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*is paper investigates a stochastic two-patch predator-prey model with ratio-dependent functional responses. First, the existence
of a unique global positive solution is proved via the stochastic comparison theorem. *en, two different methods are used to
discuss the long-time properties of the solutions pathwise. Next, sufficient conditions for extinction and persistence in mean are
obtained. Moreover, stochastic persistence of the model is discussed. Furthermore, sufficient conditions for the existence of an
ergodic stationary distribution are derived by a suitable Lyapunov function. Next, we apply the main results in some special
models. Finally, some numerical simulations are introduced to support the main results obtained. *e results in this paper
generalize and improve the previous related results.

1. Introduction

*e dynamic relationship between predators and their preys
has been universal in mathematical ecology. In the nature
world, foraging behaviour is a common phenomenon.
Ecological species have the ability to adapt through learning
(see [1]). An individual will adjust its behaviour by learning
in response to a change of the environment in order to
survive and acquire the most food. In [1], the authors studied
the two-patch predator-prey population model
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with nonnegative initial conditions. Here, xi denotes the
density of prey in patch i (i � 1, 2), and y represents the
density of predators. v (0≤ v≤ 1) is the proportion of time
that predators stay in patch 1 on average; ri (i � 1, 2) is the
intrinsic growth rate of prey in patch i; ai is the intraspecific
competition coefficient of the prey in patch i; si is the
attacking rate of the predators in patch i; ei is the expected
biomass of the prey converted to predators in patch i; mi is
the per capita mortality rate of predators in patch i; and hi is
the handling time of the predation in patch i, respectively.

It is well known that the functional response between the
predator and prey plays an important role in the population
dynamics. In model (1), the authors assumed that an in-
dividual predator consumes the prey with functional re-
sponse (x/1 + shx), which depends only on the prey.
However, when predators have to search for food and,
therefore, have to share or compete for food, a ratio-de-
pendent functional response is more reasonable (see [2]).
Based on the Holling-type II function, Arditi and Ginzburg
[3] first proposed a ratio-dependent functional response of
form (αx/x + βy). Here, α is the encounter rate with prey by
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a searching predator, and β is the half saturation constant for
the prey. Kuang and Beretta [4] investigated the predator-
prey model with ratio-dependent functional response
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with nonnegative initial conditions. Here, x and y represent
population sizes of the prey and predator at time t, re-
spectively. All parameters are positive constants. r and a,
respectively, stand for the prey intrinsic growth rate and the
intraspecific competition rate of the prey. d is the death rate
of the predator population. α, β, and e, respectively, rep-
resent the encounter rate, half capturing saturation constant,
and conversion rate that predator y preys on prey x.

Note that population model (1) with the functional
responses only depend on prey density. However, the ratio-
dependent functional response depends not only on the prey
but also on the predator. *us, the ratio-dependent function
of the prey and predator is more suitable to substitute for the
model. *erefore, based on models (1) and (2), a two-patch
predator-prey population model with ratio-dependent
functional responses is expressed in the following form:
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where xi denotes the density of prey in patch i (i � 1, 2) and
y represents the density of predators. All meanings of the

parameters are exact as or similar to those for model (1)
except the following. Here, αi, βi, and ei (i � 1, 2) are the
encounter rate, the half-saturation constant, and the con-
version rate that y preys on xi, respectively.

From [5], it can be seen that stochasticity or variability
plays an important role in understanding the dynamics of
predator-prey populations. Note that noise inmodels can lead
to several interesting dynamical effects, which are not an-
ticipated by their deterministic counterpart. *us, in order to
simulate population dynamics, environmental fluctuations
should be considered in modeling. In general, environmental
fluctuations can be simulated by a colored noise. From [6], it
can be seen that if the colored noise is not strongly correlated,
then one can approximate the colored noise by a white noise
_w(t). In fact, the white noise _w(t) is formally regarded as the
derivative of a Brownian motion w(t), i.e.,
_w(t) � (dw(t)/dt) (see [7]). As a result, it is more objective to
modeling stochastic population models with white noise in
mathematical biology. Recently, many authors have paid their
attention to stochastic prey-predatormodels with white noise,
see [8–15] and the references therein. Reference [8] investi-
gated the stability of a stochastic one-predator-two-prey
population model with time delay, while [13] considered the
stability of a stochastic two-predator one-prey population
model with time delay. References [10, 11, 15] discussed the
dynamic behaviors of stochastic population models with the
Allee effect. Reference [12] is concerned with a stochastic
three-species food web model with omnivory and ratio-de-
pendent functional response.

To the best of our knowledge, so far, there is no in-
vestigation on the dynamics of the stochastic two-patch
prey-predator model with ratio-dependent functional re-
sponses. *e purpose of this paper is to make some con-
tribution in this direction. As in the work of Imhof and
Walcher [16], assuming that the environmental noise is
proportional to the variables, we obtain the following sto-
chastic two-patch prey-predator model:
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with initial value (x1(0 ), x2(0), y(0)) � (x10, x20,

� y0) ∈ R+
3 � (x, y, z) ∈ R3: x> 0, y> 0, z> 0 . All mean-

ings of the parameters are exact as or similar to those for

model (3) except the following. Here,
w � w1(t), w2(t), w3(t): t≥ 0  represents the three-di-
mensional standard Brownian motion defined on a filtered
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complete probability space (Ω,F, Ft t≥0,P) satisfying the
usual conditions. σ2i represents the intensity of noise
wi(t) (i � 1, 2, 3).

Furthermore, if the intraspecific competition of the
predator is considered in model (4), then one can obtain the
following stochastic two-patch predator-prey model:
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with initial value (x1(0), x2(0), y(0)) � (x10, x20, � y0) ∈
R+

3 . Here, b is the interspecific competition coefficient of the
predator.

In this paper, we first investigate the dynamics of the
stochastic two-patch predator-prey population model (5).
*en, we apply the main results in the stochastic predator-
prey populationmodel (4).*e rest of this paper is organized
as follows. In Section 2, we first prove that model (5) has a
unique global positive solution by the stochastic comparison
theorem. *en, we discuss the long-time properties of the
solutions pathwise. Using the exponential martingale in-
equality and the Borel–Cantelli lemma, we show that the
sample Lyapunov exponents of the solutions are non-
positive. Moreover, we prove that, under certain conditions,
the sample Lyapunov exponents of the solutions are zero. In
Section 3, we establish the sufficient conditions for the
extinction and persistence in mean of model (5). In Section
4, we first prove the stochastic ultimate boundedness of
model (5) by using two different methods. *en, we show
that model (5) is stochastically permanent. Moreover, in
section 5, by constructing a suitable Lyapunov function, we
establish sufficient conditions for the existence of an ergodic
stationary distribution to model (5). Next, in Section 6, we
apply the main results to two stochastic two-species pred-
ator-prey population models and stochastic two-patch
predator-prey population model (4). Section 7 contains
some numerical results, which are used to demonstrate the
theoretical results in this paper. Moreover, through

numerical calculation, we find other dynamic properties of
the model. *e paper ends with a conclusion.

For simplicity, in the coming discussion, we introduce
the notations

λ1 _� r1 −
α1v
β1

,

λ2 _� r2 −
α2(1 − v)

β2
,

λ3 _� e1α1v + e2α2(1 − v) − m1v − m2(1 − v).

(6)

2. Global Positive Solution and
Pathwise Estimation

In this section, we first show that model (5) has a unique
positive global solution by the stochastic comparison the-
orem. *en, we discuss the long-time properties of the
solutions pathwise.

Theorem 1. For any given initial value (x10, x20, y0) ∈ R3
+,
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+ with probability one.

Proof. We consider the following system:

dX1(t) � r1 − a1e
X1(t)

−
α1ve

Y(t)

e
X1(t)

+ β1e
Y(t)

−
σ21
2

⎡⎣ ⎤⎦dt + σ1dw1(t),

dX2(t) � r2 − a2e
X2(t)

−
α2(1 − v)e

Y(t)

e
X2(t)

+ β2e
Y(t)

−
σ22
2

⎡⎣ ⎤⎦dt + σ2dw2(t),

dY(t) � − m1v − m2(1 − v) − be
Y(t)

+
e1α1ve

X1(t)

e
X1(t)

+ β1e
X1(t)

+
e2α2(1 − v)e

X2(t)

e
X2(t)

+ β2e
Y(t)

−
σ23
2

⎡⎣ ⎤⎦dt + σ3dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Complexity 3



where (X1(0), X2(0), Y(0)) � (lnx10, lnx20, lny0). It is
clear that the coefficients of system (7) are locally Lipschitz
continuous. Hence, system (7) has a unique maximal local
solution (X1(t), X2(t), Y(t)) on [ 0, τe ), where τe is the
explosion time. Let xi(t) � eXi(t) (i � 1, 2) and y(t) � eY(t).
From Itô formula, it follows that (x1(t), x2(t), y (t)) �

(eX1(t), eX2(t), eY(t)) is the unique positive local solution of
model (5) with initial value (x10, x20, y0) on [ 0, τe ).

If we can verify that τe �∞ a.s., then
(X1(t), X2(t), Y(t)) is a global solution to system (7). Now,
using the stochastic comparison theorem, we show that τe �

∞ a.s. We consider the following two stochastic differential
systems:

dΦ1(t) � Φ1(t) r1 − a1Φ1(t) dt + σ1Φ1(t)dw1(t),
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with initial value (ϕ1(0),ϕ2(0),ψ(0)) � (x10, x20, y0) ∈ R3
+. *anks to Lemma 4.2 in [17], systems (8) and (9) can be

explicitly solved as follows:
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,
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It is clear that the local solution (x1(t), x2(t), y(t)) is
positive on [0, τe). *us, from the stochastic comparison
theorem (see *eorem 3.1 in [18]), it follows that
0< ϕi(t)≤xi(t)≤Φi(t) (i � 1, 2) and 0<ψ(t)≤y(t)≤Ψ(t)

almost surely for t ∈ [ 0, τe ). *us, for t ∈ [ 0, τe ),

lnϕi(t)≤Xi(t)≤ lnΦi(t),

lnψ(t)≤Y(t)≤ lnΨ(t), a.s., i � 1, 2.
(11)

Note that ln ϕi(t), lnΦi(t), lnψ(t), and lnΨ(t) (i � 1, 2)
exist on [0,∞). *us, τe �∞ a.s. *is means that, for any
(X1(0), X2(0), Y(0)) � (lnx10, lnx20, lny0) ∈ R3, system
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(7) has a unique global solution (X1(t), X2(t), Y(t)) on
[0,∞) a.s. *us, for any initial value (x10, x20, y0) ∈ R3

+,
model (5) has a unique global positive solution
(x1(t), x2(t), y(t)) � (eX1(t), eX2(t), eY(t)) on [0,∞) a.s.

Now, we discuss the long-time properties of the solu-
tions pathwise. We denote 〈u(t)〉 � (1/t) 

t

0 u(s)ds.

Theorem 2. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). 3en,

lim sup
t⟶∞

Inxi(t)

t
≤ 0,

lim sup
t⟶∞

Iny(t)

t
≤ 0 a.s., i � 1, 2.

(12)

Proof. We consider the stochastic process Φ1(t) in system
(8). Applying Itô’s formula to etlnΦ1 leads to

e
t lnΦ1(t) � lnx10 + 

t

0
e

s lnΦ1(s) + r1 − a1Φ1(s) −
σ21
2

 ds + M1(t),

(13)

where M1(t) � 
t

0 σ1e
sdw1(s) is a continuous local mar-

tingale with M1(0) � 0 and 〈M1, M1〉t � 
t

0 σ
2
1e

2sds. Let
n � 1, 2, . . ., c> 0, θ> 1 and 0< ε< 1. We choose T � nc,
α � εe− nc, and β � (θencln n)/ε. By the exponential mar-
tingale inequality (see *eorem 1.7.4 in [7]), one can get

P sup0≤t≤T M1(t) −
α
2
〈M1, M1〉t > β ≤ e

− αβ
�

1
n
θ.

