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*is research implements a recent evolutionary-based algorithm of equilibrium optimizer to resolve the constrained combined
economic emission dispatch problem.*is problem has two objective functions that represent the minimizing of generation costs
and minimizing the emission of environmental pollution caused by generators. *e proposed algorithm integrates the dominant
criteria for multiobjective functions that allow the decision-maker to detect all the Pareto boundaries of constrained combined
economic emission dispatch problem. In order to save the effort for the decision-maker to select the best compromise alternative, a
cluster study was carried out to minimize the size of the Pareto boundary to an acceptable size, representing all the characteristics
of themain Pareto frontier. On the other hand, in order to deal with the infringement of constraints, a repair algorithmwas used to
preserve the viability of the particles. *e proposed algorithm is applied to solve the standard 30-bus IEEE system with 6
generators to validate its robustness and efficiency to produce a well-distributed Pareto frontier for constrained combined
economic emission dispatch problem. Compared with other studies, good results in solving constrained combined economic
emission dispatch problem are obtained and a reasonable reduced Pareto set is found.

1. Introduction

*e robust and efficient economic planning, operation, and
distribution of power systems have always presided a vital
role in the power system industry. Saving a small percent in
the operation of the power systems produces a reasonable
reduction in the operating cost and in the amount of fuel
consumed [1]. Finding the optimum operating cost is the key
purpose of the classic constrained combined economic
emission dispatch problem (CEEDP) [2]. Recently, for large
scale electric power system, modern system optimization
theory methods are applied with the cost savings [3]. *ere
are three directions to solve CEEDP [4].

Traditionally, the first direction is to simplify the mul-
tiobjective optimization problem (MOP) to a single objective
problem. Traditional methods used to convert MOP into a

single objective problem are either the aggregating of ob-
jective functions as in the weighted sum method or the
optimization of the most important objective and the
treatment of others as constraints as in the ε-constraint
method or the penalty factor approach [5]. *en, various
numerical optimization methods have been employed to
handle this single objective problem such as the augmented
Lagrangian method and gradient method, for example, in
weighted sum [6], the ε-constraint method [7]. *e most
important weaknesses of these methods are that it cannot
deal with nonconvex function and tends to find weak set of
nondominated solutions. On the other hand, goal pro-
gramming is also implemented to deal with CEEDP [8]. In
this approach, a specified target is assigned for each objective
to be achieved and then aims to minimize the deviation from
the desired targets to the objective functions.
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*e second direction is to solve the single objective
CEEDP by any single objective meta-heuristics algorithm
such as artificial bee colony (ABC) [9], gravitational search
algorithm (GSA) [10], and Gaussian particle swarm opti-
mization (GPSO) [11] or by any hybrid single objective
meta-heuristics algorithms such as hybrid particle swarm
optimization (PSO) algorithm and firefly algorithm (FA)
[12], hybrid ABC algorithm and simulated annealing al-
gorithm (SA) [13], and PSO-GSA algorithm [14].

*e third direction is to handle both objectives of
CEEDP simultaneously, by using meta-heuristics-based
MOO techniques, as competing objective functions instead
of transforming the MOP formulation to a single objective
problem, as dynamic random neighborhood PSO (DRN-
PSO) [15], nondominated sorting genetic algorithm (NSGA)
[16], niched Pareto genetic algorithm (NPGA) [17], fuzzy
clustering-based particle swarm (FCPSO) [18], modified
shuffled frog leaping algorithm (MSFLA) [19], real coded
genetic algorithm (RCGA) [20], and strength Pareto evo-
lutionary algorithm (SPEA) [21]. *e implementation and
development of evolutionary-based multiobjective algo-
rithms have significantly grown since they employ a pop-
ulation of individuals in their search. On the other hand,
multiple Pareto optimal frontiers can be detected in one
single run instead of running the algorithm many times to
get multiple Pareto optimal frontiers. *ese algorithms can
be robustly implemented to overcome most of the disad-
vantages of traditional methods [22].

