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With the troubles of core losses and all-state confined to certain limitations which are the innate traits of permanent magnet
synchronous motors (PMSMs), this article develops a command filtered adaptive backstepping approach to follow the track of
PMSM’s desired rotor position. To begin with, the RBF neural network technique is utilized to get close to the uncharted nonlinear
terms which existed in PMSM’s mathematical model. Meanwhile, an advanced adaptive command filter control methodology is
constructed to avoid the computing explosion during the process of backstepping design. Furthermore, to make sure that all the
state variables are confined into certain ranges, we employed the barrier Lyapunov function (BLF) at every step of the controllers
construction. In addition, an error compensatingmechanism is proposed to neutralize filtering errors and only one adaptive law is
required. At last, simulation results bear out the superiority of the aforementioned control scheme.

1. Introduction

Lately, permanent magnet synchronous motors (PMSMs)
are employed broadly in real-world utilization. *is pro-
verbial usage is due to the advantageous PMSMs features like
straightforward mechanism, petit size, great productiveness,
and dependable manipulation. Nevertheless, the PMSM’s
real-time mathematic model set contains tremendous
nonlinearity and multivariables issues which may lead to a
challenging mission to acquire optimum control results. So,
in order to enhance the PMSM’s control effectiveness, many
advanced control techniques have been proposed, for in-
stance, PI control [1, 2], sliding mode control [3–5], adaptive
backstepping control [6], and other control schemes [7, 8].
Among these methodologies, the backstepping control
technique is now becoming a basic foundation to construct
controllers for high complexity models since it was designed
to obtain asymptotic tracking and global stability. Besides,
the load turbulence and time-variant parameters issues can

be ripped out of the operation of PMSMs by making use of
the adaptive control technique.

However, “certain functions must be linear” and “ex-
plosion of complexity” issues which are rooted in the tra-
ditional backstepping control methods are very tricky to be
dealt with. For one thing, along with the development of
radial basis function (RBF) neural networks (NNs) [9–11],
the nonlinear systems’ unknown functions can be approx-
imated by this algorithm based on the adaptive control
method and this proposal can rule out the dependency of the
accurate mathematical model. For another, in [12–14], a
command filtered-based backstepping method was devel-
oped to tackle the “explosion of complexity” problem and
the error compensation technique is employed to make the
filtering outcomes more accurate. To be specific, the com-
mand filters’ input signals are designed as virtual control
functions and the filters’ outputs can eliminate explosive
terms. Moreover, the error compensation mechanism will
neutralize the filtering deviations to some extent. But these
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published methodologies have not considered the state
constraints problem of PMSM drive systems.

In fact, according to the PMSM’s inherent features, its
state variables should be confined to reasonable boundaries.
For instance, if the rotor angular velocity, stator current, or
other state variables of PMSM are out of the state con-
straints, the motor’s performance will be influenced andmay
even result in severe security issues. Take stator current as an
example, exorbitant current value will lead to serious
overheating problems to the rotators which would speed up
the aging of insulation materials and decrease the equip-
ment’s service lifespan. Accordingly, state limitations are
indispensable during the PMSM’s controllers construct
process. Fortunately, many significant achievements have
been obtained in the all-state constrained nonlinear control
field, such as [15, 16] and from these approaches, the barrier
Lyapunov functions (BLFs) are normally utilized to hold off
the limitation transgressions.

Apart from state variables restrictions, in order to get
perfect control performance of PMSMs, the core loss impact
also should be taken into consideration when the driving
frequency spikes, which is correlated with the high-speed
operation. *e control accuracy will drop sharply with
tremendous core losses, and thus the solution of PMSMs
with iron losses problem is crucial to actual applications. As
far as we know, the core losses and all-state restrictions
issues which are rooted in nonlinear high-ordered PMSM
drive systems have not been studied by using command
filtered adaptive backstepping approach.

So, with these previous observations, we took core losses
and all-state restrictions which are the inherent properties of
PMSM drive systems into considerations, and then we
developed a BLFs-based adaptive command filtered neural
control method. Disparate from the conventional control
schemes, this method’s main novelties are concluded as
follows:

(1) Unlike [17], the command filters are used to tackle
the “explosion of complexity” issue which cannot be
neglected in adaptive backstepping control for
nonlinear systems.

(2) Distinct from [17, 18], this paper considers the core
losses issue in PMSM’s mathematical model and thus
makes this method be more applicable in actual
usages.

(3) Different from [12, 19], the errors that arose from
command filters are neutralized by compensating
signals to diminish their negative influence upon
control performance.