(14)

Since 
∞
n�0(1/n

θ)<∞ for θ> 1, the Borel–Cantelli
lemma (see Lemma 1.2.4 in [7]) implies that there exists a set
Ω0 ∈F with P(Ω0) � 1 and an integer-valued random
variable n0 � n0(ω) such that, for every ω ∈ Ω0,
M1(t)≤ (θenc ln n/ε) + (εe− nc/2)〈M1, M1〉t holds for all
0≤ t≤ nc, n≥ n0. Substituting the abovementioned in-
equality into (13), we have

e
t lnΦ1(t)≤ lnx10 + 

t

0
e

s lnΦ1(s) + r1 − a1Φ1(s) ds

−
1
2


t

0
σ21e

sds +
εe− nc

2


t

0
σ21e

2sds +
θe

nc ln n

ε
,

(15)

which holds for all 0≤ t≤ nc, n≥ n0. Note that, for
0≤ s≤ t≤ nc,
1
2
εe− ncσ21e

2s
−
1
2
σ21e

s
�
1
2
σ21e

s εes− nc
− 1( ≤

1
2
σ21e

s
(ε − 1)< 0.

(16)

*us, it follows from (15) that

e
t lnΦ1(t)≤ lnx10 + 

t

0
e

s lnΦ1(s) + r1 − a1Φ1(s) ds +
θe

nc ln n

ε
(17)

holds for all 0≤ t≤ nc, n≥ n0. Consider function q1(x) �

lnx + r1 − a1x on (0,∞). Obviously, q1 has maximum value
for x � (1/a1)> 0 and q1,max � ln(1/a1) + r1 − 1. We denote
K1 _�(ln(1/a1) + r1 − 1)∨1. *en,

e
t lnΦ1(t)≤ lnx10 + K1e

t
+
θe

nc ln n

ε
, (18)

holds for all 0≤ t≤ nc, n≥ n0. *us, for all
0≤ (n − 1)c≤ t≤ nc, n≥ n0, we have

lnΦ1(t)

ln t
≤
lnx10

e
t ln t

+
K1

ln t
+

θe
c ln n

ε ln[(n − 1)c]
. (19)

Letting n⟶∞ (and so t⟶∞), we obtain
limsupt⟶∞(lnΦ1(t)/ln t)≤ (θec/ε) a.s. Moreover, letting
θ↓1, c↓0 and ε↑1, one can get limsupt⟶∞(lnΦ1(t)/ln t)≤ 1
a.s. *is, together with limt⟶∞(ln t/t) � 0, yields
limsupt⟶∞(lnΦ1(t)/t)≤ 0 a.s. Note that 0<x1(t)≤Φ1(t)

a.s. for any t ∈ [ 0,∞ ). *en, we have

limsup
t⟶∞

Inx1(t)

t
≤ limsup

t⟶∞

lnΦ1(t)

t
≤ 0, a.s. (20)

By a similar discussion as that mentioned above for x1,
we also have

limsup
t⟶∞

In x2(t)

t
≤ 0,

limsup
t⟶∞

Iny(t)

t
≤ 0, a.s.

(21)

*e proof is, therefore, complete. □

Lemma 1 (See [12]). We consider the one-dimensional
stochastic differential equation

dx(t) � x(t)[a − bx(t)]dt + σx(t)dw(t), (22)

where a, b, and σ are positive constants and and w(t) is the
standard Brownian motion. For any x0 > 0, let x(t) be the
solution of equation (22) with x(0) � x0. If a> (σ2/2), then

lim
t⟶∞

lnx(t)

t
� 0,

lim
t⟶∞

〈x(t)〉 �
a − σ2/2 

b
, a.s.

(23)

Theorem 3. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). If λi − (σ2i /2)> 0 (i � 1, 2, 3), then

lim
t⟶∞

lnxi(t)

t
� 0,

lim
t⟶∞

lny(t)

t
� 0, a.s. i � 1, 2.

(24)

Moreover, the solution obeys

Complexity 5



0<
λ1 − σ21/2 

a1
≤ liminf

t⟶∞
〈x2(t)〉 ≤ limsup

t⟶∞
〈x1(t)〉 ≤

r1 − σ21/2 

a1
, a.s,

0<
λ1 − σ22/2 

a2
≤ liminf

t⟶∞
〈x2(t)〉 ≤ limsup

t⟶∞
〈x1(t)〉 ≤

r1 − σ22/2 

a2
, a.s.

(25)

Proof. From*eorem 1, it follows that, for any t ∈ [ 0,∞ ),

0<ϕi(t)≤xi(t)≤Φi(t),

0<ψ(t)≤y(t)≤Ψ(t), a.s. i � 1, 2.
(26)

Here ϕ1(t) and Φ1(t) are the solutions of stochastic
equations, respectively.

dϕ1(t) � ϕ1(t) λ1 − a1ϕ1(t) dt + σ1ϕ1(t)dw1(t),

dΦ1(t) � Φ1(t) r1 − a1Φ1(t) dt + σ1Φ1(t)dw1(t),
(27)

where ϕ1(0) � Φ1(0) � x10 > 0. From Lemma 1, if
λ1 − (σ21/2)> 0, then

lim
t⟶∞

lnϕ1(t)

t
� 0, lim

t⟶∞
〈ϕ1(t)〉

lim
t⟶∞

lnΦ1(t)

t
� 0, lim

t⟶∞
〈Φ1(t)〉

(28)

*is, together with (12), yields

lim
t⟶∞

lnx1(t)

t
� 0

0<
λ1 − σ21/2 

a1
≤ liminf

t⟶∞
〈x1(t)〉 ≤ limsup

t⟶∞
〈x1(t)〉 ≤

r1 − σ21/2 

a1
, a.s.

(29)

Similarly, if λ2 − (σ22/2)> 0, then

lim
t⟶∞

lnx2(t)

t
� 0

0<
λ2 − σ22/2 

a2
≤ liminf

t⟶∞
〈x2(t)〉 ≤ limsup

t⟶∞
〈x2(t)〉 ≤

r2 − σ22/2 

a2
, a.s.

(30)

Now, we show limt⟶∞(lny(t)/t) � 0 a.s. Note that
Ψ(t) is the solution of the stochastic equation

dΨ(t) � Ψ(t) e1α1v + e2α2(1 − v) − bΨ(t) dt

+ σ3Ψ(t)dw3(t),
(31)

with Ψ(0) � y0 > 0. Note that λ3 − (σ23/2)> 0. *us, from
Lemma 1, limt⟶∞(lnΨ(t)/t) � 0 a.s. From
limt⟶∞(lnϕ1(t)/t) � 0 and limt⟶∞(ln ϕ2(t)/t) � 0 a.s., it
follows that, for any ε> 0, there exists T1 > 0 such that

e
− εt ≤ϕi(t)≤ e

εt for t≥T1, i � 1, 2. (32)

Moreover, from the strong law of large numbers, it
follows that limt⟶∞(σ3w3(t)/t) � 0 a.s. *us, for the
abovementioned ε> 0, there exists T2 > 0 such that

− εt≤ σ3w3(t)≤ εt for t≥T2. (33)

Let κ � λ3 − (σ23/2). From the expression of ψ(t), it
follows that, for any t> s≥T � T1∨T2,

1
ψ(t)

�
1

y(T)
e

− κ(t− T)− σ3 w3(t)− w3(T)( ){ } + b 
t

T
e

− κ(t− s)− σ3 w3(t)− w3(s)( ){ }ds

+ 
t

T

e1α1vβ1
ϕ1(s)

+
e2α2(1 − v)β2

ϕ2(s)
 e

− κ(t− s)− σ3 w3(t)− w3(s)( ){ }ds

≤
1

y(T)
e

− κ(t− T)+ε(t+T){ }
+ b 

t

T
e

− κ(t− s)+ε(t+s){ }ds

+ e1α1vβ1 + e2α2(1 − v)β2(  
t

T
e
εs

e
− κ(t− s)+ε(t+s){ }ds.

(34)

Hence, from κ> 0, ε> 0 and t>T, we have

e
− 3ε(t+T)

ψ(t)
≤

1
y(T)

e
[− κ(t− T)− 2ε(t+T)]

+
b

κ + ε
e

− εt
e

− 3εT 1 − e
− (κ+ε)(t− T)

 

+
e1α1vβ1 + e2α2(1 − v)β2

κ + 2ε
e

− 3εT 1 − e
− (κ+2ε)(t− T)

 

≤
1

y(T)
e

[− κ(t− T)− 2ε(t+T)]
+

b

κ
+

e1α1vβ1 + e2α2(1 − v)β2
κ

≤
1

y(T)
+

b

κ
+

e1α1vβ1 + e2α2(1 − v)β2
κ

_�K.

(35)

*us, ( 1/ψ(t) )≤Ke3ε(t+T) a.s., which implies
− lnψ(t)≤ lnK + 3ε(t + T) a.s. *en, from the arbitrariness
of ε, it follows that liminf t⟶∞(lnψ(t)/t)≥ 0 a.s.
Consequently,

0≤ liminf
t⟶∞

Inψ(t)

t
≤ liminf

t⟶∞

Iny(t)

t
≤ limsup

t⟶∞

Iny(t)

t

≤ lim
t⟶∞

InΨ(t)

t
� 0, a.s.

(36)

*is implies

lim
x⟶∞

lny(t)

t
� 0, a.s (37)

*e proof is, therefore, complete. □

From proof of*eorem 3, we can get the following result
with the proof being omitted.
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Corollary 1. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). For i � 1, 2, if λi − (σ2i /2)> 0, then

lim
t⟶∞

Inxi(t)

t
� 0,

0<
λi − σ2i /2 

ai

≤ liminf
t⟶∞
〈xi(t)〉 limsup

t⟶∞
〈xi(t)〉 ≤

ri − σ2i /2 

ai

a.s.

(38)

3. Persistence in Mean and Extinction

In this section, we show that, under some conditions, model
(5) is persistent in mean and extinct.

Lemma 2 (See [19]). Assume that u ∈ C(Ω× [ 0, +∞ ),R+ ),
G ∈ C(Ω × [ 0, +∞ ),R ), and limt⟶∞(G(t)/t) � 0 a.s.

(i) If there are ϱ ≥ 0, ϱ0 > 0 and T> 0 satisfying

ln u(t)≤ ϱt − ϱ0 
t

0
u(s)ds + G(t), a.s., t≥T, (39)

then limsupt⟶∞〈u(t)〉≤ (ϱ/ϱ0) a.s. Furthermore, if
ϱ � 0, then limsupt⟶∞〈u(t)〉 � 0 a.s.

(ii) If there exist ϱ > 0, ϱ0 > 0 and T> 0 satisfying

ln u(t)≥ ϱt − ϱ0 
t

0
u(s)ds + G(t), a.s., t≥T, (40)

then liminf t⟶∞〈u(t)〉≥ (ϱ/ϱ0) a.s.

Theorem 4. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). If λi − (σ2i /2)> 0, (i � 1, 2, 3), then

liminf
t⟶∞
〈xi(t)〉 ≥

λi − σ2i /2 

ai

> 0, a.s., i � 1, 2;

liminf
t⟶∞
〈y(t) + M1

y(t)

x1(t)
+ M2

y(t)

x2(t)
〉 ≥

λ3 − σ23/2 

b
> 0, a.s.

(41)

Here, M1 � (e1α1vβ1/b) and M2 � (e2α2(1 − v)β2/b).
*is means that model (5) is persistent in mean.

Proof. From *eorem 3, it follows that if
λi − (σ2i /2)> 0, (i � 1, 2), then

lim inf t⟶∞〈x1(t)〉 ≥
λ1 − σ21/2 

a1
> 0,

lim inf t⟶∞〈x2(t)〉 ≥
λ2 − σ22/2 

a2
> 0, a.s.