Due to the importance of CEEDP, researchers have re-
cently proposed newmethods for solving CEEDP. In [23], the
authors seek to find the best compromise alternative using the
quantum genetic algorithm. In [24], Mellal and Williams
proposed a hybrid cuckoo optimization algorithm with the
binary approach and penalty function to solve CEEDP. In
[25], Kim et al. presented a neural network approach to find
the optimal solution of CEEDP. In [26], Sundaram proposed a
chaotic-based approach to explore the search space to deal
with CEEDP. In [27], a novel approach, based on a hybrid
algorithm combining a genetic algorithm and a modified
Hooke and Jeeves method, was presented to solve the CEEDP
with equality constraints. In [28], a novel MOP was proposed
to address the problems of economic dispatch and power
shedding at the same time. In [29], CEEDP was formulated as
a MOP in which the two goals, fuel cost, and emissions of
pollutants were optimized at the same time as meeting
constraints and addressed by evolutionary multiobjective
algorithms. In addition, an empirical study of constraint
management has been discussed. In [30], an ameliorated grey
wolf optimization algorithm is proposed to solve the CEEDP
that coordinates the behavior of grey wolves, random ex-
ploration, opposition learning, and local random search.
Furthermore, a new paradigm of the CEEDP-based MOP is
proposed in [31], where CEEDP has been solved by relatively
recent multiobjective algorithms. In [32], Sundaram and
Erdogmus proposed a hybrid evolutionary multiobjective
optimization system using nondominated sorting genetic
algorithm II (NSGA II) and multiobjective PSO to solve the
CEEDP. *e hybrid approach with a constraint management
system is capable of balancing the tasks of exploration and

exploitation. In [33], an interesting algorithm, biogeography-
based learning particle swarm optimization (BLPSO), was
applied to solve the CEEDPwith different types of constraints.
Simulation results of BLPSO overcome local trap and improve
the convergence of the solution. In [34], the authors presented
a deterministic optimization based on the augmented La-
grangian to solve CEEDP. In [35], the authors reformulated
centralized CEEDP into a decentralized model. In [36], Sri-
vastava and Das presented a new evolutionary-based meta-
heuristic method, which implemented to solve CEEDP. *e
performance of the suggested algorithm was evaluated by
using twenty-nine benchmark functions and CEEDP. Finally,
Zhang et al. [37] presented a decentralized power system for
the combined economic emission dispatch problem (CEEDP)
model.

One of the key challenges in the solving of constrained
MOPs is the handling of constraints. *e constraints
management strategies are different for the meta-heuristic
algorithms [38]. *ere are four common methods for
constraint handling:

(i) Discarding unfeasible options
(ii) *e inclusion of a penalty function to reduce the

fitness of infeasible solutions
(iii) *e development of algorithmmechanism to always

generate feasible solutions
(iv) Repairing the unfeasible solutions to be feasible

Handling strategies of constraints i, iii, and iv are spe-
cifically applicable to the case of multiobjective. On the other
hand, constraint-handling strategy (ii) is not applied ex-
plicitly to multiobjective algorithms, due to the fact that the
fitness assignment relies on the nondominance rank of the
solution, not on the objective function values of the solution
[39].

*ere are several new methods for constraint manage-
ment that have recently been suggested, such as a modern
methodology of constraint management that consistently
takes into account proximity, diversity, and feasibility [40],
dynamic constraint-handling mechanism [41], adaptive
repair method for constraint handling [42], etc. Also, in [43],
three typical constraint-handling approaches were imple-
mented into a multiobjective PSO algorithm: (1) dominance
of feasible solutions; (2) penalty function; and (3) multi-
objective optimization strategy, where the constraints are
treated as additional objectives to be optimized.

*e Pareto front of MOPs consists of a very large set of
Pareto solutions. Selecting a single alternative from this huge
set is potentially intractable for any decision-maker (DM)
[44]. In order to allow the DM to classify and coordinate
solutions, some means of reducing/organizing the set of
nondominated solutions are implemented to shrink the size
of the Pareto optimal set, which facilitates finding the op-
timal operating alternative [45]. Several studies have con-
cerned this issue by implementing filtering and cluster
analysis to minimize the optimum size of the Pareto to a
rational size, enabling the DM to choose the best com-
promise solution [46]. Algorithms of clustering can be di-
vided into three categories: density-based clustering,
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hierarchical clustering, and centroid-based clustering
(partitioning clustering methods) [47]. One of the most
common partitioning clustering methods is the K-means,
where it is distinguished by its efficiency and robustness in
clustering data analysis [48].

*ere are many meta-heuristics algorithms that have
been proposed to solve optimization problems such as ge-
netic algorithms (GA) [49], artificial immune system [50],
particle swarm optimization (PSO) [51], ant colony opti-
mization (ACO) [52], artificial bee colony (ABC) [53],
bacterial foraging algorithm (BFA) [54], cat swarm opti-
mization (CSO) [55], glowworm swarm optimization al-
gorithm (GSOA) [56], firefly optimization algorithm (FOA)
[57], monkey algorithm (MA) [58], krill herd algorithm
(KHA) [59], cuckoo search algorithm (CSA) [60], whale
optimization algorithm (WOA) [61], sine cosine algorithm
(SCA) [62], grasshopper optimization algorithm (GOA)
[63], salp swarm algorithm [64], equilibrium optimizer al-
gorithm (EOA) [65], gradient-based optimizer (GBO) [66],
slime mould algorithm (SMA) [67], and Harris Hawks
optimization (HHO) [68].

