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Virtual screening is the most critical process in drug discovery, and it relies on machine learning to facilitate the screening process.
It enables the discovery of molecules that bind to a specific protein to form a drug. Despite its benefits, virtual screening generates
enormous data and suffers from drawbacks such as high dimensions and imbalance. This paper tackles data imbalance and aims to
improve virtual screening accuracy, especially for a minority dataset. For a dataset identified without considering the data’s
imbalanced nature, most classification methods tend to have high predictive accuracy for the majority category. However, the
accuracy was significantly poor for the minority category. The paper proposes a K-mean algorithm coupled with Synthetic
Minority Oversampling Technique (SMOTE) to overcome the problem of imbalanced datasets. The proposed algorithm is named
as KSMOTE. Using KSMOTE, minority data can be identified at high accuracy and can be detected at high precision. A large set of
experiments were implemented on Apache Spark using numeric PaDEL and fingerprint descriptors. The proposed solution was
compared to both no-sampling method and SMOTE on the same datasets. Experimental results showed that the proposed

solution outperformed other methods.

1. Introduction

The discovery of new medication to cure human illnesses is
progressively hard, expensive, and tedious [1]. A wide va-
riety of atoms and molecules must be chosen and prepared
to generate a set of predetermined drugs. The drug discovery
process can take between 12 and 15 years, with a possibility
of failure, and expenses are worth more than one billion
dollars [2]. Virtual screening is the most critical process in
drug discovery. It is employed to search for small chemical
compounds (molecules) in libraries to identify structures
that have an affinity to bind to a drug target or protein
receptor [3]. Up to 1010 libraries of virtual screening exist,

and since this record keeps increasing, traditional classifi-
cation methods have become insufficient to manage such
large amounts of datasets [4]. One of the well-known re-
positories is PubChem [5] for small molecules and their
biological properties. It offers several resources that are
unfortunately constrained by the unbalanced nature of high-
throughput screening (HTS) data. These data usually contain
a few hundred active compounds, excluding many inactive
compounds.

Dataset imbalances occur when one of the classes is
described by a minimal number of samples, typically of
major importance, compared to the other classes [6]. This
problem may distort prediction accuracy in the used
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classification models, which leads to poor classification
performance. In HTS experiments, thousands of compounds
are usually screened; nevertheless, a small fraction of the
tested compounds are classified to be active while other
classes are recognized inactive [7]. Such data imbalance
affects the accuracy and precision of activity predictions in
individual virtual screening datasets. Using the binary
classification of an imbalanced dataset, an instance of one
class became fewer compared to another class. The minority
class is known as the class with fewer cases, and the other is
called the majority class [8].

Current classification models such as k-nearest neighbor
(KNN), random forest (RF), multilayer perceptron (MLP),
support vector machine (SVM), decision tree (DT), logistic
regression (LG), and gradient boosting (GBT) depend on a
sufficient, representative, and reasonably balanced collection
of training data to draw an approximate boundary for de-
cision-making between different groups. These learning
algorithms are utilized in a variety of fields, including fi-
nancial forecasting and text classification [9]. Despite cur-
rent advances in machine learning (ML), developing
successful algorithms that learn from unbalanced datasets
remains a daunting task. In ML, many approaches have been
created to deal with imbalanced data. However, very few
algorithms have been able to handle problems related to
negatives and false positives. Positive or negative states
usually dominate the unbalanced dataset. Therefore, speci-
ficity and recall (sensitivity) are very vital when processing
an imbalanced dataset [10]. The increase in sensitivity in-
creases the true-positive expectations of the model and
reduces false negatives. Likewise, an upgrade in specificity
increases true-negative expectations and thus reduces wrong
responses. Therefore, it is critical that, for a good model, the
gap between sensitivity and specificity metrics should be as
small as possible [11].

Although some of the researchers highlighted the
problem of negatives and false positives when using Pub-
Chem data, to the best of our knowledge, no technique has
been reported to address the problem effectively. It was also
reported that the imbalance problem obstructed the clas-
sification accuracy of bioactivity [12]. In another study [13],
the authors compared the performance of seven different
descriptive classifiers based on their ability to deal with
unbalanced datasets. Another research stated that multilevel
SVM-based algorithms outperformed certain algorithms
such as (1) traditional SVM, (2) weighted SVM, (3) neural
networks, (4) linear regression, (5) Naive Bayes (NB), and
(6) C4.5 tree with imbalanced groups, missing values, and
real health-related data [14].