(4) *is article just requires one single adaptive law
during the controllers construction process, which
can facilitate the calculation compared to [20], so
that the control scheme’s effectiveness will be
improved.

In the posterior section of this paper, simulation figures
and a comparison table are displayed to substantiate the
effectiveness and robustness of the submitted control
approach.

2. Related Works

2.1. Nonlinear Control Methods. Many approaches are
proposed to enhance the control effectiveness of nonlinear
systems. In [21], Zheng et al. utilized a stable adaptive PI
control strategy in the discrete-time domain for the PMSM
drive system.*e PI controller is capable of automatic online
tuning of the control gains based on the gradient descent
method and the experimental results illustrated the tracking
performance is favorable. Li et al. [22] put forward the
sliding-mode control method to deal with nonlinear active
suspension systems. *ey designed an adaptive sliding-
mode controller to guarantee the reachability of the specified
switching surface. Yin et al. designed a backstepping con-
troller for the switch complex nonlinear system in [23].
During the construction process, they developed a state
backstepping controller to realize the exponential stability of
the observer-backstepping feedback control system. Zhang
et al. presented a linear quadratic regulator-based propor-
tion integral differential equivalent controller for PMSM in
[24]. *e method was implemented through the dSPACE
digital signal processor system and the experimental result
confirmed its effectiveness.

2.2.ApproximationTechniques. To enlarge the practical field
of the backstepping method, the nonlinear terms in the
nonlinear systems’ mathematical model need to be dealt
with. *e literature [25–28] has utilized the fuzzy logic
systems (FLS) to approximate unknown nonlinearities in
different kinds of scenarios. And the approximation results
verified that this technique can well serve its original pur-
pose. In [29–31], the authors employed the LSTM and the
GRU techniques to predict traffic speed, power load, and
traffic flow, respectively. And the experimental results in-
dicate these two kinds of deep recurrent networks are skilled
in modeling abilities, which make them more suitable for
sequence-based long-term tasks. In [32], Bai et al. utilized a
compound autoregressive network to predict multivariate
time series. Jin et al. proposed two nonlinear estimation
methods to achieve real-time indoor RFID tracking in [33].
In [9], Fu et al. utilized the RBF neural networks to cope with
the unknown nonlinear functions. *e finite-time adaptive
neural controller was proposed via the new command filter
backstepping technique, and the tracking error converges to
a small neighborhood of the origin in finite time.

2.3. Filtering Algorithms. Some scholars put forward a va-
riety of filtering methods in recent years. In [34], Bai et al.
proposed a neuron-based Kalman filter to enhance the
control effect of various intelligent terminals and promote
the sensing level. *ey introduced the neuronunits into the
conventional Kalman filter framework and thus the filtering
process could be optimized to reduce the effect of the un-
practical system model and hypothetical parameters. In
[35, 36], the authors employed the dynamic surface control
(DSC) technique to resolve the “explosion of complexity”
problem, and it is a first-ordered filtering method for every
step’s virtual input during the traditional backstepping
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controllers design. But the DSC technique does not take the
deviations ascribed to the first-order filters into account,
which may induce unwanted influence on the control result.
In [37], the adaptive filtering technique was proposed to
filter the complex noise and obtain the true measurements’
value and thus the MEMS gyroscope performance can be
improved. In [38], the authors proposed a state filtering-
based least squares parameter estimation for bilinear sys-
tems. Zhang et al. developed a novel state estimation al-
gorithm to enhance the computational efficiency based on
delta operator in [39].

2.4. PMSM Innate Features and Identification Methods.
In [40, 41], the authors take full-state constraints of non-
linear systems into consideration and constructed the barrier
Lyapunov functions to ensure the state constraints are not
transgressed. In [42], Zhao et al. proposed a health per-
formance evaluation method to detect anomaly occurrences
and evaluate the multirotor system’s real-time health con-
dition. Ding et al. in [43, 44] derived gradient-based and
two-stage gradient-based iterative algorithms to generate
more accurate parameter estimation to overcome the dif-
ficulty of state and input identifications. In [45], Zhang et al.
developed joint estimation algorithms for states and pa-
rameters of nonlinear systems to make the parameter es-
timates converge to their true values. With the identification
methods in [43–45], the parameters of the mathematical
models can be obtained accordingly.