As a new algorithm, the equilibrium optimizer (EO)
mimics physics-based dynamic source and sink models used
to estimate and consider equilibrium states. In this paper, a
constrained multiple objective equilibrium optimizer algo-
rithm (EOA) is proposed to solve the combined economic
emission dispatch problem (CEEDP) in the power system by
modifying the mechanism of the EOA. *e proposed
methodology is tested by the standard IEEE 30-bus system
with six generator units to validate the robustness of the
proposed algorithm. In addition, a clustering strategy is used
to choose the most compromised set of alternatives based on
DM preferences. *is paper’s major contributions are as
follows:

(1) A new approach based on an EOA to solve CEEDP is
introduced and tested

(2) Clustering was performed in order to minimize the
Pareto border to an appropriate size

(3) A repair algorithm was used to tackle the constraints
and unfeasible solution

(4) *e robustness and reliability of the proposed al-
gorithm to generate a well-distributed Pareto fron-
tier is tested by the IEEE standard 30-bus systemwith
6 generators

(5) Numerical analysis results validate the high per-
formance of the proposed algorithm

*is paper is organized as follows: MOP formulation is
presented in Section 2. *e formulation of the combined
economic emission dispatch problem is described in Section
3. A constrained multiobjective EOA is presented in Section
4. *e simulation analysis is analyzed in Section 5. Finally,
the conclusion is presented in Section 6.

2. Multiobjective Optimization Problem

A broad range of applications in architecture, computer
science, and many other fields include optimizing several

objectives at the same time [69]. In multiobjective optimi-
zation problem (MOP), there is no way to decide the best
solution where a set of alternatives with different trade-offs
among the multiple objectives is retained, which is known as
Pareto optimal frontier, instead of getting a single alterna-
tive. In the following, the MOP is presented with several
general notes and concepts [70].

Definition 1 (formulation of multiobjective optimization
problem). Formally, a MOP is stated as follows:

Minf(x) � f1(x), f2(x), . . . , fm(x) 
T
,

s.t.x ∈ X.
(1)

*e vector x ∈ Rn is defined as a vector of n decision
variables in the optimization problem formulation. *e
feasible set X ⊆ Rn is implicitly determined by a set of
constraints. *e vector function f: Rn⟶ Rm is defined by
m scalar objective functions.

Definition 2 (Pareto dominance). Vector z1 Pareto-dom-
inates vector z2, which is denoted by z1≻pareto z2, if and only
if

∀i ∈ 1, . . . , m{ }: z
1
i ≤ z

2
i ,

∃i ∈ 1, . . . , m{ }: z
1
i < z

2
i ,

(2)

i.e., the vector z1 Pareto-dominates vector z2 if the previous
two conditions are satisfied; thus, in order to solve MOP, the
set of solutions x ∈ X should be found whose images z �

f(x) are not dominated (nondominated set) by any other
vector in the feasible space.

Definition 3 (Pareto optimality concept). A feasible solution
x∗ ∈ X is a Pareto optimal solution if there does not exist any
feasible solution x ∈ X such that f(x)≺pareto f(x∗).

Definition 4 (the set of Pareto optimal solutions). *e
Pareto optimal set, PO∗, is the set, which is defined as

PO∗ � x ∈ X|óy ∈ X: f(y)≺ Pareto f(x) . (3)

Definition 5 (Pareto optimal frontier). For a Pareto optimal
set, PO∗, the Pareto optimal frontier, PF∗, is stated as

PF∗ � f(x) � f1(x), . . . , fm(x)( |x ∈ PO∗ . (4)

Definition 6 (ideal objective vector). *is vector zI
i is a

vector whose components are the optimal/minimal values of
each objective. *e component of zI ∈ Rm can be got by
minimizing every objective separately subject to the set of
constraints, that is,

z
I
i � Minfi(x),

s.t. x ∈ X for i � 1, . . . , m.
(5)

By using the ideal vector, the lower limits of the Pareto
optimal frontier for each objective function are determined.

Complexity 3



Definition 7 (nadir objective vector) [71]. Nadir vector is
the upper bound of the optimal Pareto frontier. *e nadir
objective vector components znad can be estimated from the
payoff table as depicted in Figure 1.

3. The Formulation of Combined Economic
Emission Dispatch Problem

*e CEEDP involves the optimization of two multiple
conflicting objectives, generation operation cost, and pol-
lutant emission, which must be addressed at the same time.
*e problem formulation is as follows.

3.1. Objective Functions. *e formulation of the objective
functions of the problem, which are objective for the
economy and environmental objective, is seen in this
subsection.