Besides, the main concept of resampling is to reduce
variance between class samples by preprocessing the training
data. In other words, the resampling approach is used in
training samples in order to achieve the same number of
samples for each class to adjust the previous majority and
minority sample distributions. There are two basic methods
in the traditional resampling methodology, namely,
undersampling and oversampling [15]. Undersampling
produces a smaller number of majority samples while all
minority samples are retained. The predominant class
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samples will be eliminated randomly before a satisfactory
ratio has been accomplished for all groups. Undersampling
is ideal for applications where there is an enormous number
of majority samples, and the reduction of training samples
would minimize the training time for the model. However, a
drawback with undersampling that it discards samples
contributes to the loss of majority class information [16].

Another approach to address the imbalanced data is
oversampling. By replicating samples, it raises the number of
samples in the minority groups [17]. The benefit from
oversampling is that because all samples are used, no
knowledge is lost. Oversampling, however, has its own
drawback. It contributes to higher processing costs by
generating extra training samples. Therefore, to compensate
for that limitation, more efficient algorithms are needed.

Although resampling methods are usually used to solve
problems with imbalances in the class, there is little defined
strategy to identify the acceptable class distribution for a
particular dataset [18]. As a result, the optimal class dis-
tribution differs from one dataset to another. Recent variants
of resampling approaches derived from oversampling and
undersampling overcome some of the shortcomings of
current technologies, including SMOTE (Synthetic Minority
Oversampling Techniques). SMOTE 1is one of the most
important oversampling approaches that generate interpo-
lation instances, which is added to the training samples
without duplicating the samples in the class of the minority.
The SMOTE approach examines the KNN of the minority
class test that will be utilized as a base for the new synthetic
sample [19]. If created instances are smaller than the size of
the initial dataset, the approach randomly selects the original
instances utilized to create the artificial ones. If instances are
larger than the size of the original dataset, the approach
iterates over the dataset, creating an artificial instance per
original instance until it reaches the previous scenario [20].
SMOTE is considered as an oversampling technique that
produces synthetic minority class samples. This is theoret-
ically performing better than simple oversampling, and it is
commonly used. For example, SMOTE was utilized to detect
network intrusions [21] or speech boundary sentence, to
predict species distribution [22]. SMOTE will be utilized in
this research.

Data mining techniques can help to reduce promising
candidate chemicals for interaction with specific molecular
targets before they are experimentally evaluated [23]. In
theory, this can help to speed up the drug development
process. However, the improvement of accurate prediction
models for HTS is difficult. For datasets such as those taken
from HTS experiments, the achievement of high predict-
ability accuracy may be misleading since this may be ac-
companied by an unacceptable false-positive rate [24] as
high accuracy does not always imply a small proportion of
false predictions.

In the event of a large class imbalance, this paper at-
tempts to address the most effective variant of data pre-
processing to enhance data imbalance accuracy, which
tavors the collection of interactions that increase the overall
accuracy of a learning model. We propose a SMOTE
coupled with k-mean method to classify several imbalanced
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PubChem datasets with the goal of (1) validating whether k-
mean with SMOTE affects the output of established models
and (2) exploring if KSMOTE is appropriate and useful in
finding interesting samples from broad datasets. Our model
is also applied to different ML algorithms (random forest,
decision tree, multilayer perceptron, logistic regression,
and gradient boosting) for comparison purposes with three
different datasets. The paper also introduces a procedure
for data sampling to increase the sensitivity and specificity
of predicting several molecules’ behavior. The proposed
approach is implemented on standalone clusters for
Apache Spark 2.4.3 in order to address the imbalance in a
big dataset.

The remainder of this paper is structured as follows.
Section 2 provides a general description of class imbalance
learning concepts and reviews the related research con-
ducted on the subject matter. Section 3 explains how the
proposed approach for VS in drug discovery was developed.
Section 4 presents performance evaluations and experi-
mental results. Section 5 presents the discussion of our
proposal. Finally, Section 6 highlights the conclusions and
topics of study for future research.

2. Related Work

For the paper to be self-contained, this section reviews the
most related work to the VS research, techniques, problems,
and state-of-the-art solutions. It also examines some of the
big data frameworks that could help solve the problem of
imbalanced datasets.