(42)

For the predator y(t), using the Itô formula, we obtain

lny(t) � 
t

0
− m1v − m2(1 − v) −

σ23
2

− by(s)

+
e1α1vx1(s)

x1(s) + β1y(s)
+

e2α2(1 − v)x2(s)

x2(s) + β2y(s)
ds + σ3w3(t) + lny0,

(43)

which implies

lny(t)≥ λ3 −
σ23
2

 t − b 
t

0
y(s) + M1

y(s)

x1(s)
+ M2

y(s)

x2(s)
 ds + σ3w3(t) + lny0. (44)

Hence,

1
t


t

0
b y(s) + M1

y(s)

x1(s)
+ M2

y(s)

x2(s)
 ds≥ λ3 −

σ23
2

+
σ3w3(t)

t
+
lny0

t
−
lny(t)

t
. (45)

Letting t⟶∞ and by the strong law of numbers and
*eorem 3, we have

liminf
t⟶∞
〈y(t) + M1

y(t)

x1(t)
+ M2

y(t)

x2(t)
〉≥

λ3 − σ23/2 

b
> 0, a.s.

(46)

*e proof is complete. □

Theorem 5. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial

value (x10, x20, y0). If r1 − (σ21/2)< 0, r2 − (σ22/2)< 0, and
λ3 − (σ23/2)< 0, then

lim
t⟶∞

x1(t) � 0,

lim
t⟶∞

x2(t) � 0,

lim
t⟶∞

y(t) � 0, a.s.

(47)

Lat is, for any initial value (x10, x20, y0) ∈ R3
+, model (5)

is extinct with probability one.
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Proof. From the Itô formula, it follows that

lnx1(t) � 
t

0
r1 − a1x1(s) −

α1vy(s)

x1(s) + β1y(s)
−
σ21
2

 ds + σ1w1(t) + lnx10

≤ r1 −
σ21
2

 t + σ1w1(t) + lnx10.

(48)

*is, together with limt⟶∞[(σ1w1(t)/t) + (lnx10/t)]
� 0, yields limsupt⟶∞(lnxi(t)/t)≤ r1 − (σ21/2)< 0 a.s.
*us,

lim
t⟶∞

x1(t) � 0, a.s. (49)

Similarly, from r2 − (σ22/2)< 0, it follows that

lim
t⟶∞

x2(t) � 0, a.s. (50)

Moreover, from (43), we have

lny(t)≤ 
t

0
e1α1v + e2α2(1 − v)

− m1v − m2(1 − v) −
σ23
2

ds + σ3w3(t) + lny0

� λ3 −
σ23
2

 t + σ3w3(t) + lny0.

(51)

From limt⟶∞[(σ3w3(t)/t) + (lny0/t)] � 0, it follows
that limsupt⟶∞(lny(t)/t) ≤ λ3 − (σ23/2)< 0 a.s. *is
implies

lim
t⟶∞

y(t) � 0, a.s. (52)

*erefore, model (5) is extinct exponentially. *e proof
is complete. □

Theorem 6.
(I) If the predator is absent, i.e., y(t) � 0 a.s. for all t≥ 0,
then the quantities of prey x1(t) and prey x2(t) satisfy
the following:

(i) If r1 − (σ21/2)> 0 and r2 − (σ22/2)> 0, then

lim
t⟶∞
〈x1(t)〉 �

r1 − σ21/2 

a1
,

lim
t⟶∞
〈x2(t)〉 �

r2 − σ22/2 

a2
, a.s

(53)

(ii) If r1 − (σ21/2)> 0 and r2 − (σ22/2)< 0, then

lim
t⟶∞
〈x1(t)〉 �

r1 − σ21/2 

a1
,

lim
t⟶∞

x2(t) � 0, a.s

(54)

(iii) If r1 − (σ21/2)< 0 and r2 − (σ22/2)> 0, then

lim
t⟶∞

x1(t) � 0,

lim
t⟶∞
〈x2(t)〉 �

r2 − σ22/2 

a2
, a.s

(55)

(iv) If r1 − (σ21/2)< 0 and r2 − (σ22/2)< 0, then

lim
t⟶∞

x1(t) � 0,

limt⟶∞x2(t) � 0, a.s
(56)

(II) If the prey in patch 2 is absent, i.e., x2(t) � 0 a.s. for
all t≥ 0, then the quantities of prey x1(t) and predator
y(t) satisfy the following:

(i) If λ1 − (σ21/2)> 0 and e1α1v − m1v − m2(1 − v)−

(σ23/2)> 0, then

liminf
t⟶∞
〈x1(t)〉 ≥

λ1 − σ21/2 

a1
, a.s;

liminf
t⟶∞
〈y(t) + M1

y(t)

x1(t)
〉 ≥

e1α1v − m1v − m2(1 − v) − σ23/2 

b
, a.s

(57)

(ii) If r1 − (σ21/2)< 0 and e1α1v − m1v − m2(1 − v)−

(σ23/2)< 0, then

lim
t⟶∞

x1(t) � 0,

lim
t⟶∞

y(t) � 0, a.s
(58)

(III) If the prey in patch 1 is absent, i.e., x1(t) � 0 a.s. for
all t≥ 0, then the quantities of prey x2(t) and predator
y(t) satisfy the following:

(i) If λ2 − (σ22/2)> 0 and e2α2(1 − v) − m1v − m2(1 −

v)− (σ23/2)> 0, then

liminf
t⟶∞
〈x2(t)〉 ≥

λ2 − σ22/2 

a1
, a.s.;

liminf
t⟶∞
〈y(t) + M2

y(t)

x2(t)
〉≥

e2α2(1 − v) − m1v − m2(1 − v) − σ23/2 

b
, a.s

(59)

(ii) If r2 − (σ22/2)< 0 and e2α2(1 − v) − m1v − m2(1 −

v)− (σ23/2)< 0, then

lim
t⟶∞

x2(t) � 0

lim
t⟶∞

y(t) � 0, a.s
(60)

(IV) If the prey is absent, i.e., x1(t) � x2(t) � 0 a.s. for
all t≥ 0, then the predator dies with probability one
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Proof. (I) In the absence of the predator, from the Itô
formula, it follows that

lnxi(t) � ri −
σ2i
2

 t − ai 
t

0
xi(s)ds

+ σiwi(t) + lnxi0, a.s., i � 1, 2.

(61)

Note that limt⟶∞[( σiwi(t)/t ) + (lnxi0/t)] � 0 a.s.,
(i � 1, 2). *us, from Lemma 2, it follows that if
ri − (σ2i /2)> 0, (i � 1, 2), then

lim
t⟶∞
〈xi(t)〉 �

ri − σ2i /2 

ai

, a.s., i � 1, 2. (62)

Moreover, from Lemma 2, it follows that if
ri − (σ2i /2)< 0, (i � 1, 2), then

lim
t⟶∞

xi(t) � 0, a.s., i � 1, 2. (63)

*us, (I) holds.
Next, we prove (II). From *eorem 3, it follows that if

λ1 − (σ21/2)> 0, then

lim
t⟶∞
〈x1(t)〉 ≥

λ1 − σ21/2 

a1
, a.s. (64)

Moreover, in the absence of the prey in patch 2, from the
Itô formula, it follows that

lny(t) � 
t

0
− m1v − m2(1 − v) −

σ23
2

− by(s)

+
e1α1vx1(s)

x1(s) + β1y(s)
ds + σ3w3(t) + lny0

≥ e1α1v − m1v − m2(1 − v) −
σ23
2

 t

− b 
t

0
y(s) + M1

y(s)

x1(s)
 ds + σ3w3(t) + lny0.

(65)

Hence,

b

t


t

0
y(s) + M1

y(s)

x1(s)
 ds≥ e1α1v − m1v − m2(1 − v) −

σ23
2

+
σ3w3(t)

t
+
lny0

t
−
lny(t)

t
.

(66)

Letting t⟶∞ and by the strong law of numbers and
*eorem 2, we have

b liminf
t⟶∞
〈y(t) + M1

y(t)

x1(t)
〉 ≥ e1α1v − m1v − m2(1 − v) −

σ23
2

− limsup
t⟶∞

lny(t)

t

≥ e1α1v − m1v − m2(1 − v) −
σ23
2

a.s.

(67)

*us, we have

liminf
t⟶∞
〈y(t) + M1

y(t)

x1(t)
〉 ≥

e1α1v − m1v − m2(1 − v) − σ23/2
b

, a.s.

(68)

Furthermore, from the proof of (I), if r1 − (σ21/2)< 0,
then

lim
t⟶∞

x1(t) � 0, a.s. (69)

Moreover, in the absence of the prey in patch 2, from the
Itô formula, it follows that

lny(t)≤ e1α1v − m1v − m2(1 − v) −
σ23
2

 t

− b 
t

0
y(s)ds + σ3w3(t) + lny0.

(70)

Note that limt⟶∞[(σ3w3(t)/t) + (lny0/t)] � 0 a.s.
*us, from Lemma 2, if
e1α1v − m1v − m2(1 − v) − (σ23/2)< 0, then

lim
t⟶∞

y(t) � 0, a.s. (71)

Hence, (II) holds. *e proof of (III) is similar to (II) and,
hence, is omitted.

At last, we prove (IV). In the absence of the prey, from
the Itô formula, it follows that

lny(t) � 
t

0
− m1v − m2(1 − v) −

σ23
2

− by(s) ds

+σ3w3(t) + lny0 � − m1v − m2(1 − v) −
σ23
2

 t − b 
t

0
y(s)ds

+ σ3w3(t) + lny0.

(72)

Note that limt⟶∞[(σ3w3(t)/t) + (lny0/t)] � 0 a.s.
*us, from Lemma 2, it follows that

lim
t⟶∞

y(t) � 0, a.s. (73)
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*e proof is, therefore, complete. □

4. Stochastic Permanence

In this section, we investigate the stochastic permanence of
model (5).

4.1. Stochastically Ultimate Boundedness. In this subsection,
we first use two different ways to prove the boundedness of
model (5) and then show that model (5) is stochastically
ultimately bounded by Chebyshev’s inequality. *e defini-
tion of stochastically ultimate boundedness of model (5) was
introduced in the literature [20, 21] as follows.

Definition 1 (See [20, 21]). Model (5) is called stochastically
ultimately bounded if, for any ε ∈ (0, 1), there exist positive
constants Hi � Hi(ε), (i � 1, 2, 3) such that the solution
(x1(t), x2(t), y(t)) of model (5) with any initial value
(x10, x20, y0) ∈ R3

+ has the property that

limsup
t⟶∞

P xi(t)>Hi < ε,

limsup
t⟶∞

P y(t)>H3 < ε, i � 1, 2.
(74)

Theorem 7. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). 3en, for any p> 0, the solution
(x1(t), x2(t), y(t)) obeys

limsup
t⟶∞

E x
p
i (t) ≤

p

p + 1
 

p+1 (1/p) + ri +(p/2)σ2i 
p+1

a
p

i

_�Ki(p), i � 1, 2, limsup
t⟶∞

E y
p
(t) ≤

p

p + 1
 

p+1 (1/p) + e1α1v + e2α2(1 − v) +(p/2)σ23 
p+1

b
p _�K3(p).

(75)

Proof. Applying the Itô formula to etΦp
i leads to

E e
tΦp

1(t)  � x
p
10 + pE

t

0
e

sΦp
1(s)

1
p

+ r1 +
p − 1
2

σ21 − a1Φ1(s) ds

≤x
p
10 + pE

t

0
e

sΦp
1(s)

1
p

+ r1 +
p

2
σ21 − a1Φ1(s) ds.

(76)

Clearly, function f(x) � xp(1/p)((1/p) + r1 + (p/2)σ21
− a1x) reaches its maximum value at x � (p((1/p) + r1 +

(p/2)σ21)/a1(p + 1))> 0 and fmax � (p/a1)
p((1/p) + r1+

(p/2)σ21/p + 1)p+1. *us,

E e
tΦp

1(t) ≤ x
p
10 + p

p

a1
 

p
(1/p) + r1 +(p/2)σ21

p + 1
 

p+1

e
t

− 1 ,

(77)

which implies

limsup
t⟶∞

E Φp
1(t) ≤

p

p + 1
 

p+1 (1/p) + r1 +(p/2)σ21 
p+1

a
p
1

.