3.1.1. Generation Operation Cost (Economy Objective).
*e traditional CEEDP problem is to decide the optimum
active power produced by the power system with mini-
mizing the total cost of the generation operation and sat-
isfying the overall load requirement. *e economy objective
can be formulated mathematically as [72]

f1 PGi(  � Ct � 
n

i�1
Ci PGi(  � 

n

i�1
ai + biPGi + ciP

2
Gi 

+ ei sin fi PGi − PGi,min  $/h,

(6)

where Ct is the overall cost of fuel that is used for generation
operations ($/h), the parameters ai, bi, ci, ei, fi are the co-
efficients of the cost for each generator i, PGi is the generated
active power (p.u) by each generator i, PGi,min is the minimal
generation limit of unit i, and n is the generator numbers.
*e valve point loading effect is overlooked in this study.

3.1.2. Pollutant Emission (Environmental Objective). *e
other environmental objective is the pollutant emission,
which can be defined as the amount of all types of pollutant
emission, such as nitrogen oxides (NOx) and sulfur dioxide 2
(SO2). In this study, only “nitrogen oxide” pollutant emis-
sions are taken into account without a lack of generality. As a
quadratic and exponential function, the amount of emission
pollutants is indicated as

f2 PGi(  � ENOx
� 

n

i�1
αi + βiPGi + ciP

2
Gi + ξie

λiPGi( ) 
ton
h

 ,

(7)

where the parameters αi, βi, ci, ξi, λi are the coefficients of
each generator’s NOx emission.

3.2. Constraints. *e formulation of CEEDP is restricted by
a set of constraints as follows.

3.2.1. <e Set of Active Power Constraints. *e total active
power constraints delivered by the generator must provide
the total load demand PD and the transmission line losses
Ploss:



n

i�1
PGi − Ploss � PD, (8)

where PD is the total load demand (p.u.) and Ploss is the total
transmission line losses (p.u.).

*e losses of the transmission line are given as follows
[73]:

Ploss � 
n

i�1


n

i�1
Aij PiPj + QiQj  + Bij QiPj − PiQj  ,

Pi � PGi − PDi,

Qi � QGi − QDi,

Aij �
Rij

ViVj

cos δi − δj ,

Bij �
Rij

ViVj

sin δi − δj ,

(9)

where the system parameters are defined as follows:

(i) n is the number of buses,

(ii) Rij is the series resistance linking buses i and j,

(iii) Vi is the voltage magnitude at bus i,

(iv) δi is the voltage angle at bus i,
(v) Pi is the real active power injection at bus i, and
(vi) Qi is the reactive power injection bus i.

f2

f1

B

D

Ideal
point

Pareto-optimal front
C

A
Feasible space

Worst objective vector

Nadir objective vector

Figure 1: Ideal, nadir, and worst objective vectors.
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3.2.2. Upper Bound and Lower Bound of Active Power
Generation. *e active power PGi delivered by each gen-
erator in the power system is constrained by its upper bound
and lower bound, i.e.,

PGimin ≤PGi ≤PGimax,

QGimin ≤QGi ≤QGimax,

Vimin ≤Vi ≤Vimax, i � 1, ..., n,

(10)

where

(i) PGimin is the lower bound active power generated,
and

(ii) PGimax is the upper bound active power generated.

3.2.3. <e System Security Constraints. *e CEEDP for-
mulation shall take into account the limited proportion of
system lines in violation or in near violation of security
limits; these lines are known as the critical lines. *e system
critical lines that connect in the optimal solution are only
taken into account.*e experiences of the DM help to detect
the critical lines. *e protection limit can be maintained by
minimizing the following equation:

S � f PGi(  � 
k

j�1

Tj PG( 




T
max
j

, (11)

where

(i) Tj(PG) is the real active power flow,
(ii) Tmax

j is the maximum limit of the active power flow
through the jth line, and

(iii) k is the number of critical lines.

*e line active power flow through the jth line is defined
in terms of the control variables PGs, by implementing the
generalized generation distribution factors (GGDFs) [74],
and is defined as follows:

Tj PG(  � 

m

i�1
DijPGi , (12)

where the parameter Dij is the GGDF for line j, due to
generator i. For protection, the loading of the transmission
line Sl is limited by its maximum, which is given as
Sl ≤ Slmax, l � 1, . . . , ml, where ml is the number of trans-
mission line in the power system.

4. Constrained Multiobjective Equilibrium
Optimizer Algorithm

In this section, we introduce a novel evolutionary-based
algorithm depending on the EOA [65] which simulates the
equilibrium and dynamic m states related to the mass
balance models.

4.1. Brief Introduction to Equilibrium Optimizer Algorithm.
*e equilibrium optimizer algorithm (EOA) is an optimizer
that was firstly presented by Farmarzi [65] which first

appeared in 2020. It simulates the balance and dynamic
states associated to models for mass balance, in which each
position (concentration of particles) is randomly updated in
order to reach equilibrium state (fitness). *e equilibrium
optimizer is easy to use. Also, it has an adaptive dynamic
control parameter. EOA is started with the initial particle
positions (initial populationCi, i � 1, 2, . . . , no. of particles)
and problem’s dimensions (dim) as in the following
equation:

Cinitial � rand(search particles no, dim) ×(ub − lb) + lb,

(13)

where Cinitial locates the initial positions of the particles; the
bounds lband ubare the specified lower and upper bounds
respectively of the decision optimization variables.

