
services. In the future, our research will deeply discuss the
applicationmodel of science and technology. It is foreseeable
that the informatization and intelligence of the HHC service
industry is the development trend in the future.
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