(78)

By a similar discussion as in Φ1(t), we also have

limsup
t⟶∞

E Φp
2(t) ≤

p

p + 1
 

p+1 (1/p) + r2 +(p/2)σ22 
p+1

a
p
2

,

limsup
t⟶∞

E Ψp
(t) ≤

p

p + 1
 

p+1 (1/p) + e1α1v + e2α2(1 − v) +(p/2)σ23 
p+1

b
p .

(79)

From (12), it follows that 0< xi(t)≤Φi(t) and
0<y(t)≤Ψ(t) a.s. on t ∈ [ 0, +∞ ), i � 1, 2. *en, for any
p> 0, we have

0<E x
p
i (t) ≤E Φp

i (t) ,

0<E y
p
(t) ≤E Ψp

(t) , i � 1, 2.
(80)

*us, the desired results can be obtained immediately.
*e proof is complete. □

Theorem 8. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). 3en,

limsup
t⟶∞

E xi(t) ≤
K2

eiλ
,

limsup
t⟶∞

E[y(t)]≤
K2

λ
, i � 1, 2.

(81)

where K2 � (e1(r1 + λ)2/4a1) + (e2(r2 + λ)2/4a2) and
λ � m1v + m2(1 − v).

Proof. We denote λ � m1v + m2(1 − v) and
N(t) � e1x1(t) + e2x2(t) + y(t). Frommodel (5) and the Itô
formula, it follows that

E[N(t)] � N(0) + E
t

0
− λN(s) + e1 r1 + λ( x1(s)

− e1a1x
2
1(s) + e2 r2 + λ( x2(s) − e2a2x

2
2(s)

− by
2
(s)ds.

(82)

10 Complexity



*is, together with ei(ri + λ)xi(t) − eiaix
2
i (t)≤

(ei(ri + λ)2/4ai), (i � 1, 2), yields

dE[N(t)]

dt
� E − λN(t) + e1 r1 + λ( x1(t) − e1a1x

2
1(t) + +e2 r2 + λ( x2(t) − e2a2x

2
2(t) − by

2
(t) 

≤ − λE[N(t)] + E e1 r1 + λ( x1(t) − e1a1x
2
1(t)  + E e2 r2 + λ( x2(t) − e2a2x

2
2(t) 

≤ − λE[N(t)] +
e1 r1 + λ( 

2

4a1
+

e2 r2 + λ( 
2

4a2
_�K2 − λE[N(t)],

(83)

where K2 � (e1(r1 + λ)2/4a1) + (e2(r2 + λ)2/4a2). *us, by
the comparison theorem, we have

0≤ limsup
t⟶∞

E[N(t)]≤
K2

λ
. (84)

From the solution of model (5) which is positive, it
follows that

limsup
t⟶∞

E xi(t) ≤
K2

eiλ
,

limsup
t⟶∞

E[y(t)]≤
K2

λ
, i � 1, 2.

(85)

*e proof is complete. □

Theorem 9. Model (5) is stochastically ultimately bounded.

Proof. For any (x10, x20, y0) ∈ R3
+, let (x1(t), x2(t), y(t))

be the solution of model (5) with initial value (x10, x20, y0).
From *eorem 7, it follows that

limsup
t⟶∞

E xi(t) ≤Ki(1),

limsup
t⟶∞

E[y(t)]≤K3(1), i � 1, 2.
(86)

For any ε ∈ (0, 1), let Hi � (Ki(1)/ε) + 1, i � 1, 2, 3.
From Chebyshev’s inequality, it follows that

P xi(t)>Hi ≤
E xi(t) 

Hi

,

P y(t) >H3 ≤
E[y(t)]

H3
, i � 1, 2.

(87)

Hence,

limsup
t⟶∞

P xi(t)>Hi ≤ limsup
t⟶∞

E xi(t) 

Hi

< ε, i � 1, 2,

limsup
t⟶∞

P y(t)>H3 ≤ limsup
t⟶∞

E[y(t)]

H3
< ε.

(88)

*e proof is, therefore, complete.
Similarly, from *eorem 8, together with Chebyshev’s

inequality, one can say that model (5) is also stochastically
ultimately bounded. □

4.2. Stochastic Permanence. In this section, we show that the
model (5) is stochastically permanent. *e definition of
stochastic permanence of model (5) is introduced as follows.

Definition 2 (See [20, 21]). Model (5) is called stochastically
permanent if, for any ε ∈ (0, 1), there exist positive constants
δi � δi(ε), Hi � Hi(ε), and δi <Hi, i � 1, 2, 3, such that
solution (x1(t), x2(t), y(t)) of model (5) with any initial
value (x10, x20, y0) ∈ R3

+ has the property that

liminf
t⟶∞

P xi(t)≤Hi ≥ 1 − ε

limsup
t⟶∞

P y(t)≤H3 

≥ 1 − ε, i � 1, 2.

liminf
t⟶∞

P xi(t)≥ δi 

≥ 1 − ε and limsup
t⟶∞

P y(t)≥ δ3 ≥ 1 − ε, i � 1, 2.

(89)
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For simplicity, we denote κi � λi − σ2i , (i � 1, 2, 3). To
prove that model (5) is stochastically permanent, we define

u1 �
1
x1

,

u2 �
1
x2

,

u3 �
1
y

.

(90)

From the Itô formula, it follows that

du1(t) � a1 − r1u1(t) + σ21u1(t) +
α1v

u3(t) + β1u1(t)
u
2
1(t) dt − σ1u1(t)dw1(t),

du2(t) � a2 − r2u2(t) + σ22u2(t) +
α2(1 − v)

u3(t) + β2u2(t)
u
2
2(t) dt − σ2u2(t)dw2(t),

du3(t) � u3(t)
b

u3(t)
+ m1v + m2(1 − v) + σ23 −

e1α1vu3(t)

u3(t) + β1u1(t)
−

e2α2(1 − v)u3(t)

u3(t) + β2u2(t)
 dt

− σ3u3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(91)

with initial value (u1(0), u2(0), u3(0)) � ( (1/x10), (1/x20),

(1/y0) ). Furthermore, we consider the following auxiliary
system:

dθ1(t) � a1 − κ1θ1(t) dt − σ1θ1(t)dw1(t),

dθ2(t) � a2 − κ2θ2(t) dt − σ2θ2(t)dw2(t),

dθ3(t) � b − κ3θ3(t) + e1α1vβ1θ1(t) + e2α2(1 − v)β2θ2(t) dt − σ3θ3(t)dw3(t),

⎧⎪⎪⎨

⎪⎪⎩
(92)

with initial value (θ1(0), θ2(0), θ3(0)) � ( (1/x10), (1/
x20), (1/y0) ).

*anks to Lemma 4.2 in [17], system (92) has the exact
solution. Moreover, from the stochastic comparison theo-
rem, it follows that, for t ∈ [ 0,∞ ),

0< ui(t)≤ θi(t), a.s., i � 1, 2, 3. (93)

Theorem 10. For any (x10, x20, y0) ∈ R3
+, let

(x1(t), x2(t), y(t)) be the solution of model (5) with initial
value (x10, x20, y0). If κi > 0, (i � 1, 2, 3), then

limsup
t⟶∞

E
1

xi(t)
 ≤

ai

κi

_�Mi, i � 1, 2, limsup
t⟶∞

E
1

y(t)
 ≤

b

κ3
+

a1e1α1vβ1
κ1κ3

+
a2e2α2(1 − v)β2

κ2κ3
_�M3. (94)

Proof. Integrating the both sides of the first equation of (92)
and taking the expectation yields

E θ1(t)  �
1

x10
+ E

t

0
a1 − κ1θ1(s) ds. (95)

*en, we have the differential equation (dE[θ1(t)]/dt) �

a1 − κ1E[θ1(t)] with E[θ1(0)] � (1/x10). *us, one can get

E θ1(t)  �
1

x10
e

− κ1t
+

a1

κ1
1 − e

− κ1t
 . (96)

*is, together with κ1 > 0, it yields
limt⟶∞E[θ1(t)] � (a1/κ1). From ( 1/x1(t) ) � u1(t) and
(93), it follows that
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limsup
t⟶∞

E
1

x1(t)
  � limsup

t⟶∞
E u1(t) ≤ limsup

t⟶∞
E θ1(t)  �

a1

κ1
_�M1.

(97)

Similarly, one can get

limsup
t⟶∞

E
1

x2(t)
  � limsup

t⟶∞
E u2(t) ≤ limsup

t⟶∞
E θ2(t)  �

a2

κ2
_�M2.

(98)

Integrating the both sides of the third equation of system
(92) and taking the expectation yields

E θ3(t)  �
1
y0

+ E
t

0
b − κ3θ3(s) + e1α1vβ1θ1(s)

+ e2α2(1 − v)β2θ2(s)ds.

(99)

*us, we can get (dE[θ3(t)]/dt) � b − κ3E[θ3(t)]+

e1α1vβ1E[θ1(t)] + e2α2(1 − v)β2E[θ2(t)] with E[θ3(0)] �

(1/y0). *erefore, we have

E θ3(t)  �
1
y0

e
− κ3t

+
b

κ3
1 − e

− κ3t
 

+ e1α1vβ1 
t

0
e

− κ3(t− s)
E θ1(s) ds

+ e2α2(1 − v)β2 
t

0
e

− κ3(t− s)
E θ2(s) ds.

(100)

From L’Hospital’s rule and (97), it follows that

lim
t⟶∞


t

0
e

− κ3(t− s)
E θ1(s) ds � lim

t⟶∞


t

0 e
κ3s
E θ1(s) ds

e
κ3t

� lim
t⟶∞

E θ1(t) 

κ3
�

a1

κ1κ3
.

(101)

Similarly, we also have

lim
t⟶∞


t

0
e

− κ3(t− s)
E θ2(s) ds � lim

t⟶∞


t

0 e
κ3s
E θ2(s) ds

e
κ3t

� lim
t⟶∞

E θ2(t) 

κ3
�

a1

κ2κ3
.

(102)

*is, together with (100) and κ3 > 0, yields

limsup
t⟶∞

E θ3(t) ≤
b

κ3
+

a1e1α1vβ1
κ1κ3

+
a2e2α2(1 − v)β2

κ2κ3
_�M3.

(103)

*us, from ( 1/y(t) ) � u3(t) and (93), it follows that

limsup
t⟶∞

E
1

y(t)
  � limsup

t⟶∞
E u3(t) ≤ limsup

t⟶∞
E θ3(t) ≤M3.

(104)

*e proof is, therefore, complete. □

Theorem 11. If κi > 0, (i � 1, 2, 3), then model (5) is sto-
chastically permanent.

Proof. For any (x10, x20, y0) ∈ R3
+, let (x1(t), x2(t), y(t))

be the solution of model (5) with initial value (x10, x20, y0).
From *eorem 10, it follows that

limsup
t⟶∞

E
1

xi(t)
 ≤Mi,

limsup
t⟶∞

E
1

y(t)
 ≤M3, 1 � 1, 2.

(105)

For any ε ∈ (0, 1), let δi � (ε/Mi), (i � 1, 2, 3); then,

P xi(t)< δi  � P
1

xi(t)
>
1
δi

 ≤
E 1/xi(t)(  

1/δi( 
� δiE

1
xi(t)

 , i � 1, 2,

P y(t)< δ3  � P
1

y(t)
>
1
δ3

 ≤
E[(1/y(t))]

1/δ3( 
� δ3E

1
y(t)

 .

(106)

Thus,

limsup
t⟶∞

P xi(t)< δi ≤ limsup
t⟶∞

δiE
1

xi(t)
  � ε, i � 1, 2,

limsup
t⟶∞

P y(t)< δ3 ≤ limsup
t⟶∞

δ3E
1

y(t)
  � ε.