4.1.1. Equilibrium Pool and Candidates (Ceq). *e equi-
librium/balance state is the EOA’s final state of con-
vergence. At the beginning of the algorithm, equilibrium
candidates are allocated to support a particle search
pattern. During the optimization process, the four best
so-far particles are determined in addition to another
particle whose concentration is the arithmetic mean of
the four particles. EOA has an exploration scheme using
four candidates and an exploitation scheme using the
average mean. For constructing a vector called the bal-
ance pool, these five particles are called candidates of
equilibrium:

Ceq,pool � Ceq,1, Ceq,2, Ceq,3, Ceq,4, Ceq,av . (14)

*e position of each particle in each iteration, by the
same probability, is updated using the random selection
among the chosen candidates. *en, the particle positions
are regularly updated.*e updating procedure of the EOA is
as in the following equation:

Cnew � Ceq +
G

λ
(1 − F) + Cold − Ceq  × F,

F � a1 sign r1 − 0.5(  e
− λt

− 1 ,

G �

0.5r1, if r2 ≥GP,

0, if r2 <GP,

⎧⎪⎨

⎪⎩

t � 1 −
T

Tmax
 

a2 T/Tmax( )

,

(15)

where Cold is the current position vector and Cnew is the new
position vectors of the particle. From the equilibrium pool,
we pick one concentration vector randomly which nomi-
nated by Ceq. λ is a random vector between 0 and 1; a1 and a2
are constants (a1 � 2 and a1 � 1), r, r1, r2 are random
numbers between 0 and 1, T is the current iteration counter,
and Tmax is the number of iterations maximum. In each
iteration, for each particle’s position, the considered ob-
jective function is measured to estimate its status. *e
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equilibrium pool is also updated to include the four best
particles to date in every iteration.

4.2. Dominance Criteria. To improve the EOA to deal with
MOPs, we incorporate the dominance criteria in the pro-
posed algorithm, which are described as follows:

For any problem having multiple objective functions
(say fj, j � 1, . . . , k, k> 1), any two particles x1 and x2 can
have one of two cases, “one dominates the other” or “none
dominates the other.”

*e particle x1 dominates the particle x2, if the following
two conditions are satisfied [75]. Note that the operator ≺
denotes worse and the operator ≻ denotes better.

(1) *e particle x1 is no worse than x2 in all objectives,
or fj(x1)⊀fj(x2), ∀ j � 1, . . . , p.

(2) *e particle x1 is strictly better than x2 in at least one
objective, or fj(x1)≻fj(x2) for at least one
j ∈ 1, 2, . . . , k{ }.

If any of the above two conditions is infringed, the
particle x1 dose not dominate the particle x2. *is algorithm
is repeatedly for all populations, all particles that are not
dominated by any other individuals are from “the non-
dominated set”.

4.3. Archive/Selection Strategy. *e vector function F is
represented by m-dimensional, where each coordinate is
one of the objectives (Figure 2). In each iteration counter t,
the aim of the archive/selection technique is to create a new
set of solutions. *is technique uses the old archive set
A(t− 1) to update the archive content A(t). Overall, the
purpose of this archive is to collect useful data about
optimization problems during the run and update the
content of the stored data.

4.4. Identifying the K-Centroids of Pareto Front. *e solution
of MOP by using the concept of dominance produces a large
size of Pareto optimal solutions, not a single elite optimum
solution [76]. *e selection of a solution to achieve various
objectives is the most critical task in practical engineering
applications. Also, decreasing the size of the Pareto set, that
is available to the DM to select, saves effort and time. Cluster
analysis has been implemented to shrink the volume of the
Pareto frontier to a reasonable volume using a pre-
determined size. K-means is an important partitioning
clustering which is used to classify n observations into K
clusters. Consider the Pareto front which is N points with m
dimensions, where m is the number of objectives. *e fol-
lowing steps are used to identify the K-centroids of the
Pareto front:

(i) Step 1: the initialK cluster centersCe1, Ce2, . . . , CeK

are randomly selected from the Pareto frontier
Pf∗ � Pf∗1 , Pf∗2 , . . . , Pf∗N .

(ii) Step 2: each agent form the Pareto set Pf∗i , i �

1, 2, . . . , N is allocated to cluster
Cj, j ∈ 1, 2, . . . , k{ } if and only if

Pf
∗
i − Cej

�����

�����< Pf
∗
i − Cep

�����

�����, p � 1, 2, . . . , K&j≠p.