Since we live in the technological era where older storage
and processing technologies are not enough, computing
technologies must be scaled to handle a massive amount of
data generated by different devices. The biggest challenge in
handling such volumes of data is the speed at which they will
grow much faster than the computer resources. One of the
research areas that generate huge data to be analyzed is
searching and discovering medicines. The proposed
methods aim to find a molecule capable of binding and
activating or inhibiting a molecular target. The discovery of
new drugs for human diseases is exceptionally complicated,
expensive, and time-consuming. Drug discovery uses vari-
ous methods [25] based on a statistical approach to scan for
small molecule libraries and determines the structures most
likely to bind to a compound. However, the drug target is a
protein receptor that is involved in a metabolic cycle or
signaling pathway by which a particular disease disorder is
established or another anatomy.

There are two VS approaches, which are ligand-based VS
(LBVS) and structure-based virtual screening (SBVS) [26].
LBVS depends on the existing information about the ligands.
It utilizes the knowledge about a set of ligands known to be
active for the given drug target. This type of VS uses the
mining of big data analytics. Training binary classifiers by a
small part of a ligand can be employed, and very large sets of
ligands can be easily classified into two classes: active and
nonactive ones. SBVS, on the other side, is utilized to dock
experimentally. However, 3D protein structural information
is required [27], as shown in Figure 1.

K-mean clustering is one of the simplest nonsupervised
learning algorithms, which was first proposed by Macqueen
in 1967. It has been applied by many researchers to solve
some of the problems of known groups [28]. This technique
classifies a particular dataset into a certain number of
groups. The algorithm randomly initializes the center of the
groups. Then, it calculates the distance between an object
and the midpoint of each group. Next, each data instance is
linked to the nearest center, and the cluster centers are
recalculated. The distance between the center and each
sample is calculated by the following equation:

c ci
Euclidean distance = Z Z I1Xi-Yjl, (1)

i=1 j=1

where the Euclidean distance between the data point Xi and
cluster center y is d, Ci is the total number of data points i in
cluster, and c is the total number of cluster centers. All of the
training samples are first grouped into K groups (the ex-
periment with diverse K values runs to observe the result).
Suitable training samples from the derived clusters are se-
lected. The key idea is that there are different groups in a
dataset, and each group appears to have distinct charac-
teristics. When a cluster includes samples of large majority
class and samples of low minority class, it functions as a
majority class sample. If on the other side, a cluster has extra
minority samples and fewer majority samples, it acts more
like a minority class. Therefore, by considering the number
of majority class samples to that of minority class samples in
various clusters, this method oversamples the required
number of minority class samples from each cluster.

Several approaches have been proposed in the literature
to handle big data classification including classification al-
gorithms, random forest, decision tree, multilayer percep-
tron, logistic regression, and gradient boosting.

Classification algorithms (CA) are mainly depending on
machine learning (ML) algorithms, where they play a vital
role in VS for drug discovery. It can be considered as an
LBVS approach. Researchers widely used the ML approach
to create a binary classification model that is a form of filter
to classify ligands as active or inactive in relation to a
particular protein target. These strategies need fewer com-
putational resources, and because of their ability to gener-
alize, they find more complex hits than other earlier
approaches. Based on our experience, we believe that many
classification algorithms can be utilized for dealing with
unbalanced datasets in VS, such as SVM, RF, Naive Bayes,
MLP, LG, ANN, DT, and GBT. Five ML algorithms are
applied in this paper RF, DT, MLP, LG, and GBT [29].

Random forest (RF) is an ensemble learning approach in
which multiple decision trees are constructed based on
training data and a majority voting mechanism. Like KNN, it
is utilized to predict classification or regression for new
inputs. The key advantage of RF is that it can be utilized for
problems that need classification and regression. Besides, RF
is the ability to manage many higher-dimensional datasets. It
has a powerful strategy for determining the lack of infor-
mation and preserving accuracy when much of the infor-
mation is missing [29].



Complexity

Virtual screening

> |

3D structure of target

N
o
Unknown known
HN~ NH, | |
Ligand-based Structure-based
methods Actives and methods
Actives known | inactives known

Similarity Pharmacophore Machine learning Protein ligand
searching mapping methods docking

FiGure 1: Taxonomy for the 3D structure of VS methods [25].