3. Dynamic Model and Preparations

In the d − q frame of axes, the PMSM’s dynamic model with
core losses from [46] can be described as
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(1)

where θ, ω, np, J, TL, Rs, and Rc represent rotor position,
rotor angular speed, quantity of pole pairs, rotor momental
inertia, load torque, stator resistance, and core loss resis-
tance, sequentially. ud stands for the d-axis voltage and uq

represents the q-axis voltage. id is the d-axis current while iq
is the q-axis current. Ld and Lq present as stator inductors.
Lld and Llq represent leakage inductances, while Lmd and Lmq

are the notations of magnetic inductances. Finally, λPM

stands for the excitation flux. To simplify the above math-
ematical equations, we employ the following symbolizations:

x1 � θ,

x2 � ω,

x3 � ioq,

x4 � iq,

x5 � iod,

x6 � id,

a1 � npλPM,

a2 � np Lmd − Lmq􏼐 􏼑,

b1 �
Rc

Lmq

,

b2 � −
npLd

Lmq

,

b3 � −
npλPM

Lmq

,

b4 � −
Rs

Llq

,

b5 �
Rc

Llq

,

c1 �
Rc

Lmd

,

c2 � −
npLq

Lmd

,

c3 � −
Rs

Lld

,

c4 �
Rc

Lld

,

d1 �
1

Llq

,

d2 �
1

Lld

.

(2)

With the aforementioned symbolizations, the mathe-
matical model set will be converted into
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_x1 � x2,

_x2 �
a1

J
x3 +

a2

J
x3x5 −

TL

J
,

_x3 � b1x4 − b1x3 + b2x2x5 + b3x2,

_x4 � b4x4 + b5x3 + d1uq,

_x5 � c1x6 − c1x5 − c2x2x3,

_x6 � c3x6 + c4x5 + d2ud.

(3)

*e ultimate goal of this paper is to develop the con-
trollers uq along with ud to make the rotor position x1 track
the desired signal xd as perfect as possible while the state
variables xi are demanded to meet the premises that
|xi|< kci

(i � 1, 2, 3, 4, 5, 6), in which kci
> 0.

*e RBF neural network is a feedforward network with
three layers of neurons called the input layer, the hidden
layer, and the output layer. Figure 1 is the graphic illustration
of the structure of the RBF neural network. Additionally, the
input layer contains an equal number of nodes to the di-
mension of the input vector. *e hidden layer’s nodes
number depends on the complexity of the problem. *e
output layer’s nodes number equals the dimension of the
output vector. *e weight parameter W stands for the link
between nodes and it only exists between the hidden and
output layers. *e self-training law will be given later. *e
k-means clustering algorithm which is a kind of unsuper-
vised algorithm of RBF neural network will be used in this
paper. With the neural network’s theory and its parameters’
definitions which can be found in [47], we know that any
time-consecutive function φ(z) can be estimated by RBF
NNs. *e estimate functions 􏽢φ(z) � W∗TS(Z) satisfy the
premise of Rq⟶ R, in which q stands for input dimen-
sions. Moreover, the NNs’ input variable Z needs to be
within the domain ofZ ∈ ΩZ ⊂ Rq and the weight vector W∗

is formed as W∗ � [Φ∗1 , . . . ,Φ∗l ]T, where l represents the
quantity of NNs nodes. We choose the Gaussian basis
function S(Z) � ([p1(Z), p2(Z), . . . , pn(Z)]T/􏽐

n
i�1 pi(Z))

and pi(Z) � exp[(− (Z − ηi)
T(Z − ηi))/c2

i ] for i � 1, 2, . . . ,

n, where ηi � [ηi1, ηi2, . . . , ηin]T is the center vector and ci is
the Gaussian function’s width. So, with the above defini-
tions, the inequality ‖Wi(Si(k))‖2 ≤ li (i � 1, . . . , n) holds.

Lemma 1 From [12], we have the definition of command
filters listed as

_e1 � ωne2,

_e2 � − 2ξωne2 − ωn e1 − α1( 􏼁.
(4)

From the above equations, we know that the output
variables e1 and e2 can be obtained by the input variable α1.
In order to do so, there are some rules that should be
satisfied. Firstly, for all t≥ 0, the first and second ordered
time derivative forms of α1 should meet the demands of
| _α1|< ρ1 and |€α1|< ρ2 while ρ1, ρ2 are positive constants.
Secondly, the initial conditions of these variables should

satisfy that e1(0) � α1(0), e2(0) � 0. Consequently, | _e1|, |€e1|,
and |e

...

1| will be bounded into certain ranges. Additionally,
with ξ ∈ (0, 1] and ωn > 0, the deviation between the input
and output signals will satisfy that |e1 − α1|≤ μ.

Assumption 1 (see [41]). *e desired signal xd and its first-
ordered time derivative form _xd should both be smooth,
limited, and known. *us, they can meet the demands of
|xd|≤Y0 < kc1

and | _xd|≤Y1, in which Y0 and Y1 are positive
constants.