(16)

(iii) Step 3: centers of new cluster Ce1, Ce2, . . . , CeK are
determined as follows:

Ce
∗
i �

1
nei


Pf∗

j
∈Ci

Pf
∗
j , ∀i � 1, 2, . . . , K, (17)

where nei is the elements number of the cluster Cj.
(iv) Step 4: if Ce∗i � Cei, ∀i � 1, 2, . . . , K, then the

algorithm stops; otherwise, go to Step 2.

4.5. Basic Algorithm. *e structure of the proposed algo-
rithm is shown in Figure 3. In order to guarantee the
obtaining for the true Pareto optimal set, Figure 3 shows
how the Pareto set is updated and how it is applied in the
procedure of proposed algorithm. In addition, an ar-
chiving-based selection algorithm was used to ensure
retaining the Pareto optimal frontier and monitoring of
the whole domain of the nondominated set. On the other
hand, the violation in the constraint will be handled using
a repair method [77], where it separates and repairs any
infeasible particle in population at each generation.
Firstly, an initial reference point R (feasible reference
point) is defined for the repair phase. Infeasible particles
in the population are then repaired according to the repair
process until they are feasible.*e repair process produces
a new viable particle (z) instead of an unfeasible one (q) on
a segment identified by the two points (R and q). *is
segment can be expanded equally by a specified parameter
μ ∈ [0, 1] on both sides. *erefore, the new feasible par-
ticle z is generated as

z �
c · q +(1 − c) · R,

c · R +(1 − c) · q,
 (18)

where c � (1 + 2μ)δ − μ and δ ∈ [0, 1] is a random number.
Figure 4 shows a schematic view of the constraint-handling
method for the generated particles, finally, defining the K-
centroids of Pareto front using the K-means clustering
algorithm.

Generate

Archive of bounded size

Select

A(t)

Vector F

Figure 2: Block structure of archive-based selection algorithm.
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5. Simulation Analysis

*e standard IEEE system having a 30-bus system and six
generator units is elected to confirm the robustness and the
proposed algorithm efficiency. *e data of the test system
consists of data for running the generators located at buses
25–30 and 41 lines. Figure 5 illustrates the diagram of this
system. Fuel cost with the generator’s limits and pollutant
emission NOx parameters for this system are shown in
Table 1, where the down ramp rate is considered as 10%.
*e transmission B-loss coefficient matrix is determined by
using a load flow software as seen in Table 2, as used in [78].
*e overall demand for power is 2.834 p.u. in the system at
the base of 100 MVA. All information for this system is
given in the MATLAB power system simulation package
[79].

*e proposed algorithm is coded in MATLAB (R2016b)
and implemented on the computer with Intel Core i5,
1.80GHz and 4GB RAM. Like any meta-heuristic

algorithm, the proposed algorithm requires a set of pa-
rameters that influence its performance. *e controlled
parameters of the proposed algorithm are shown in Table 3.

Start
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Yes Yes

Yes

Yes

No

Initialize the particle populations i = 1,2, ..., n

Assign equilibrium candidates concentration

Assign equilibrium candidates fitness

No f (Ci) < f (Ceq1)

f (Ceq1) < f (Ci) < f (Ceq2)

Ceq1 = Ci, f (Ceq1) = f (Ci)

f (Ci) > f (Ceq1)

&f (Ci) > f (Ceq2)

&f (Ci) < f (Ceq3)

&f (Ci) < f (Ceq4)

f (Ci) > f (Ceq1)

&f (Ci) > f (Ceq2)

&f (Ci) < f (Ceq3)

Ceq4 = Ci, f (Ceq4) = f (Ci)

Ceq3 = Ci, f (Ceq3) = f (Ci)

Ceq1, Ceq2, Ceq3, Ceq4, Ceqave

Ceq2 = Ci, f (Ceq2) = f (Ci)

Cnew = Ceq + G/λ (1 – F) + (Cold – Ceq) × F

No No

Archive

Repair unfeasible concentration

Locate nondominatedset

Update concentration

T ≤ Tmax

Identifying the K-centroids of Pareto front 

Pareto front 

End

Figure 3: *e structure of the proposed algorithm.
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Figure 4: Constraint-handling method.
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Table 1: Generator limits, fuel cost coefficients, and emission coefficients of the IEEE 30-bus system.

Generator (i)
Generation limits Fuel cost coefficients Emission coefficients

PGimin PGimax ai bi ci αi βi ci ξi × 10− 6 λi

1 0.05 0.50 10 200 100 4.091 −5.554 6.490 200 2.857
2 0.05 0.60 10 150 120 2.543 −6.047 5.638 500 3.333
3 0.05 1.00 20 180 40 4.258 −5.094 4.586 1.0 8.000
4 0.05 1.20 10 100 60 5.326 −3.550 3.380 2000 2.000
5 0.05 1.00 20 180 40 4.258 −5.094 4.586 1.0 8.000
6 0.05 0.60 10 150 100 6.131 −5.555 5.151 10 6.667

Table 2: Coefficient matrix of transmission B-loss for the test system: IEEE 30 bus.