Decision tree (DT) is represented as an actual tree with
its root at the top and the leaves at the bottom. The root of
the tree is divided into two or more branches. The branch
may be broken down into two branches or more. This
process continues until the leaf is reached, meaning no more
split remains.

Multilayer perceptron (MP) has two main types of ar-
tificial neural networks (ANNs), which are supervised and
unsupervised networks. Every network consists of a series of
linked neurons. A neuron takes multiple numerical inputs
and outputs of values depending on the number of inputs
weighted. Popular functions of transformation embody the
functions of tanh and sigmoid. Neurons are formed into
layers. ANN can contain several hidden layers, and the
neurons will only be linked to those in the next layers,
known as forwarding feed networks, multiplayer percep-
tions (MLPs), or functional radial base network (RBN) [29].

Logistic regression (LR) is one of the simplest and fre-
quently utilized ML algorithms for two-class classification. It
is simple to implement and can be utilized as the baseline for
any binary classification problem. In deep learning, basic
principles are also constructive. The relationship between a
single dependent relative binary variable and independent
variables is defined and estimated by logistic regression. It is
also a mathematical method for predicting binary classes.
The effect or target variable is dichotomous in nature. Di-
chotomous means that only two possible groups can be used
for cancer detection issues, for instance [30].

Gradient boosting is a type of ML boosting. It relies on the
intuition that the best possible next model, when combined
with previous models, minimizes the overall prediction error.
The name gradient boosting arises because target outcomes
for each case are set based on the gradient of the error with
respect to the prediction. Each new model takes a step in the
direction that minimizes prediction error in the space of
possible predictions for each training case [30].

In [31], the authors compared four Weka classifiers,
including SVM, J48 tree, NB, and RF. From a completed
cost-sensitive survey, SVM and Tree C4.5 (J48) performed
well, taking minority group sizes into account. It shows that

a hybrid of majority class undersampling and SMOTE can
improve overall classification performance in an imbalanced
dataset. In addition, the authors in [32] have employed a
repetitive SVM as a sample method that is used for SVM
processing from bioassay information on luciferase inhi-
bition that has a high active/inactive imbalance ratio (1/377).
The models’ highest performance was 86.60 and 88.89
percent for active compounds and inactive compounds,
respectively, associated with a combined precision of 87.74
percent when using validation and blind test. These findings
indicate the quality of the proposed approach for managing
the intrinsic imbalance problem in HTS data used to cluster
possible interference compounds to virtual screening uti-
lizing luciferase-based HTS experiments.

Similarly, in [33], the authors analyzed several common
strategies for modeling unbalanced data, including multiple
undersampling, threshold, ratio 1:3 undersampling, one-
sided undersampling, similarity undersampling, cluster
undersampling, diversity undersampling, and only thresh-
old selection. In total, seven methods were compared using
HTS datasets extracted from PubChem. Their analysis led to
the proposal of a new hybrid method, which includes both
low-cost learning and less sampling approaches. The authors
claim that the multisample and hybrid methods provide
accurate predictions of results more than other methods.
Besides, some other research studies used toxicity datasets in
imbalance algorithms as in [34]. The model was based on a
data ensemble, where each model sees an equal distribution
of the two toxic and nontoxic classes. It considers various
aspects of creating computational models to predict cell
toxicity based on cell proliferation screening dataset. Such
predictive models can be helpful in evaluating cell-based
screening outcomes in general by bringing feature-based
data into such datasets. It also could be utilized as a method
to recognize and remove potentially undesirable com-
pounds. The authors concluded that the issue of data im-
balance hindered the accuracy of the critical activity
classification. They also developed an artificial random forest
group model that was designed to mitigate dataset mis-
alignment in predicting cell toxicity.
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The authors in [35] used a simple oversampling ap-
proach to build an SVM model classifying compounds based
on the expected cytotoxic versus Jurkat cell line. Over-
sampling with the minority has been shown to contribute to
better predictive SVM models in training groups and ex-
ternal test groups. Consequently, the authors in [36] ana-
lyzed and validated the importance of different sampling
methods over the nonsampling method in order to achieve
well-balanced sensitivity and specificity of the ML model
that has been created for unbalanced chemical data. Ad-
ditionally, the study conducted an accuracy of 93.00% under
the curve (AUC) of 0.94, a sensitivity of 96.00%, and
specificity of 91.00% using SMOTE sampling and random
forest classification to predict drug-induced liver injury.
Although it was presented in the literature that some of the
proposed approaches have succeeded somehow in
responding to the issues of unbalanced PubChem datasets,
there is still a lack of time efficiency during calculations.