4. Command Filtered Self-Adaptive Neural
Network Controllers Construction

During this process, we constructed the self-adaptive
command filtered neural network controllers for PMSMs
with core losses and all-state restrictions based on the BLFs.
To begin with, we define the error variables as

z1 � x1 − xd,

z2 � x2 − x1,c,

z3 � x3 − x2,c,

z4 � x4 − x3,c,

z5 � x5,

z6 � x6 − x4,c,

v1 � z1 − ζ1,

v2 � z2 − ζ2,

v3 � z3 − ζ3,

v4 � z4 − ζ4,

v5 � z5 − ζ5,

v6 � z6 − ζ6,

(5)

where xd is the desired rotor position trajectory and αi are
the input variables of the filters while xi,c represent the filters’
output variables, in which i � 1, 2, 3, 4. To neutralize the
filtering errors which are the values of xi,c − αi, at every
filtering step, we use the error compensation technique and
ζ i represent the compensation signals, where
i � 1, 2, 3, 4, 5, 6. Additionally, we introduce a tight set

x1

x2

xn

...
...

ϕ (x)

W
Y

Input layer Hidden layer Output layer

∑

Figure 1: *e structure of RBF neural network.
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Ωv � |vi|< kbi
, i � 1, 2, . . . , 6􏽮 􏽯, in which the constants kbi

should be positive. During the next construction process, the
error renumeration variables ζ i, the virtual controllers αi,
and the real controllers ud and uq will be given.

Step 1. In [15], the barrier Lyapunov function was proposed.
So, with the description, we select the first BLF V1 as

V1 �
1
2
log

k
2
b1

k
2
b1

− v
2
1

⎛⎝ ⎞⎠. (6)

Within the compact set Ωv, the first-ordered time de-
rivative form of V1 should be

_V1 � Kv1
_v1 � Kv1

z2 + x1,c − _xd − _ζ1􏼐 􏼑, (7)

in which Kvi
� (vi/(k2

bi
− v2i )), i � 1, 2, . . . , 6. Next, we

conceive the virtual controller α1 and the remunerate var-
iable ζ1 as

α1 � − k1z1 + _xd,

_ζ1 � − k1ζ1 + ζ2 + x1,c − α1􏼐 􏼑,
(8)

where k1 > 0 is designed to be the control gain and the terms
ki > 0 (i � 1, 2, . . . , 6) will be applied in constructing other
virtual control laws and compensation signals later on. By
using (8), (7) can be converted into the following equation:

_V1 � − k1Kv1
v1 + Kv1

v2. (9)

Step 2. Similarly, we set up the second BLF as
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k
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k
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2
2
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where V2 should be time-consecutive within the compact set
Ωv, so we compute its first-ordered time derivative form and
apply _V1 into it to get the following equation:
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When it comes to actual applications, TL is presumed to
be unknown but should be limited to a certain range.
*erefore, we assume |TL|≤ d, in which the constant d

should be positive. With Young’s inequality theorem, we
have − Kv2

TL ≤ (1/2ε21)K
2
v2

+ (1/2)ε21d
2 with ε1 > 0.

So, rewritten _V2 as

_V2 ≤ − k1Kv1
v1 + Kv1

v2 + Kv2
a1x3 − J _ζ2 + f2(Z)􏼐 􏼑 +

1
2
ε21d

2
,

(12)

in which f2(Z) � a2x3x5 − J _x1,c + (1/2ε21)Kv2
, Z � [x1, x2,

x3, x4, x5, x6, xd, _xd]T. With the aforementioned description
of RBF NNs, we know that it always has a RBF NN WT

2 S2(Z)

to make f2(Z) � WT
2 S2(Z) + δ2(Z) holds, where δ2(Z) is

the estimate error.*en, for any ε2 > 0, δ2(Z) will satisfy that
|δ2(Z)|≤ ε2. So, under the premise of l2 > 0, we have
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(13)

Design the second virtual control signal α2 along with
the remuneration variable ζ2 as

α2 � −
1
a1

k2z2 +
Kv2

2
+

Kv2
􏽢θS

T
2 S2

2l
2
2

+ Kv1
k
2
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(14)

with 􏽢θ being the approximation of θ, which will be con-
structed later on. Applying (13) and (14) into (12), we have
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(15)

Step 3. Construct the third BLF as

V3 � V2 +
1
2
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k
2
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k
2
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− v
2
3

⎛⎝ ⎞⎠, (16)

V3 is continuous within the compact set Ωv, so we compute
its first-ordered time derivative form and apply _V2 into it,
then we get

_V3 ≤ − 􏽘
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(17)

in which f3(Z) � − b1x3 + b2x2x5 + b3x2. Akin to Step 2, it
always has a RBF NN WT

3 S3(Z) to make f3(Z) �

WT
3 S3(Z) + δ3(Z) holds, where δ3(Z) is the estimate error.