Bij �

0.02180 0.01070 −0.00036 −0.00110 0.00055 0.00330
0.01070 0.01704 −0.00010 −0.00179 0.00026 0.00280

−0.00040 −0.00020 0.02459 −0.01328 −0.01180 −0.00790
−0.0011 −0.00179 −0.01328 0.0265 0.0098 0.0045
0.00055 0.00026 −0.0118 0.0098 0.0216 −0.0001
0.0033 0.0028 −0.00792 0.0045 −0.00012 0.02978

B0i � 1.0731e−05 0.0017704 −0.0040645 0.0038453 0.0013832 0.0055503
B00 � 0.0014

Table 3: *e proposed algorithm parameters.

Parameter Value
No. of particles 50
*e iterations maximum number (Tmax) 100
Probability of generation (GP) 0.5
a1 2
a2 1
Number of clusters (K) 5–100
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To examine the proposed algorithm, it is implemented to
solve CEEDP with the following 3 cases of IEEE system:

(i) Case 1: single objective function, where the fuel cost
was minimized as constrained nonlinear
programming

(ii) Case 2: single objective function, where the gen-
eration emission was minimized as constrained
nonlinear programming

(iii) Case 3: minimizing the two objective functions (fuel
cost and generation emission) as a MOP using
domination criteria

For the first two cases (case 1 and case 2), the obtained
results by applying the proposed algorithm were compared
to other optimization literature algorithms such as DRN-
PSO [15], NSGA [16], NPGA [17], FCPSO [18], MSFLA [19],
RCGA [20], and SPEA [21] as illustrated in Table 4. From
Table 4, it was concluded that the proposedmethod provided
a better minimum fuel cost for case 1 and found minimum
generation emissions for case 2 than the other algorithms.
For case 3, Figure 6 represents the Pareto optimal set for the
CEEDP obtained by the proposed algorithm. From the
figure, it can be concluded that the proposed algorithm is
capable of getting the Pareto frontier for the CEEDP.

Figure 7 represents the convergence analysis of the
proposed method to obtain the optimal solution. Figure 7(a)
represents the cost function convergence versus the gen-
eration; it declares that the cost function has converged to its
optimal value in the first 50 generations. On the other hand,
Figure 7(b) represents the emission function convergence
versus the generation; it declares that the emission function
has converged to its optimal value in the first 150 genera-
tions. Figure 7(c) represents the locus of the ideal points
which is starting at point (631.7933, 0.2161) and ending at
point (599.0424, 0.1928). Finally, Figure 7(d) represents the
locus of the nadir points which starts from point
(600.0432, 0.1932) and ends at point (0.2204, 639.1063).

Implementation of dominance criteria provides not a
single optimum solution, but a huge set of solutions as in
Figure 1. For practical engineering applications, the selection
of the best solution or limited set that will satisfy different
objectives to some extent is the most important task. Also,
minimizing the size of the Pareto set is available to the DM to
select and save effort and time. Cluster analysis was
implemented to shrink the size of the Pareto optimal set to a
small set with a predetermined size K as in Table 5.
Figures 8–11 represent some reduced Pareto sets depending
on the chosen K parameter which may save effort to choose
the best compromise alternative from the Pareto optimal set.

5.1. Discussion. It is clear from Table 4 that the suggested
algorithm has done better than all state-of-the-art ap-
proaches in case 1 and case 2. While Figure 6 indicates that
the proposed algorithm was able to solve CEEDP as a
multiobjective optimization problem and gave a uniform
distribution of the Pareto optimal curve and obtained very
good solutions at both ends of the curve. Furthermore,
Figure 7 indicates the accelerated convergence of the

proposed algorithm, where the cost function has converged
to its optimum value over the first 50 generations and the
emission function has converged to its optimum value over
the first 150 generations. In addition, Figures 8–11 indicate
the potential of the proposed algorithm to help DM find a
compromise solution on the whole Pareto front by splitting
it into a variety of regions using the K-means clustering
algorithm.

A comparative study has been investigated in this
subsection to examine the proposed method concerning the
assumptions of convexity, the smoothness of the Pareto
front, the number of the set of nondominated frontier, the
handling constraint, and the closeness to the true Pareto
optimal set.

Firstly, unfortunately, the CEEDP is a nonlinear opti-
mization problem and having multimodal functions. Also, it
needs many mathematical assumptions such as differential
functions, analytics, and convexity. *erefore, traditional
optimization techniques implement derivatives and gradi-
ents of a function, in general, not valid to detect the optimal
solution. On the other hand, the proposed method does not
need any assumption regarding derivatives, gradients, and
convexity.