(107)

This implies

lim inf
t⟶∞

P xi(t)≥ δi ≥ 1 − ε,

lim inf
t⟶∞

P y(t)≥ δ3 ≥ 1 − ε, i � 1, 2.
(108)

Let ε ∈ (0, 1) be sufficiently small such that
δi <Hi, (i � 1, 2, 3). *en, from*eorem 9 and Definition 2,
one can say that model (5) is stochastically permanent. *e
proof is, therefore, complete.

5. Stationary Distribution and Ergodicity

*is section will show that there is an ergodic stationary
distribution for the solution of model (5). LetB(R3

+) be the
Borel σ-algebra on R3

+ and (R3
+,B(R3

+), Ft t≥ 0,P) be a
filtered complete probability space satisfying usual hy-
potheses. Consider a Markov process X(t) in the state space
(R3

+,B(R3
+),P) that satisfies the following stochastic dif-

ferential equation:

dX(t) � b(X(t))dt + g(X(t))dW(t), X(0) � X0. (109)

Here, W(t) is a standard 3-dimensional standard
Brownian motion, b: R3

+⟶ R3, and g: R3
+⟶ R3×3 are

all locally Lipschitz functions.*e diffusion matrix of X(t) is
defined as J(X) � g(X)gT(X) � (aij(X)). Let
X � (x1, x2, y),

Complexity 13



b(X) �

x1 r1 − a1x1 −
α1vy

x1 + β1y
 

x2 r2 − a2x2 −
α2(1 − v)y

x2 + β2y
 

y − m1v − m2(1 − v) − by +
e1α1vy

x1 + β1y
+

e2α2(1 − v)y

x2 + β2y
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(110)

g(X) � diag(σ1x1, σ2x2, σ3y), and W � (w1, w2, w3)
T .

*en, model (5) reduces to the abstract form (110) with
diffusion matrix J(X) � diag(σ21x

2
1, σ

2
2x

2
2, σ

2
3y

2). *e norm
|X| is given by |X| �

����������

x2
1 + x2

2 + y2


. Moreover, we denote
Pt(X0, A) the transition probability

Pt X0, A(  � P X(t) ∈ A|X(0) � X0( ,

· ∀t ∈ R+, ∀X0 ∈ R
3
+, ∀X0 ∈B R

3
+ .

(111)

Definition 3 (See [22]). Let P(t, X, ·) be the probability
measure induced by X(t) in (110) with X(0) � X0. *at is,
P(t, X0, A) � P(X(t) ∈ A|Xt(0)n � qX0), for any Borel set
A ∈B(R3

+). If there exists a probability measure μ(·) such
that limt⟶∞P(t, X0, A) � μ(A) for all X0 ∈ R3

+ and
A ∈B(R3

+), then equation (110) has a stationary distribu-
tion μ(·).

Lemma 3 (See [23, 24]). *e Markov process X(t) in (110)
has a unique ergodic stationary distribution μ(·) if there
exists a bounded open domain D ⊂ E3 (E3 denotes 3-di-
mensional Euclidean space) with regular boundary Γ, and

(A1): there is a positive number M such that


3
i,j�1 aij(X)ξiξj ≥M|ξ|2, X ∈ D, ξ ∈ R3

(A2): there exists a nonnegative C2 function V such that
LV is negative for any X ∈ E3/D

3en,

P lim
T⟶∞

1
T


T

0
f(X(t))dt � 

Ed

f(x)μ(dx)  � 1, (112)

for all x ∈ E3, where *e caption of Figure 5 is unclear.
Please rephrase the caption for clarity and correctness. is a
function integrable with respect to the measure μ.

Theorem 12. If κ1 − e1α1vβ1 > 0, κ2 − e2α2(1 − v)β2 > 0, and
κ3 > 0, then for any initial value (x10, x20, y0) ∈ R3

+, model (5)
has a stationary distribution μ(·) and the solutions have
ergodic property.

Proof. In what follows, for the simplification, we denote
x1(t), x2(t), and y(t) as x1, x2, and y, respectively. We
define C2 function V1: R3

+⟶ R+ by

V1(X) � x1 + x2 + y, (113)

for X � (x1, x2, y) ∈ R3
+. From the Itô formula, it follows

that

LV1(X) � x1 r1 − a1x1 −
α1vy

x1 + β1y
  + x2 r2 − a2x2 −

α2(1 − v)y

x2 + β2y
 

+ y − m1v − m2(1 − v) − by +
e1α1vx1

x1 + β1y
+

e2α2(1 − v)x2

x2 + β2y
 

≤x1 r1 − a1x1(  + x2 r2 − a2x2(  + y e1α1v + e2α2(1 − v) − by( ,

� − a1x
2
1 + r1x1 − a2x

2
2 + r2x2 − by

2
+ e1α1v + e2α2(1 − v)( y.

(114)

We define V2: R3
+⟶ R+ by

V2(X) � x
− 1
1 + x

− 1
2 + y

− 1
, (115)

for X � (x1, x2, y) ∈ R3
+. Applying the Itô formula, we have

LV2(X) � − x
− 1
1 r1 − a1x1 −

α1vy

x1 + β1y
− σ21  − x

− 1
2 r2 − a2x2 −

α2(1 − v)y

x2 + β2y
− σ22 

− y
− 1

− m1v − m2(1 − v) − by +
e1α1vx1

x1 + β1y
+

e2α2(1 − v)x2

x2 + β2y
− σ23 

≤ − x
− 1
1 κ1 − a1x1  − x

− 1
2 κ2 − a2x2  − y

− 1 κ3 − by −
e1α1vβ1y
x1 + β1y

−
e2α2(1 − v)β2y

x2 + β2y
 

≤ − x
− 1
1 κ1 − a1x1  − x

− 1
2 κ2 − a2x2  − y

− 1 κ3 − by −
e1α1vβ1y

x1
−

e2α2(1 − v)β2y
x2

 ,

� − κ1 − e1α1vβ1 x
− 1
1 + a1 − κ2 − − e2α2(1 − v)β2 x

− 1
2 + a2 − κ3y

− 1
+ b.

(116)
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Let
V(X) � V1(X) + V2(X) � x1 + x2 + y + x− 1

1 + x− 1
2 + y− 1.

*en,

LV(X) � LV1(X) + LV2(X)

≤ − a1x
2
1 + r1x1 − κ1 − e1α1vβ1 x

− 1
1 + a1

− a2x
2
2 + r2x2 − κ2 − e2α2(1 − v)β2 x

− 1
2 + a2

− by
2

+ e1α1v + e2α2(1 − v)( y − κ3y
− 1

+ b,

_�f x1(  + g x2(  + h(y),

(117)

where

f x1(  � − a1x
2
1 + r1x1 − κ1 − e1α1vβ1 x

− 1
1 + a1,

g x2(  � − a2x
2
2 + r2x2 − κ2 − e2α2(1 − v)β2 x

− 1
2 + a2,

h(y) � − by
2

+ e1α1v + e2α2(1 − v)( y − κ3y
− 1

+ b.

(118)

Obviously, f(x1), g(x2), and h(y) are all functions with
an upper bound on R+. *us, we denote

f
u

� supx1∈R+
f x1(  ,

g
u

� supx2∈R+
g x2(  ,

h
u

� supy∈R+
h(y) .

(119)

Let ρ be a sufficiently small positive number. We define a
bounded open set as follows:

D � x1, x2, y(  ∈ R3
+|ρ< x1 <

1
ρ
, ρ<x2 <

1
ρ
, ρ<y<

1
ρ

  ⊂ R3
+.

(120)

Now, we prove that LV(X)≤ − 1 on (R3
+/D). From

κ1 − e1α1vβ1 > 0, it follows that

LV(X)≤f x1(  + g x2(  + h(y)≤f x1(  + g
u

+ h
u⟶ − ∞, a.s., x1⟶ 0+ orx1⟶ +∞.

(121)

Similarly, from κ2 − e2α2(1 − v)β2 > 0 and κ3 > 0, we also
have

LV(X)≤f x1(  + g x2(  + h(y)≤f
u

+ g x2( 

+ h
u⟶ − ∞, a.s., x2⟶ 0+ orx2⟶ +∞.

LV(X)≤f x1(  + g x2(  + h(y)≤f
u

+ g
u

+ h(y)⟶ − ∞, a.s., y⟶ 0+ ory⟶ +∞.

(122)

Consequently, for sufficiently small ρ, one can see

LV(X)≤ − 1, for all x1, x2, y(  ∈
R

3
+

D
 . (123)

Hence, condition (A2) of Lemma 3 holds.
Let σ2 � σ21∧σ22∧σ23 and M � ρ2σ2. *en, for any X �

(x1, x2, y) ∈ D and ξ � (ξ1, ξ2, ξ2) ∈ R3, we have



3

i,j�1
aij(X)ξiξj � σ21x

2
1ξ

2
1 + σ22x

2
2ξ

2
2 + σ23y

2ξ23

≥ ρ2σ2 ξ21 + ξ22 + ξ23  _�M|ξ|
2
.

(124)

*us, (A1) in Lemma 3 is satisfied. From Lemma 3, we
can say that model (5) has a stationary distribution μ(·) and
the solutions of model (5) have ergodic property. □

6. Application of Main Results

In this section, we first apply the main results to two sto-
chastic two-species predator-prey models. *en, we present
the application of the main results to stochastic two-patch
predator-prey model (4).

6.1. Two-Species Predator-Prey Model. If the predator only
stays in one patch, then one can obtain the following sto-
chastic predator-prey model (obtained by taking v � 0 or v �

1 in model (5)).

dx(t) � x(t) r − ax(t) −
αy(t)

x(t) + βy(t)
 dt + σ1x(t)dw1(t),

dy(t) � y(t) − m − by(t) +
eαx(t)

x(t) + βy(t)
 dt + σ2y(t)dw2(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(125)

where (x(0), y(0)) � (x0, y0) ∈ R2
+. Model (125) was dis-

cussed in [25]. Furthermore, Linh and Ton [26] considered
the corresponding nonautonomous model of (125). By a
similar discussion as in *eorem 1, for any (x0, y0) ∈ R2

+,
model (21) has a unique global positive solution (x(t), y(t)).
Moreover, for model (125), we have the following results.
For simplicity, we denote δ1 � r − (α/β) and δ2 � eα − m.

Corollary 2. For any (x0, y0) ∈ R2
+, let (x(t), y(t)) be the

solution of model (125) with initial value (x0, y0).

(I) By a similar discussion as in 3eorems 2–6, we can
obtain the following results:

(i) 3e solution (x(t), y(t)) of model (126) obeys

limsup
t⟶∞

lnx(t)

t
≤ 0,

limsup
t⟶∞

lny(t)

t
≤ 0, a.s.

(126)

Moreover, if δ1 − (σ21/2)> 0 and δ2 − (σ22/2)> 0;
then,

lim
t⟶∞

lnx(t)

t
� 0,

lim
t⟶∞

lny(t)

t
� 0, a.s.

(127)

(ii) If δ1 − (σ21/2)> 0 and δ2 − (σ22/2)> 0, then
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liminf
t⟶∞

〈x(t)〉 ≥
δ1 − σ21/2 

a
> 0,

liminf
t⟶∞
〈y(t) + M

y(t)

x(t)
〉≥

δ2 − σ22/2 

b
> 0, a.s.

(128)

Here, M � (eαβ/b). 3is means that model (125)
is persistent in mean.

(iii) If r − (σ21/2)< 0 and δ2 − (σ22/2)< 0, then

lim
t⟶∞

x(t) � 0,

lim
t⟶∞

y(t) � 0, a.s.
(129)

(iv) If the predator is absent, i.e., y(t) � 0 a.s. for all
t≥ 0, then the quantity of prey in model (125)
satisfies the following:

lim
t⟶∞

〈x(t)〉 �
r − σ21/2 

a1
, a.s., if r − σ21/2 > 0;

lim
t⟶∞

x(t) � 0, a.s., if r − σ21/2 < 0.

(130)

(v) If the prey is absent, i.e., x(t) � 0 a.s. for all t≥ 0,
then the predator in model (125) dies with
probability one.