*en, for any ε3 > 0, δ3(Z) will satisfy that |δ3(Z)|≤ ε3. With
the premise of l3 > 0, we deduce that

Kv3
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(18)

Set the third virtual control law α3 along with the re-
muneration variable ζ3 as
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α3 � −
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Applying (18) and (19) into (17), we have
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Step 4. Design the next BLF V4 as

V4 � V3 +
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Akin to _V3, _V4 will be listed as
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2
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(22)

in which f4(Z) � b4x4 + b5x3. Akin to the last step, it always
has a neural network WT

4 S4(Z) to make that f4(Z) �

WT
4 S4(Z) + δ4(Z) holds, where δ4(Z) stands for the esti-

mate error. *en, for any ε4 > 0, δ4(Z) will satisfy that
|δ4(Z)|≤ ε4. So, with the premise of l4 > 0, we can obtain that

Kv4
f4(Z) � Kv4
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+
l
2
4
2

+
K

2
v4

2
+
ε24
2

.

(23)

Now, we set the actual control signal uq and the re-
munerate variable ζ4 as

uq � −
1
d1

k4z4 +
1
2
Kv4

+
Kv4

􏽢θS
T
4 S4

2l
2
4

+ b1Kv3
k
2
b4

− v
2
4􏼐 􏼑 − _x3,c

⎛⎝ ⎞⎠,

_ζ4 � − k4ζ4.

(24)

*en, with the terms of (23) and (24), the inequality (22)
will result in

_V4 ≤ − 􏽘
4

i�1
kiKvi

vi + 􏽘
4

i�2

Wi

����
����
2

− 􏽢θ􏼒 􏼓K
2
vi

S
T
i Si

2l
2
i

+ 􏽘
4

i�2

l
2
i

2

+ 􏽘
4

i�2

ε2i
2

+
1
2
ε21d

2
.

(25)

Step 5. Set the next BLF V5 as

V5 � V4 +
1
2
log

k
2
b5

k
2
b5

− v
2
5

⎛⎝ ⎞⎠, (26)

where V5 is continuous within the compact set Ωv, so we
compute its first-ordered time derivative form and apply _V4
into it; then, we have

_V5 ≤ − 􏽘

4

i�1
kiKvi

vi + Kv5
c1x6 − _ζ5 + f5(Z)􏼐 􏼑

+ 􏽘
4

i�2

Wi

����
����
2

− 􏽢θ􏼒 􏼓K
2
vi

S
T
i Si

2l
2
i

+ 􏽘
4

i�2

l
2
i

2
+ 􏽘

4

i�2

ε2i
2

+
1
2
ε21d

2
,

(27)

in which f5(Z) � − c1x5 − c2x2x3 � WT
5 S5(Z) + δ5(Z),

|δ5(Z)|≤ ε5. With the premise of l5 > 0, we can deduce that

Kv5
f5(Z) � Kv5

W
T
5 S5(Z) + δ5(Z)􏼐 􏼑

≤
W5

����
����
2
K

2
v5

S
T
5 S5

2l
2
5

+
l
2
5
2

+
K

2
v5

2
+
ε25
2

.

(28)

Design the fourth virtual control signal α4 along with the
remunerate variable ζ5 as

α4 � −
1
c1

k5z5 +
Kv5

2
+

Kv5
􏽢θS

T
5 S5

2l
2
5

⎛⎝ ⎞⎠,

_ζ5 � − k5ζ5 + c1ζ6 + c1 x4,c − α4􏼐 􏼑.

(29)

By using (28) and (29), inequality (27) can be trans-
formed as

_V5 ≤ − 􏽘

5

i�1
kiKvi

vi + c1Kv5
v6 + 􏽘

5

i�2

Wi

����
����
2

− 􏽢θ􏼒 􏼓K
2
vi

S
T
i Si

2l
2
i

+ 􏽘
5

i�2

l
2
i

2
+ 􏽘

5

i�2

ε2i
2

+
1
2
ε21d

2
.