3. Proposed KSMOTE Framework

K-Mean Synthetic Minority Oversampling Technique
(KSMOTE) is proposed in this paper as a solution for virtual
screening to drug discovery problems. KSMOTE combines K-
mean and SMOTE algorithms to avoid the imbalanced original
datasets, ensuring that the number of minority samples is as
close as possible to the majority of the population samples. As
shown in Figure 2, the data were first separated into two
sets—one set contains majority samples and the other set
contains the entire minority sample. First, majority samples
were clustered into K clusters and minority samples, where K is
greater than one in both cases. The number of clusters for each
class is chosen according to the elbow method. The Euclidean
distance was employed to calculate the distance between the
center of each majority cluster and the center of each minority
cluster. Each majority cluster sample was combined with the
minority cluster sample subset to make K separate training
datasets. This combination was done based on the largest
distance between each majority and minority cluster. SMOTE
was then applied to each combination of the clusters. It
generates an instance of synthetic minority, oversampling
minority class. For any minority example, the k (5 in SMOTE)
is the nearest. Neighbors of the same class are determined, and
then some instances are randomly selected according to the
oversampling factor. After that, new synthetic examples are
generated along the line between the minority example and its
nearest chosen example.

3.1. Environment Selection and the Dataset. Since we are
dealing with big data, a big data framework must be chosen.
One of the most powerful frameworks that have been used in
many data analytics is Spark. Spark is a well-known cluster
computing engine that is very reliable. It presents applica-
tion programming interfaces in various programming lan-
guages such as Java, Python, Scala, and R. Spark supports in-
memory computing, allowing handling records much faster
than disk-based engines Hadoop. Spark engine is advanced

for in-reminiscence processing as well as disk-based totally
processing [37]. It has been installed on different operating
systems such as Windows and Ubuntu.

This paper implements the proposed approach using
PySpark version 2.4.3 [38] and Hadoop version 2.7, installed
on Ubuntu 18.04, and Python is used as a programming
language. A Jupyter notebook version 3.7 was used. The
computer configuration for experiments was a local machine
Intel Core i7 with 2.8 GHz speed and 8 GB of RAM. To
illustrate the performance of the proposed framework, three
datasets are chosen. They are carefully chosen where each of
them differs in its imbalance ratio. They are also large
enough to illustrate the big data analysis challenge. The three
datasets are AID 440 [39], AID 624202 [40], and AID 651820
[41]. All of them are retrieved from the PubChem database
Library [5]. The three datasets are summarized in Table 1 and
briefly described in the following paragraphs. All of the data
exist in an unstructured format as SDF files. Therefore, they
require some preprocessing to be accepted as input to the
proposed platform:

(1) AID 440 is a formylpeptide receptor (FPR). The
G-protein, coupled with the formylpeptide receptor,
was one of the originating chemo-attracting receptor
members [39]. It consists of 185 active and 24,815
nonactive molecules.

(2) AID 624202 is a qHTS test to identify small mo-
lecular stimulants for BRCA1 expression. BRCA1
has been involved in a wide range of cellular ac-
tivities, including repairing DNA damage, cell cycle
checkpoint control, growth inhibition, programmed
cell death, transcription regulation, chromatin re-
combination, protein presence, and autogenously
stem cell regeneration and differentiation. The in-
crease in BRCA1 expression would enable cellular
differentiation and restore tumor inhibitor function,
leading to delayed tumor growth and less aggressive
and more treatable breast cancer. Promising stim-
ulants for BRCA1 expression could be new pre-
ventive or curative factors against breast cancer [40].