(II) By a similar discussion as in 3eorems 7, 10 and 11,
one can get the following results:

(i) 3e solution (x(t), y(t)) of model (125) obeys

limsup
t⟶∞

E x
p
(t) ≤

p

p + 1
 

p+1 (1/p) + r +(p/2)σ21 
p+1

a
p

limsup
t⟶∞

E y
p
(t) 

≤
p

p + 1
 

p+1 (1/p) + eα +(p/2)σ22 
p+1

b
p .

(131)

Moreover, from Chebyshev’s inequality, model
(125) is stochastically ultimately bounded.

(ii) If ςi _�δi − σ2i > 0 (i � 1, 2), then the solution
(x(t), y(t)) of model (125) obeys

limsup
t⟶∞

E
1

x(t)
 ≤

a

ς1
,

limsup
t⟶∞

E
1

y(t)
 ≤

b

ς2
+

aeαβ
ς1ς2

.

(132)

Furthermore, if ςi > 0, (i � 1, 2), then model (125)
is stochastically permanent.

By a similar discussion as in 3eorem 12, if ς1 −

eαβ> 0 and ς2 > 0, then any (x0, y0) ∈ R2
+, model

(125) has a stationary distribution μ(·) and the so-
lutions have an ergodic property.

Remark 1. In [25], the authors show that model (125) has a
unique global positive solution by using stopping times and
contradiction. In this paper, the stochastic comparison
theorem is used to prove that the model has a unique global
positive solution. Reference [25] only shows that if δ1 −

(σ21/2)> 0 and δ2 − (σ22/2)> 0, then limt⟶∞(lnx(t)/t) � 0
and limt⟶∞(lny(t)/t) � 0 a.s. However, we also show that
the sample Lyapunov exponents of the solutions are non-
positive in the absence of conditions. In [25], the authors
only show that the solutions are uniformly bounded in the
p-th moment. However, we give the concrete upper bound
for the p-th moment. It is clear that the results of (ii) and (iii)
in Corollary 2 (I) are consistent with *eorems 7 and 8 in
[25]. However, the result of (III) in Corollary 2 is not re-
flected in [25].*us, our work can be seen as the extension of
[25].

Remark 2. For the deterministic version of model (125),
from [26], we can see that limt⟶∞y(t) � 0 holds under
some special conditions, i.e., the predator dies out, but it
never gets limt⟶∞x(t) � 0 (if limt⟶∞y(t) � 0, then
liminf t⟶∞x(t)≥ (r/a)> 0). However, the result of (iii) in
Corollary 2 (I) shows that great noise intensities σ21 and σ22
can make both the prey and predator in model (125) die out.
*is means that a relatively large stochastic perturbation can
cause the extinction of the population.

However, Linh and Ton [26] only consider the as-
ymptotic estimations of moments, the upper-growth rates,
and exponential death rates of species in the corresponding
nonautonomous stochastic model of model (125). Moreover,
the results of (iv) and (v) in Corollary 2 (I) are consistent
with *eorems 4.3 and 4.4 in [26]. *us, our paper can be
regarded as the extension and supplement of [26].

Furthermore, if we do not consider the intraspecific
competition of the predator, i.e., b � 0 in model (125), then
one can obtain the following stochastic model:

dx(t) � x(t) r − ax(t) −
αy(t)

x(t) + βy(t)
 dt + σ1x(t)dw1(t),

dy(t) � y(t) − m +
eαx(t)

x(t) + βy(t)
 dt + σ2y(t)dw2(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(133)

with initial value (x0, y0) ∈ R2
+. *is is a stochastic predator-

prey model discussed in [27]. Wu et al. [10] considered the
corresponding nonautonomous model of stochastic model
(133). By a similar discussion as in *eorem 1, for any
(x0, y0) ∈ R2

+, model (133) has a unique global positive
solution (x(t), y(t)).

Corollary 3. For any (x0, y0) ∈ R2
+, let (x(t), y(t)) be the

solution of model (133) with initial value (x0, y0).
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(I) By a similar discussion as in 3eorems 5 and 6, one
can get the following results:

(i) If r − (σ21/2)> 0 and δ2 − (σ22/2)< 0, then

lim
t⟶∞

x(t) � 0,

lim
t⟶∞

y(t) � 0, a.s.
(134)

(ii) If the predator is absent, i.e., y(t) � 0 a.s. for all
t≥ 0, then the quantity of prey in model (133)
satisfies the following:

lim
t⟶∞

〈x(t)〉 �
r − σ21/2 

a1
, a.s., if r − σ21/2 > 0;

lim
t⟶∞

x(t) � 0, a.s., if r − σ21/2 < 0

(135)

(iii) If the prey is absent, i.e., x(t) � 0 a.s. for all t≥ 0,
then the predator in model (133) dies with
probability one

(II) By a similar discussion as in 3eorems 8 and 10, one
can get the following results:

(i) 3e solution (x(t), y(t)) of model (133) obeys

limsup
t⟶∞

E[x(t)] ≤
K3

em
,

limsup
t⟶∞

E[y(t)] ≤
K3

m
.

(136)

where K3 � (e(r + m)2/4a). 3en, from Cheby-
shev’s inequality, model (133) is stochastically
ultimately bounded.

(ii) If ςi _�δi − σ2i > 0, (i � 1, 2), then the solution
(x(t), y(t)) of model (125) obeys

Furthermore, by a similar discussion as in 3eorem
11, if ςi > 0, (i � 1, 2), then model (125) is stochasti-
cally permanent.

Remark 3. If ςi _�δi − σ2i > 0, (i � 1, 2), then by *eorem 3.3
in [27], model (133) is persistent in mean. However, from
(II) in Corollary 3, model (133) is stochastically permanent.
*is means that *eorem 11 generalizes and improves
*eorem 3.3 in [27].

Remark 4. From *eorem 4.11 in [14], it ca be seen that if
δi − (3/2)σ2i > 0, (i � 1, 2), then model (133) is stochastically
permanent. However, the results in Corollary 3 show that if
δi − σ2i > 0, (i � 1, 2), then model (133) is stochastically
permanent. Obviously, if δi − (3/2)σ2i > 0, (i � 1, 2) holds,
then δi − σ2i > 0, (i � 1, 2) holds. On the contrary, it is not set
up. *us, we can say that Corollary 3 generalizes and im-
proves *eorem 4.11 in [14].

6.2. Two-Patch Predator-Prey Model (4). By a similar dis-
cussion as in *eorem 1, for any (x10, x20, y0) ∈ R3

+, model
(4) has a unique global positive solution (x1(t), x2(t), y(t)).
Moreover, for model (4), we have the following results.

Corollary 4.

(I) By a similar discussion as in 3eorems 5 and 6, we
can obtain the following results:

(i) If r1 − (σ21/2)< 0, r2 − (σ22/2)< 0 and
λ3 − (σ32/2)< 0, then

lim
t⟶∞

x1(t) � 0,

lim
t⟶∞

x2(t) � 0,

lim
t⟶∞

y(t) � 0, a.s.

(138)

(ii) If the predator is absent, i.e., y(t) � 0 a.s. for all
t≥ 0, then the prey xi (i � 1, 2) in model (4)
satisfies the following:

lim
t⟶∞
〈xi(t)〉 �

ri − σ2i /2 

ai

, a.s., if ri − σ2i /2 > 0;

lim
t⟶∞

xi(t) � 0, a.s., if ri − σ2i /2 < 0

(139)

(iii) If the prey is absent, i.e., x1(t) � x2(t) � 0 a.s.
for all t≥ 0, then the predator in model (4) dies
with probability one

(II) By a similar discussion as in 3eorems 8 and 10, one
can get the following results:

(i) 3e solution (x1(t), x2(t), y(t)) of model (4)
obeys

limsup
t⟶∞

E xi(t) 

limsup
t⟶∞

E[y(t)] ≤
K2

λ
, i � 1, 2,

(140)

where K2 � (e1(r1 + λ)2/4a1)+ (e2(r2 + λ)2/
4a2). 3en, from Chebyshev’s inequality, model
(4) is stochastically ultimately bounded.

(ii) If κi > 0, (i � 1, 2, 3), then the solution
(x1(t), x2(t), y(t)) of model (4) obeys

limsup
t⟶∞

E
1

xi(t)
 ≤

ai

κi

, i � 1, 2,

limsup
t⟶∞

E
1

y(t)
 ≤

a1e1α1vβ1
κ1κ3

+
a2e2α2(1 − v)β2

κ2κ3
.

(141)
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Moreover, if κi > 0, (i � 1, 2, 3), then model (4) is
stochastically permanent.

7. Numerical Simulations

In this section, we use the Milstein method (see [28]) to
substantiate the main results. *e parameters are given in
the following table.

Example 1. denote k1(v) � r1 − (α1v/β1) − (σ21/2), k2(v) �

r2 − α2((1 − v)/β2) − (σ22/2), and k3(v) � (e1α1 − m1)v+

(e2α2 − m2)(1 − v) − (σ23/2). By *eorem 4, if
ki(v)> 0, (i � 1, 2, 3), then model (5) is persistent in mean. If
we take the parameter values as in Table 1, σ1 � 0.05,
σ2 � 0.05, and σ3 � 0.02, then one can get Figure 1. It can be
seen from Figure 1 that when 0.042< v< 0.44875, model (5)
will be persistent in mean.

Example 2. We denote k1(v, σ21) � r1 − (α1v/β1) − (σ21/2),
k2(v, σ22) � r2 − α2((1 − v)/β2) − (σ22/2) and
k3(v, σ23) � (e1α1 − m1)v + (e2α2 − m2)(1 − v) − (σ23/2). If
we take the parameter values as in Table 1, then we can
obtain figures about ki(v, σ2i ) (see Figure 2).

To illustrate the results, we take the parameter values as
in Table 1 and v � 0.4. Here we give numerical simulations of
model (5) with (x10, x20, y0) � (1200, 1000, 500) and dif-
ferent noise intensities. In Figure 3, we choose σ21 � σ22 �

σ23 � 0 and get the solution of deterministic model (3).

Example 3. We assume that σ21 � 0.04, σ22 � 0.04, and
σ23 � 0.01. By a simple computation, λ1 − (σ21/2) � 0.03> 0,
λ2 − (σ22/2) � 0.205> 0, and λ3 − (σ23/2) � 0.0664> 0. *us,
the conditions of *eorem 4 hold. In view of *eorem 4, all
the populations in model (5) will be persistent in mean (see
Figure 4).

Example 4. We assume that σ21 � 1, σ22 � 1.24, and σ23 � 0.2.
*us, r1 − (σ21/2) � − 0.05< 0, r2 − (σ22/2) � − 0.02< 0, and
λ3 − (σ23/2) � − 0.0286< 0. *en, from *eorem 5, it follows
that limt⟶∞x1(t) � 0, limt⟶∞x2(t) � 0, and
limt⟶∞y(t) � 0 a.s. *is means that all the population in
model (5) will go to extinction (see Figure 5).

Example 5. We assume that σ1 � 0.05, σ2 � 0.05, and
σ3 � 0.02. By a simple computation, κ1 � 0.0475> 0,
κ2 � 0.2225> 0, and κ3 � 0.071> 0. *us, from *eorem 11,
it follows that model (5) is stochastically permanent (see
Figure 6).

Example 6. We assume that σ1 � 0.05, σ2 � 0.05, and
σ3 � 0.02. By a simple computation,
κ1 − e1α1vβ1 � 0.0317> 0, κ2 − e2α2(1 − v)β2 � 0.1721> 0,
and κ3 � 0.071> 0.*us, the conditions of*eorem 12 hold.
According to *eorem 12, model (5) has a stationary dis-
tribution (see Figure 7–11).

Example 7. *e predator is absent, i.e., y(t) � 0 a.s. for all
t≥ 0.