(30)

Step 6. Design the sixth BLF V6 as follows:

V6 � V5 +
1
2
log

k
2
b6

k
2
b6

− v
2
6

⎛⎝ ⎞⎠. (31)
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Similarly,

_V6 ≤ − 􏽘
5

i�1
kiKvi

vi + c1Kv5
v6 + Kv6

d2ud − _x4,c − _ζ6 + f6(Z)􏼐 􏼑

+ 􏽘
5

i�2

Wi

����
����
2

− 􏽢θ􏼒 􏼓K
2
vi

S
T
i Si

2l
2
i

+ 􏽘
5

i�2

l
2
i

2
+ 􏽘

5

i�2

ε2i
2

+
1
2
ε21d

2
.

(32)

in which f6(Z) � c3x6 + c4x5 � WT
6 S6(Z) + δ6(Z), |δ6 (Z)|

≤ ε6. With the premise of l6 > 0, we have

Kv6
f6(Z) � Kv6

W
T
6 S6(Z) + δ6(Z)􏼐 􏼑

≤
W6

����
����
2
K

2
v6

S
T
6 S6

2l
2
6

+
l
2
6
2

+
K

2
v6

2
+
ε26
2

.

(33)

Another actual control law ud along with the remunerate
variable ζ6 will be constructed as

ud � −
1
d2

k6z6 +
1
2
Kv6

+
Kv6

􏽢θS
T
6 S6

2l
2
6

+ c1Kv5
k
2
b6

− v
2
6􏼐 􏼑 − _x4,c

⎛⎝ ⎞⎠,

_ζ6 � − k6ζ6.

(34)

Substituting (33) and (34) into (32), we get

_V6 ≤ − 􏽘
6

i�1
kiKvi

vi + 􏽘
6

i�2

(θ − 􏽢θ)K
2
vi

S
T
i Si

2l
2
i

+ 􏽘
6

i�2

l
2
i

2
+
ε2i
2

􏼠 􏼡 +
1
2
ε21d

2
,

(35)

where θ � max ‖W2‖
2, ‖W3‖

2, ‖W4‖
2, ‖W5‖

2, ‖W6‖
2􏽮 􏽯 and

􏽥θ � 􏽢θ − θ. Define the final BLF as

V � V6 +
1
2r

􏽥θ
2
. (36)

*en, we compute the V’s first-ordered time derivative
form as

_V≤ − 􏽘
6

i�1
kiKvi

vi + 􏽘
6

i�2

l
2
i

2
+
ε2i
2

􏼠 􏼡 +
1
r
􏽥θ − 􏽘

6

i�2

rK
2
vi

S
T
i Si

2l
2
i

+ 􏽢θ
.

⎛⎝ ⎞⎠ +
1
2
ε21d

2
.

(37)

From (37), we choose the self-adaptive signal (also serve
as self-training law) 􏽢θ

.

as

􏽢θ
.

� 􏽘
6

i�2

rK
2
vi

S
T
i Si

2l
2
i

− m􏽢θ, (38)

in which the constants m and r should be positive.

Theorem 1. From this aforementioned design process, we
have proposed the real controllers (uq and ud), the self-
adaptive signal 􏽢θ

.

, and the remunerate variables

(ζ i, i � 1, 2, 3, 4, 5, 6), and thus, with the PMSM driving
systems satisfying Assumption 1 in set Ωv, by selecting
reasonable system parameters and by guaranteeing all-
state variables within limitations, we can verify that the
tracking errors would be bounded into a small range of
origin.

Proof. *e detailed proof will be elaborated in the next
section. □

5. Stability Analysis

To illustrate the system’s constancy, replacing (38) into (37),

_V≤ − 􏽘
6

i�1
kiKvi

vi + 􏽘
6

i�2

l
2
i

2
+
ε2i
2

􏼠 􏼡 +
1
2
ε21d

2
−

m􏽥θ􏽢θ
r

. (39)

It has been verified that log k2
bi
/(k2

bi
− v2i )< (v2i /(k2

bi
−

v2i )) in the set |vi|< kbi
in [48]. Plus, by using

− 􏽥θ􏽢θ≤ − (􏽥θ
2
/2) + (θ2/2), the inequality (39) will be con-

verted into

_V≤ − 􏽘
6

i�1
kilog

k
2
bi

k
2
bi

− v
2
i

⎛⎝ ⎞⎠ −
m􏽥θ

2

2r
+ 􏽘

6

i�2

l
2
i

2
+
ε2i
2

􏼠 􏼡 +
1
2
ε21d

2

+
mθ2

2r

≤ − aV + b,

(40)

in which a � min 2k1, (2k2/J), 2k3, 2k4, 2k5, 2k6, m􏼈 􏼉 and
b � 􏽐

6
i�2((l2i /2) + ε2i /2) + (1/2)ε21d2 + (mθ2/2r). With (40),

we can infer that (log k2bi
/(k2

bi
− v2i )) and 􏽥θ will be all inside

of the confined bounds. For inequality (40), multiplying eat

at both sides, we have (d(V(t)eat)/(dt)≤ beat). Next, at the
time range of [0, t], we integrate this inequality and then it
can be transformed into