Other evolutionary-based algorithms lack the shortage
in numbers of nondominated solutions in the Pareto frontier

Table 4: Optimal solutions by different methods: case 1 and case 2.

Algorithm

Cases

Case 1
(minimizing fuel

costs)

Case 2
(minimizing
generation
emissions)

DRN-PSO [15] 591.1517 0.2150 643.8616 0.1949
NSGA [16] 600.3100 0.2238 633.8300 0.1946
NPGA [17] 600.2200 0.2206 636.0400 0.1943
FCPSO [18] 600.1300 0.2223 638.3577 0.1942
MSFLA [19] 600.1114 0.2225 638.2425 0.1942
RCGA [20] 611.6935 0.2285 648.5301 0.1932
SPEA [21] 600.3400 0.2241 640.4200 0.1942
Proposed approach 599.0424 0.2204 639.1063 0.1928
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Figure 6: CEEDP Pareto optimal set obtained by the proposed
algorithm.
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(does not cover the whole Pareto frontier). On the other side,
the proposed method has been effectively exploring the
whole search space using dominance criteria and to handle
unfeasibility by implementing the repair algorithm which
enables the algorithm to deal with constrained optimization.

Also, the proposed algorithm is capable of efficiently dis-
covering a large set of the Pareto front, spanning the whole
Pareto optimal frontier.

Secondly, the proposed method keeps track of all
nondominated solutions detected during the process of
optimization (i.e., the algorithm has no restriction on the
number of Pareto optimal solutions), by using an archiving-
based selection technique that ensures the convergence
towards the Pareto optimal set. On the other hand, the
proposed algorithm is a meta-heuristic-based multiple-ob-
jective optimization method where it uses a population of
particles in its search. So, multiple solutions (Pareto optimal)
can be found in one single run. On the contrary to tradi-
tional techniques, which require a lot of runs to get the
Pareto optimal solutions.

Furthermore, it is observed from the simulation
analysis that the proposed method is absolutely better than
other algorithms, where its behavior is completely good
and it is capable of retaining the Pareto frontier for the
CEEDP problem. Finally, unlike other methods, the
proposed method does not leave the DM confused in front
of choosing a suitable solution from among all the
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Figure 7: Pareto optimal convergence. (a) Cost ($/h) versus generation. (b) Emission (Ton/h) versus generation. (c) Ideal points versus
generation. (d) Nadir points versus generation.

Table 5: Implementation of K-means method to reduce the shrink Pareto optimal frontier.

K Size of reduced Pareto set Ideal point
100 100 (0.1933, 601)
50 50 (0.1930, 599.8)
10 10 (0.1929, 599.1)
5 5 (0.1929, 599.1)
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Figure 8: Compromising 100 alternatives from the Pareto set.
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nondominated sets obtained but divides the Pareto front
into a set of clusters with a center for each cluster by one of
the most famous methods of cluster analysis, namely, K-
means.

6. Conclusion

*is paper investigates a new optimization system called
constrained multiobjective equilibrium optimizer for deal-
ing with the constrained combined economic emission

dispatch problem (CEEDP) with two objectives that reflect
minimizing the generation cost and minimizing the envi-
ronmental pollution emission. *e proposed algorithm
incorporates the dominance criteria to handle the multi-
objective functions that enable the DM to detect all the
Pareto frontiers. Cluster analysis was implemented to de-
crease the size of the Pareto frontier to a reasonable size that
reflects all the characteristics of the original Pareto frontier.
On the other hand, the repair method was applied to handle
the constraints and feasibility of particles. Solving the
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Figure 9: Compromising 50 alternatives from the Pareto set.
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Figure 10: Compromising 10 alternatives from the Pareto set.
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Figure 11: Compromising 5 alternatives from the Pareto set.
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standard 30-bus IEEE system demonstrates the superiority
of the proposed algorithm to generate a well-distributed
Pareto frontier.

*e following points are themajor contribution points of
this research:

(a) *e proposed algorithm was applied efficiently to
deal with constrained multiobjective CEEDP effec-
tively, without limiting the treatment of more than
two objectives

(b) *e obtained Pareto optimal frontier is well
distributed

(c) By means of cluster analysis, the proposed algorithm
according to DM needs help to track the resolution
of the Pareto frontier

(d) Incorporating the repair method enables the algo-
rithm to retain the particles feasibility

*is paper can be developed as a future research study as
follows:

(i)Constrained multiobjective equilibrium opti-
mizer algorithm used in this analysis also needs
further testing and development and can also be
paired with other approaches to further improve its
efficiency

(ii) Economic dispatch issues in this analysis may be
expanded to cover losses in repairing engine and
operating costs
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