(i) We assume that σ21 � 0.04 and σ22 � 0.04. By a
simple computation, r1 − (σ21/2) � 0.43> 0 and
r2 − (σ22/2) � 0.58> 0. *us, from *eorem 6,
limt⟶∞〈x1(t)〉 � 2150 and
limt⟶∞〈x2(t)〉 � 1450 a.s. *is means that, in the
absence of the predator, the prey xi, (i � 1, 2) will be
persistent in mean in the absence of the predator y

(see Figure 8).
(ii) We assume that σ21 � 0.04 and σ22 � 1.24. *us, r1 −

(σ21/2) � 0.43> 0 and r2 − (σ22/2) � − 0.02< 0. From
*eorem 6, it follows that limt⟶∞〈x1(t)〉 � 2150
and limt⟶∞x2(t) � 0 a.s. *is means that, in the
absence of the predator y, the prey x1 will be
persistent in mean, while the prey x2 will go to
extinction (see Figure 9).

(iii) We assume that σ21 � 1 and σ22 � 0.04. By a simple
computation, r1 − (σ21/2) � − 0.05< 0 and
r2 − (σ22/2) � 0.58> 0. *us, from *eorem 6,
limt⟶∞x1(t) � 0 and limt⟶∞〈x2(t)〉 � 1450 a.s.
*is means that, in the absence of the predator y,
the prey x2 will be persistent in mean, while the prey
x1 will go to extinction (see Figure 10).

(iv) We assume that σ21 � 1 and σ22 � 1.24. *us, r1 −

(σ21/2) � − 0.05< 0 and r2 − (σ22/2) � − 0.02< 0.
According to*eorem 6, we have limt⟶∞x1(t) � 0
and limt⟶∞x2(t) � 0 a.s. *us, the prey x1 and x2
will go to extinction in the absence of the predator y

(see Figure 11).

Example 8. *e prey in patch 2 is absent, i.e., x2(t) � 0 a.s.
for all t≥ 0 (Figures 12–15).

(i) We assume that σ21 � 0.04 and σ23 � 0.002. By a
simple computation, λ1 − (σ21/2) � 0.03> 0 and
e1α1v − m1v − m2(1 − v) − (σ23/2) � 0.0074> 0.
*us, from *eorem 6, it follows that

liminf
t⟶∞
〈x1(t)〉 ≥ 150,

liminf
t⟶∞
〈y(t) +

e1α1vβ1
b

y(t)

x1(t)
〉≥ 24.67, a.s.

(142)

*is means that the prey x1 and the predator y will
be persistent in mean in the absence of the prey x2
(see Figure 12).

(ii) We assume that σ21 � 1 and σ23 � 0.04. By a simple
computation, r1 − (σ21/2) � − 0.05< 0 and
e1α1v − m1v − m2(1 − v) − (σ23/2) � − 0.0116< 0.
*us, from *eorem 6, limt⟶∞x1(t) � 0 and
limt⟶∞y(t) � 0 a.s. *is means that, in the absence
of the prey x2, the prey x1 and predator population y

will go to extinction (see Figure 13).

Example 9. *e prey in patch 1 is absent, i.e., x1(t) � 0 a.s.
for all t≥ 0.

(i) We assume that σ22 � 0.04 and σ23 � 0.02. By a simple
computation, λ2 − (σ22/2) � 0.205> 0 and
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e2α2(1 − v) − m1v − m2(1 − v) − (σ23/2) � 0.035> 0.
From *eorem 6, it follows that

liminf
t⟶∞
〈x2(t)〉 ≥ 512.5,

liminf
t⟶∞
〈y(t) +

e2α2(1 − v)β2
b

y(t)

x1(t)
〉 ≥ 116.67, a.s.

(143)

*is means that, in the absence of the prey x1, the
prey x2 and the predator y will be persistent in mean
(see Figure 14).

(ii) We assume that σ22 � 1.24 and σ23 � 0.2. *us, r2 −

(σ22/2) � − 0.02< 0 and e2α2(1−

v) − m1v − m2(1 − v) − (σ23/2) � − 0.055< 0. From
*eorem 6, limt⟶∞x2(t) � 0 and limt⟶∞y(t) � 0
a.s.*ismeans that the prey x2 and the predator y(t)

will go to extinction in the absence of the prey x1 (see
Figure 15).

Example 10. *e prey is absent, i.e., x1(t) � x2(t) � 0 a.s.
for all t≥ 0. From *eorem 6, it follows that the predator
y(t) will go to extinction (see Figure 16–22).

Example 11.
(i) We assume that σ21 � 0.04, σ22 � 0.04, and σ23 � 0.2.

*us, r1 − (σ21/2) � 0.43> 0, r2 − (σ22/2) � 0.58> 0,
and λ3 − (σ23/2) � − 0.0286< 0. From*eorem 5, we
have limt⟶∞y(t) � 0 a.s. Moreover, from Fig-
ure 17, we can see that limt⟶∞〈x1(t)〉 � 2150 and
limt⟶∞〈x2(t)〉 � 1450 a.s.

(ii) We assume that σ21 � 0.04, σ22 � 1.24, and σ23 � 0.03.
By a simple computation, r1 − (σ21/2) � 0.43> 0,
r2 − (σ22/2) � − 0.02< 0, and e1α1v − m1v − m2
(1 − v) − (σ23/2) � − 0.0066< 0. From *eorem 5, it
follows that limt⟶∞x2(t) � 0 a.s. Moreover, from
Figure 18, we can see that limt⟶∞〈x1(t)〉 � 2150
and limt⟶∞y(t) � 0 a.s.

(iii) We assume that σ21 � 0.04, σ22 � 1.24, and
σ23 � 0.002. *us, λ1 − (σ21/2) � 0.03> 0,
r2 − (σ22/2) � − 0.02< 0, and e1α1v − m1v − m2(1 −

v)− (σ23/2) � 0.0074> 0. From*eorem 5, it follows
that limt⟶∞x2(t) � 0 a.s. Moreover, from Fig-
ure 19, we can see that prey x1 and predator y will be
persistent in mean.

(iv) We assume that σ21 � 1, σ22 � 0.04, and σ23 � 0.1. By a
simple computation, r1 − (σ21/2) � − 0.05< 0,
r2 − (σ22/2) � 0.58> 0, and e2α2(1 − v)−

m1v − m2(1 − v) − (σ23/2) � − 0.005< 0. *us, from

Table 1: Physical interpretation of the parameters.

Parameters Description Values
ri Intrinsic growth rate of the prey in patch i r1 � 0.45, r2 � 0.6
ei Expected biomass of the prey converted to predators in patch i e1 � 0.11, e2 � 0.21
mi Per capita mortality rate of predators in patch i m1 � 0.03, m2 � 0.01
ai Intraspecific competition coefficient of the prey in patch i a1 � 0.0002, a2 � 0.0004
b Intraspecific competition coefficient of the predator b � 0.0003
αi Encounter rate with the prey in patch i α1 � 0.6, α2 � 0.5
βi Half saturation constant for the prey in patch i β1 � 0.6, β2 � 0.8
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Figure 1: *e trajectories of k1(v), k2(v), and k3(v) with σ1 � 0.05, σ2 � 0.05, and σ3 � 0.02 (color figure online).
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*eorem 5, it follows that limt⟶∞x1(t) � 0 a.s.
Moreover, from Figure 20, we can see that
limt⟶∞〈x2(t)〉 � 1450 and limt⟶∞y(t) � 0 a.s.

(v) We assume that σ21 � 1, σ22 � 0.04, and σ23 � 0.02.
*us, r1 − (σ21/2) � − 0.05< 0,
λ2 − (σ22/2) � 0.205> 0, and
e2α2(1 − v) − m1v − m2(1 − v) − (σ23/2) � 0.035> 0.
From *eorem 5, it follows that limt⟶∞x1(t) � 0
a.s. Moreover, from Figure 21, we can see that prey
x2 and predator y will be persistent in mean.

(vi) We assume that σ21 � 1, σ22 � 1.24, and σ23 � 0.002.
*us, r1 − (σ21/2) � − 0.05< 0,
r2 − (σ22/2) � − 0.02< 0, and
λ3 − (σ23/2) � 0.0704> 0. *en, from *eorem 5, it
follows that limt⟶∞x1(t) � 0 and limt⟶∞x2(t) �

0 a.s. Moreover, from Figure 22, we can see that
predator y will go to extinction.

Example 12. We assume that r1 � 0.9, e2 � 0.1, m1 � 0.03,
m2 � 0.03, α2 � 0.2, σ21 � 0.02, σ22 � 0.02, and σ23 � 0.002,
and the values of other parameters are shown in Table 1.
Moreover, if we take v � 0.8, then κ1 � λ1 − σ21 � 0.08> 0,
κ2 � λ2 − σ22 � 0.53> 0, and κ3 � λ3 − σ23 � 0.0248> 0. *us,
from*eorem 11, model (5) is stochastically permanent (see
Figures 23(a)–23(c)). However, if we take v � 0, then
r1 − (σ21/2) � 0.89> 0, r2 − (σ22/2) � 0.59> 0, and
λ3 − (σ23/2) � − 0.011< 0. From *eorem 5, it follows that
lim

t⟶∞
y(t) � 0 a.s. Moreover, from Figures 23(d) and 23(e),

one can see that limt⟶∞〈x1(t)〉 � 4450 and
limt⟶∞〈x2(t)〉 � 1475 a.s. *is means that the prey pop-
ulation xi(t) (i � 1, 2) will be persistent in mean and the
predator population y(t) will go to extinction. Furthermore,
comparing Figures 23(c) and 23(f), we conclude that the
patch structure is conducive to the survival of the predator
population.

Example 13. We assume that σ1 � 0.05, σ2 � 0.05, and
σ3 � 0.02. If we take v � 0.1 (v � 0.2, v � 0.3, or v � 0.4);
then, all the conditions of *eorem 11 hold. *us, from
*eorem 11, it follows that model (5) is stochastically
permanent. Here, we give the numerical simulations of
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Figure 2: ki(v, σ2i ) and its phase plan (i � 1, 2, 3) (color figure online): (a) k1(v, σ21), (b) k2(v, σ22), (c) k3(v, σ23), (d) phase plan of k1(v, σ21), (e)
phase plan of k2(v, σ22), and (f) phase plan of k3(v, σ23).
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Figure 3:*e trajectories of model (5) with σ21 � σ22 � σ23 � 0 (color
figure online).
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Figure 4:*e trajectories of stochastic model (5) with σ21 � 0.04, σ22 � 0.04, and σ23 � 0.01 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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Figure 5:*e trajectories of stochastic model (5) with σ21 � 1, σ22 � 1.24, and σ23 � 0.2 (color figure online): (a) prey x1(t), (b) prey x2(t), and
(c) predator y(t).