V(t)≤ V(0) −
b

a
􏼠 􏼡e

− at
+

b

a
≤V(0) +

b

a
. (41)

From inequality (41), we have |vi|< kbi
and 􏽥θ will be all

limited to certain bounds. Moreover, we can infer that
limt⟶∞(log(k2

bi
/(k2

bi
− v2i )))≤ (2b/a) and limt⟶ ∞|v1|

≤ kb1

���������
1 − e− (2b/a)

√
.

Remark 1. For compensating signals, we set the Lyapunov
function as

V0 �
1
2
ζ21 +

J

2
ζ22 +

1
2
ζ23 +

1
2
ζ24 +

1
2
ζ25 +

1
2
ζ26. (42)

By employing Lemma 1, we can obtain
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V0
.

� ζ1 _ζ1 + Jζ2 _ζ2 + ζ3 _ζ3 + ζ4 _ζ4 + ζ5 _ζ5 + ζ6 _ζ6

≤ − k1ζ
2
1 + ζ1ζ2 + ζ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μ − k2ζ

2
2 + a1ζ2ζ3 + a1 ζ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μ − k3ζ

2
3

+ b1ζ3ζ4 + b1 ζ3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μ − k4ζ
2
4 − k5ζ

2
5 + c1ζ5ζ6

+ c1 ζ5
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μ − k6ζ
2
6

≤ − k1 − 1( 􏼁ζ21 − k2 −
1
2

− a1􏼒 􏼓ζ22 − k3 −
a1

2
− b1􏼒 􏼓ζ23

− k4 −
b1
2

􏼠 􏼡ζ24 − k5 − c1( 􏼁ζ25 − k6 −
c1
2

􏼒 􏼓ζ26

+
1 + a1 + b1 + c1

2
μ2

≤ − a0V0 + b0.

(43)

in which a0 � min 2(k1 − 1),􏼈 (2/J)(k2 − (1/2) − a1), 2(k3 −

(a1/2) − b1), 2(k4 − (b1/2)), 2(k5 − c1), 2(k6 − (c1/2))}, and
b0 � ((1 + a1 + b1 + c1)/2)μ2. *erefore, with these two
equations, we have

lim
t⟶∞

ζ i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

�������������
1 + a1 + b1 + c1

a0

􏽳

μ, (44)

where i � 1, 2, . . . , 6. Since v1 � z1 − ζ1, we can infer that
|z1|≤ |v1| + |ζ1|< kb1

���������
1 − e− (2b/a)

√
+������������������

((1 + a1 + b1 + c1)/a0)
􏽰

μ.

Remark 2. Ensue from the definition of a and b, along with
the proper control variables m and ki(i � 1, 2, . . . , 6), small
variables εj(j � 2, 3, . . . , 6), ln(n � 2, 3, . . . , 6), and large
parameter r, the rotor position tracking error |z1| will be
small enough to meet the control requirement. On account
of z1 � x1 − xd as well as xd ≤Y0, we have
|x1|< kb1

+
������������������
((1 + a1 + b1 + c1)/a0)

􏽰
μ + Y0 ≤ kc1

. With the
definition of α1 in equation (8), we know that α1 contains the
terms of z1 as well as _xd. *erefore, the upper limitation of
α1 which is noted as ι1 holds. From |x1,c − α1|≤ μ, we have
|x1,c|≤ μ + ι1 ≤ λ1. Additionally, with v2 � z2 − ζ2, we get
|z2|≤ |v2| + |ζ2|< kb2

+
������������������
((1 + a1 + b1 + c1)/a0)

􏽰
μ. So, with

z2 � x2 − x1,c, it is obvious that |x2|≤ |z2| + |x1,c|< kc2
.

Parallelly, it can be verified that |x3|< kc3
, |x4|< kc4

, |x5|< kc5
,

and |x6|< kc6
. At this point, the proof is accomplished.

6. Simulation Results

To substantiate the control scheme’s validity, a simulation
has been conducted in this part. *e PMSM’s parameters
with core losses are chosen as Table 1.