(3) AID 651820 is a qHTS examination for hepatitis C
virus (HCV) inhibitors [41]. About 200 million
people globally are hepatitis C (HCV) contaminated.
Many infected individuals progress to chronic liver
disease, including cirrhosis, with the risk of devel-
oping hepatic cancer. There is no effective hepatitis C
vaccine available to date. Current interferon-based
therapy is effective only in about half of patients and
is associated with significant adverse effects. It is
estimated that the fraction of people with HCV who
can complete treatment is no more than 10 percent.
The recent development of direct-acting antivirals
against HCV, such as protease and polymerase in-
hibitors, is promising. However, it still requires a
combination of peginterferon and ribavirin for
maximum efficacy. Moreover, these agents are as-
sociated with a high resistance rate, and many have
significant side effects (Figure 3)
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3.2. Preprocessing. A chemical compound (molecules) is
stored in SDF files, so those files have to be converted to
feature vectors [d1, d2, and d3... d1444] with 1444 dimen-
sions, and it was suitable to use PaDEL cheminformatics
software [42] for this process. There are two types of PaDEL

proposed model.

cheminformatics software, numeric and fingerprint de-
scriptors. A PaDEL numeric descriptor gives information
about the quantity of a feature in each compound. Molecules
are represented based on constitutional, topological, and
geometrical descriptors as well as other molecular proper-
ties. This includes aliphatic ring count, aromatic ring count,
logP, donor count, polar surface area, and Balaban index.
The Balaban index is a real number and can be either positive
or negative. PaDEL is also used as a fingerprint descriptor,
and it gives 881 attributes. The fingerprint was also calcu-
lated in order to compare the model performance derived
from PaDEL descriptors. Molecules are referred to as in-
stances and labeled as 1 or 0, where 1 means active and 0
means not active. The reader is directed to [43] for further
information about the descriptors and fingerprints.

4. Evaluation Metrics

Instead of utilizing complicated metrics, four intuitive and
functional metrics (specificity, sensitivity, G-mean, and
accuracy) were introduced according to the following
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reasons: First, the predictive power of the classification
method for each sample, particularly the predictive power
of the minority group (i.e., active power), is demonstrated
by measuring performance for both sensitivity and spec-
ificity. Second, G-mean is a combination of sensitivity and
specificity, indicating a compromise between the majority
and minority output of the classification. Poor quality in
predicting positive samples reduces the G-mean value,
whereas negative samples are classified with accuracy with
a high percentage. This is a typical state for imbalanced data
collection. It is strongly recommended that external pre-
dictions be used to build a reliable model of prediction
[41, 44]. The four statistical assessment methods are de-
scribed as follows:

(1) Sensitivity: the proportion of positive samples ap-
propriately classified and labeled, and it can be de-
termined by the following equation:

TP

(TP + FNY’ 2

sensitivity =

where true positive (TP) corresponds to the right
classification of positive samples (e.g., in this work,
active compounds); true negative (TN) corresponds
to the correct classification (i.e., inactive com-
pounds) of negative samples; false positive (FP)
means that negative samples have been incorrectly
identified in positive samples; and false negative
(FN) is an indicator to incorrectly classified positive
samples.

(2) Specificity: the proportion of negative samples that
are correctly classified; its value indicates how many
cases that are predicted to be negative and that are
truly negative as stated in the following equation:

TN

(TN + FPY (3)

specificity =

(3) G-mean: it offers a simple way to measure the
model’s capability to correctly classify active and
inactive compounds by combining sensitivity and
specificity in a single metric. G-mean is a measure of
balance accuracy [45] and is defined as follows:

G-mean = \/ specificity x sensitivity. (4)

G-mean is a hybrid of sensitivity and specificity,
indicating a balance between majority and minority
rating results. Low performance in forecasting
positive samples also contributes to reducing
G-mean value, even though negative samples are
highly accurate. This is a typical unbalanced dataset
condition [45].

(4) Accuracy: it shows the capability of a model to
correctly predict the class labels as given in the
following equation:

(TP + TN)
(TP + TN + FP + EN)’

(5)

accuracy =

4.1. Experimental Results. This section presents the results
based on extensive sets of experiments. The average of the
experiments is concluded and presented with discussion.
Tenfold cross-validation is used to evaluate the performance
of the proposed model. Besides, the original sample retrieved
from the datasets is randomly divided into ten equal-sized
subsamples. Out of the ten subsamples, one subsample is
maintained as validation data for model testing, while the
remaining nine subsamples are used as training data. The
validation process is then replicated ten times (folds), using
each of the ten subsamples as validation data exactly once. It
is then possible to compute the average of the ten outcomes
from the folds. To validate the effectiveness of KSMOTE, the
performance of the proposed model is compared with that of
SMOTE only and no-sampling models. Furthermore, two
types of descriptors, numeric PaDEL and fingerprint, are
used to validate their impact on the model’s performance for
all compilations. The results presented in this work are based
on original test groups only without oversampling. Two
types of descriptors, PaDEL and fingerprint, are used to
generate five algorithms (RF, DT, MLP, LG, and GBT) to
validate their effect on model output. Therefore, the per-
formance of applying these algorithms is examined.