Complexity 21



0 500 1000 1500
1200

1400

1600

1800

2000

2200

2400

2600

2800

Time (t)

Pr
ey

 x
1 (

t)

Prey x1 (t)

(a)

0 500 1000 1500
900

1000

1100

1200

1300

1400

1500

1600

1700

Time (t)

Pr
ey

 x
2 (

t)

Prey x2 (t)

(b)

0 500 1000 1500
150

200

250

300

350

400

450

500

Time (t)

Pr
ed

at
or

 y 
(t)

Predator y (t)

(c)

Figure 6:*e trajectories of stochastic model (5) with σ1 � 0.05, σ2 � 0.05, and σ3 � 0.02 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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Figure 7: *e density based on 10 stochastic simulations for each population. (a)–(c) *e density at t � 80, 000 with different initial value;
(d)–(f) the density with initial value (1500, 100, 500) at different time periods (color figure online). (a) PDF of prey x1(t), (b) PDF of prey
x2(t), (c) PDF of prey y(t), (d) PDF of prey x1(t), (e) PDF of prey x2(t), and (f) PDF of prey y(t).
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Figure 8: *e trajectories of stochastic model (5) with σ21 � 0.04 and σ22 � 0.04, in the absence of the predator (color figure online): (a) prey
x1(t) and (b) prey x2(t).
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Figure 9: t*e trajectories of stochastic model (5) with σ21 � 0.04 and σ22 � 1.24, in the absence of the predator (color figure online): (a) prey
x1(t) and (b) prey x2(t).
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Figure 10: *e trajectories of stochastic model (5) with σ21 � 1 and σ22 � 0.04, in the absence of the predator (color figure online): (a) prey
x1(t) and (b) prey x2(t).
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Figure 11: *e trajectories of stochastic model (5) with σ21 � 1 and σ22 � 1.24, in the absence of the predator (color figure online): (a) prey
x1(t) and (b) prey x2(t).
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Figure 12:*e trajectories of (5) with σ21 � 0.04 and σ23 � 0.002, in the absence of the prey in patch 2 (color figure online): (a) prey x1(t) and
(b) prey x2(t).
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Figure 13:*e trajectories of (5) with σ21 � 1 and σ23 � 0.04, in the absence of the prey in patch 2 (color figure online): (a) prey x1(t) and (b)
prey x2(t).
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Figure 14: *e trajectories of (5) with σ22 � 0.04 and σ23 � 0.02, in the absence of the prey in patch 1 (color figure online): (a) prey x2(t) and
(b) predator y(t).
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Figure 15: *e trajectories of (5) with σ22 � 1.24 and σ23 � 0.2, in the absence of the prey in patch 1 (color figure online): (a) prey x2(t) and
(b) predator y(t).
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Figure 16: *e trajectories of (5) with σ23 � 0.02, in the absence of the prey (color figure online).
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Figure 18: *e trajectories of stochastic model (5) with σ21 � 0.04, σ22 � 1.24, and σ23 � 0.03 (color figure online): (a) prey x1(t), (b) prey
x2(t), and (c) predator y(t).
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Figure 19: *e trajectories of stochastic model (5) with σ21 � 0.04, σ22 � 1.24, and σ23 � 0.002 (color figure online): (a) prey x1(t), (b) prey
x2(t), and (c) predator y(t).
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Figure 17:*e trajectories of stochastic model (5) with σ21 � 0.04, σ22 � 0.04, and σ23 � 0.2 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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model (5) with different v (see Figure 24). As can be seen
from Figure 24, with the increase of v, that is, the proportion
of time that predators stay in patch 1 increases, the number

of prey in patch 1 decreases, while the number of prey in
patch 2 increases. *is has a reasonable biological signifi-
cance. However, the mortality, the encounter rate with the
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Figure 20: *e trajectories of stochastic model (5) with σ21 � 1, σ22 � 0.04, and σ23 � 0.1 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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Figure 21: *e trajectories of stochastic model (5) with σ21 � 1, σ22 � 0.04, and σ23 � 0.02 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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Figure 22:*e trajectories of stochastic model (5) with σ21 � 1, σ22 � 1.24, and σ23 � 0.002 (color figure online): (a) prey x1(t), (b) prey x2(t),
and (c) predator y(t).
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prey, the half-saturation constant, and the conversion rate of
the predators are different in different patches, and it is
impossible to determine the number of predators with the
change of v.

8. Conclusions and Discussion

*is paper is concerned with a stochastic two-patch pred-
ator-prey model with ratio-dependent functional responses.

First, by using the comparison theorem of stochastic dif-
ferential equations, we show that the model has a unique
global positive solution. *en, the long-time properties of
the solutions are discussed pathwise. Using the exponential
martingale inequality and Borel–Cantelli lemma, we show
that the sample Lyapunov exponents are nonpositive.
Moreover, under certain conditions, we show that the
sample Lyapunov exponents are zero. Next, the sufficient
conditions for the extinction and persistence in mean of the
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Figure 23: *e trajectories of stochastic model (5) with different v (color figure online): (a) prey x1(t)with v � 0.8, (b) prey x2(t)with
v � 0.8, (c) predator y(t)with v � 0.8, (d) prey x1(t)with v � 0, (e) prey x2(t)with v � 0, and (f) predator y(t)with v � 0.
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Figure 24: *e trajectories of stochastic model (5) with different v (color figure online): (a) prey 〈x1(t)〉, (b) prey 〈x2(t)〉, and (c) predator
〈y(t)〉.
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model are given. *en, we investigate the stochastically
ultimate boundedness and stochastic persistence of the
model. Moreover, by constructing a suitable Lyapunov
function, we show that the model has an ergodic stationary
distribution. Next, we apply the main results to two special
stochastic population models. Finally, some numerical
simulations are introduced to support the main results.
Furthermore, other dynamic properties of the model are
found through numerical simulations.

In Section 2, by using the stochastic comparison theo-
rem, we show that the model has a unique global positive
solution. *en, the long-time properties of the solutions are
discussed pathwise. Using the exponential martingale in-
equality and Borel–Cantelli lemma, we show that the sample
Lyapunov exponents are nonpositive. Moreover, we show
that if the noise intensities σ2i (i � 1, 2, 3) are small compared
to the other parameters, then the sample Lyapunov expo-
nents are zero.

Section 3 reveals the effects of stochastic perturbations
on the persistence and extinction of prey x1, prey x2, and
predator y. From *eorem 4, if the noise intensities σ2i (i �

1, 2, 3) are small such that λi − (σ2i /2)> 0, (i � 1, 2, 3), then
all populations in model (5) will be persistent in mean.
Furthermore, from *eorem 5, if r1 − (σ21/2)< 0,
r2 − (σ22/2)< 0, and λ3 − (σ23/2)< 0, then the solution of
model (5) tends to zero almost surely. *is means that great
noise intensities σ2i (i � 1, 2, 3) can make all populations in
model (5) will become extinct.

Furthermore, *eorem 6 discusses the effects of noise on
the dynamics of other species in the absence of the predator
y, prey in patch 1, and prey in patch 2, respectively. In the
absence of the predator, if ri − (σ2i /2)> 0, (i � 1, 2), then
limt⟶∞〈xi(t)〉 � ( ri − (σ2i /2) )/ai a.s., (i � 1, 2); if
ri − (σ2i /2)> 0 and rj − (σ2j/2)< 0, (i≠ j, i, j � 1, 2), then
lim

t⟶∞
〈xi(t)〉 � ( ri − (σ2i /2) )/ai and limt⟶∞xj(t) � 0 a.s.

(i≠ j, i, j � 1, 2); moreover, if ri − (σ2i /2)< 0, (i � 1, 2), then
limt⟶∞xi(t) � 0 a.s., (i � 1, 2). Hence, in the absence of the
predator, with the increase of noise intensity σ2i , the prey in
patch i will go to extinction, while the environment noise
_wi(t) has no effect on the extinction of the prey in patch

j (i≠ j, i, j � 1, 2). Moreover, in the absence of the predator,
with the decrease of noise intensity σ2i , the prey in patch i can
be persistent better, while the environment noise _wi(t) has
no effect on the persistent level of the prey in patch
j, (i≠ j, i, j � 1, 2). In the absence of the prey in patch 2, if
λ1 − (σ21/2)> 0 and e1α1v − m1v − m2(1 − v) − (σ23/2)> 0,
then the prey in patch 1 and the predator y will be persistent
in mean, while if r1 − (σ21/2)< 0 and
e1α1v − m1v − m2(1 − v) − (σ23/2)< 0, then the prey in patch
1 and the predator y will go to extinction exponentially. *is
means that, in the absence of the prey in patch 2, with the
increase of noise intensity σ2i , (i � 1, 3), the prey in patch 1
and the predator y will become extinct. In the absence of the
prey in patch 1, if λ2 − (σ22/2)> 0 and
e2α2(1 − v) − m1v − m2(1 − v) − (σ23/2)> 0, then the prey in
patch 2 and the predator y will be persistent inmean, while if
r2 − (σ22/2)< 0 and
e2α2(1 − v) − m1v − m2(1 − v) − (σ23/2)< 0, then the prey in
patch 2 and the predator y will go to extinction

exponentially. Hence, in the absence of the prey in patch 1,
with the increase of noise intensity σ2i , (i � 2, 3), the prey in
patch 2 and the predator y will become extinct. Moreover,
from*eorem 6, in the absence of the prey, the predator dies
with probability one.

*eorem 6 shows the effects of noise on the dynamics of
other species in the absence of the predator y, prey in patch
1, and prey in patch 2, respectively. However, through the
numerical simulation of Example 11, we can conclude the
following results: (i) In the case of the predator extinction,
the prey has the same dynamic behavior same as that in the
absence of the predator. (ii) In the case of the prey x1 ex-
tinction, the dynamic behaviors of the prey in patch 2 and
the predator y are the same as those in the absence of the
prey x1. (iii) In the case of the prey x2 extinction, the dy-
namic behaviors of the prey in patch 1 and the predator y are
the same as those in the absence of the prey x2. (iv) If the
prey extinction, then the predator will go to extinction. *is
is consistent with the results in the absence of the prey.

In Section 4, we investigate the stochastically ultimate
boundedness and stochastic persistence of the model. First,
we use two different ways to prove the boundedness of the
model and then show that the model is stochastically ulti-
mately bounded by Chebyshev’s inequality. Next, we in-
vestigate the stochastic persistence of the model. *e results
show that if the noise intensities σ2i (i� 1, 2, 3) are small such
that κi > 0, (i � 1, 2, 3), then model (5) is stochastically
permanent. *is means that the species in model (5) will
survive forever at low noise levels.

In Section 5, by constructing a suitable Lyapunov
function, we show that the solution of model (5) has an
ergodic stationary distribution. From *eorem 12, if
κ1 − e1α1vβ1 > 0, κ2 − e2α2(1 − v)β2 > 0, and κ3 > 0, then for
any initial value (x10, x20, y0) ∈ R3

+, model (5) has a sta-
tionary distribution μ(·) and the solutions have an ergodic
property. Hence, the small noise intensities σ2i (i� 1, 2, 3) can
ensure that the solution of the model has an ergodic sta-
tionary distribution.

In Section 6, we first apply the main results to two
stochastic two-species predator-prey models. *en, we
present the application of the main results to stochastic two-
patch predator-prey model (4). Moreover, we compare the
results with the known closely related models.

In [25], the authors discussed the stochastic model (125).
It is clear that the results of (ii) and (iii) in Corollary 2 (I) are
consistent with *eorems 7 and 8 in [25]. Moreover, [25]
only shows that if δ1 − (σ21/2)> 0 and δ2 − (σ22/2)> 0, then
limt⟶∞(lnx(t)/t) � 0 and limt⟶∞(lny(t)/t) � 0 a.s.
However, we also show that the sample Lyapunov exponents
of the solutions are nonpositive in the absence of conditions.
Furthermore, the ergodic stationary distribution of model
(125) is not reflected in [25]. *us, our work can be seen as
the extension of [25].

Linh and Ton [26] considered the corresponding non-
autonomous model of (125). Moreover, the results of (iv)
and (v) in Corollary 2 (I) are consistent with *eorems 4.3
and 4.4 in [26]. Furthermore, for the deterministic version of
model (125), from [26], if limt⟶∞y(t) � 0, then
liminf t⟶∞x(t)≥ (r/a)> 0. *is means that when the
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predator dies out, the prey must survive forever. However,
the result of (iii) in Corollary 2 (I) shows that great noise
intensities σ21 and σ

2
2 can make both the prey and predator in

model (125) go to extinction.
Ji et al. [27] considered the stochastic model (133), while

Wu, Huang, and Wang [14] discussed the corresponding
nonautonomous model of (133). On the one hand, from
*eorem 3.3 in [27], if ςi _�δi − σ2i > 0, (i � 1, 2), then model
(133) is persistent in mean. However, from (II) in Corollary
3, model (133) is stochastically permanent. *us, *eorem
11 generalizes and improves *eorem 3.3 in [27]. On the
other hand, from *eorem 4.11 in [14], if
δi − (3/2)σ2i > 0, (i � 1, 2), then model (133) is stochastically
permanent. However, the results in Corollary 3 show that if
δi − σ2i > 0, (i � 1, 2), then model (133) is stochastically
permanent. Obviously, if δi − (3/2)σ2i > 0, (i � 1, 2) holds,
then δi − σ2i > 0, (i � 1, 2) holds. On the contrary, it is not set
up. *us, we can say that Corollary 3 generalizes and im-
proves *eorem 4.11 in [14].
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