We set all-state variables’ original conditions to zero and
choose xd � 0.5 sin(t) + 0.5 sin(0.5t) as the desired signal.
So, θ � max ‖W2‖

2, ‖W3‖
2, ‖W4‖

2, ‖W5‖
2, ‖W6‖

2􏽮 􏽯 � 0 .
Moreover, the limitations of PMSM’s state variables are
|x1|≤ 2, |x2|≤ 15, |x3|≤ 30, |x4|≤ 30, |x5|≤ 15, |x6|≤ 20.

Additionally, we selected the load toque as

TL �
1, 0≤ t< 15
1.5, t≥ 15􏼨 . All these parameters of PMSM are

obtained based on former experiences in [17, 20, 24].
Certainly, they can be obtained by some identification
methods, such as gradient estimation algorithms [43], two-
stage gradient-based iterative estimation method [44], or
recursive parameter estimation methods [45].

As to the RBF neural network, the neurons’ quantity is 11
and we choose the activate functions as
S(x) � ([p2(x), p3(x), . . . , p6(x)]T/􏽐

6
i�2 pi(x)) and

pi(x) � exp[((− (x − ηi)
T(Z − ηi))/c2

i )] for i � 2, 3, 4, 5, 6.
*e activate functions’ centers are scattered evenly in scale
[− 5, 5], and their widths are all defined as 1.

(a) To control the PMSM driving system with core losses
and all-state restrictions, we developed the BLFs-
based adaptive command filtered neural network
controllers. So, during this simulation, we employed
control coefficients as k1 � 10, k2 � 7, k3 � 100,
k4 � 50, k5 � 20, k6 � 30, r � 0.05, m � 0.02,
l2 � l3 � l4 � l5 � l6 � 0.25, kb1

� 1, kb2
� 10,

kb3
� 20, kb4

� 20, kb5
� 10, kb6

� 15, ξ � 0.9, and
ωn � 2000.

(b) To show the superiority of the introduced method-
ology in this article, we also established the dynamic
surface adaptive neural network controllers to control
this system. To be comparable, we utilized identically
the same parameters which are displayed in (a).

Next, Figures 2–7 illustrate these two simulations out-
comes, in which Figures 2(a)–7(a) display the BLFs-based
command filtered control (CFC) approach which was in-
troduced in the frontal part of this article, while
Figures 2(b)–7(b) demonstrate the dynamic surface control
(DSC) scheme under the same circumstance. Figure 2
simulate the curves of x1 and xd. Figure 3 display the
tracking error z1. Figures 4 and 5 are the curves of uq and ud,
respectively. Figures 6 and 7 are the performances of state
variables x2, x3, x4, x5, and x6.

From these simulation outcomes, we can observe that
even under load torque uncertainty, these two approaches
can both follow the given trajectory nicely. But it cannot be
ignored that the tracking error which is showed in
Figure 3(a) is much smaller than the error that was displayed
in Figure 3(b). Moreover, the state variables in Figures 6(a)
and 7(a) are controlled in the confined ranges, but ioq of
Figure 6(b) is varying from − 20 to 60, which overstepped the
presupposed current’s constraint (Table 2).

Remark 3. Disparate from the DSC control method without
taking filtering errors into consideration, in this paper, we

Table 1: Parameters of PMSM with core losses.

Ld � 0.00977H Lmd � 0.007H λPM � 0.0844Wb
Lq � 0.00977H Lmq � 0.008H J � 0.002Kg · m2

Lld � 0.00177H Rs � 2.21Ω np � 3
Llq � 0.00177H Rc � 200Ω
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Figure 2: (a) x1 and xd for BLFs-based CFC. (b) x1 and xd for DSC.
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Figure 3: (a) Tracking error for BLFs-based CFC. (b) Tracking error for DSC.
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Figure 4: (a) uq for BLFs-based CFC. (b) uq for DSC.
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developed the BLFs-based adaptive command filtered neural
control approach.*is approach can not only guarantee that
the state variables would confine into reasonable bounds but

also ensure that the tracing deviation would congest into a
smaller range of zero, which will be much more functional
and robust in real-world applications.
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Figure 5: (a) ud for BLFs-based CFC. (b) ud for DSC.
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Figure 6: (a) ω, ioq, iq for BLFs-based CFC. (b) ω, ioq, iq for DSC.
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7. Conclusion

*is paper developed a BLFs-based self-adaptive command
filtered neural network control approach to work out the
position tracking problem of the PMSM driving system with
core losses and all-state restrictions. By merging BLFs into
CFC techniques, the issues of “explosion of complexity” and
all-state restrictions can be well resolved. Additionally,
virtual control laws were constructed to ensure the position
tracking error would be limited to a minute range of zero. In
the end, simulation performances illustrated the system’s
adaptability and antidisturbance ability.
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