4.2. G-Mean-Based Performance. In this section, G-mean
results are presented for the three selected datasets. Figure 4
describes G-mean for the AID 440 dataset based on both PaDEL
and fingerprint descriptors. This figure demonstrates the per-
formance of the various PaDEL descriptor and fingerprint sets.
It also shows a comparison between three different approaches,
which are no-sample, SMOTE, and KSMOTE. Besides the
performance of employing RF, DT, MLP, LG, and GBT clas-
sifiers with the three different approaches examined, 20% of the
datasets are used for testing, as mentioned before.

As shown in Figure 4, the best G-mean gained in the case
of PaDEL fingerprint descriptor was by the KSMOTE, where
it reaches, on average, 0.963. However, utilizing KSMOTE
with LG gives almost G-means of 0.97, which is the best
value over other classifiers. Based on our experiments,
SMOTE- and no-sample-based PaDEL fingerprint de-
scriptors are not recommended for virtual screening and
classification where their G-mean is too small.

With the same settings applied to the fingerprint de-
scriptor, the PaDEL numeric descriptor performance is
examined. Again, the results are almost similar, where the
KSMOTE shows higher performance than SMOTE and no-
sample with nearly 55%. However, KSMOTE with DT and
GBT classifiers are not up to other classifiers’ level in this
case. Therefore, it is recommended to utilize RF, MLP, and
LG when a numeric descriptor is used. On the contrary,
although the performance of SMOTE and no-sample is not
that good, they show enhancement over the PaDEL fin-
gerprint with an average of 10%. Among the overall results,
it has been noticed that the worst G-mean value is produced
from applying RF classifier with no-sample approach.

The performance of KSMOTE produced from the AID
440 dataset is confirmed using the AID 624202 dataset. As
shown in Figure 5, KSMOTE gives the best G-mean using all
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FIGURE 5: G-mean of PaDEL descriptor and fingerprint for AID624202.

of the classifiers. The only drawback shown is the G-mean of
LG performance by almost 8% from other classifier results in
case of PaDEL fingerprint classifier is used. On the contrary,
LG classifier shows much more progress than before, where
its average G-mean reached 0.8, which is a good achieve-
ment. For the rest of the classifiers in both descriptors,
G-mean values are enhanced from the previous dataset. Still,
among all the classifiers, G-mean value for the RF classifier
with no-sample approach is worst. The overall conclusion is
that KSMOTE is recommended to be used with both AID
440 and AID 624202 datasets.

Table 2 summarizes Figures 4-6 collecting all of the
results in one place. It shows the complete set of experiments
and average G-mean results in values to see the overall
picture. Again, as can be exerted from the table, the proposed
KSMOTE approach gives the best results of G-mean on the
three datasets. It is believed that partitioning active and
nonactive compounds to K clusters and then combining
pairs that have large distances led to an accurate rate of

oversampling instances in the SMOTE algorithm. This ex-
plains why the proposed model produces the best results.

4.3. Sensitivity-Based Performance. Sensitivity is another
metric to measure the performance of the proposed ap-
proach compared to others. Here, the sensitivity perfor-
mance presentation is a little bit different where the
performance of the three approaches is displayed for the
three datasets. Figure 7 shows the sensitivity of all datasets
based on PaDEL numeric descriptor, while Figure 8 presents
the sensitivity results for the fingerprint descriptor. It is
obvious that the KSMOTE sensitivity values are superior to
other approaches using both descriptors. In addition,
SMOTE is overperforming the no-sample approach in al-
most all of the cases. For the AID 440 dataset, a low sen-
sitivity value of 0.37 for the minority class is shown by the
MLP model from the initial dataset (i.e., without SMOTE
resample). The SMOTE algorithm was introduced to
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TaBLE 2: Complete set of experiments and average G-mean results.
Algorithm PaDEL numeric descriptor PaDEL fingerprint
No-sample SMOTE KSMOTE Time No-sample SMOTE KSMOTE Time

RF 0.167 0.565 0.954 23 0.29 0.442 0.96 12
DT 0.5 0.59 0.937 9.3 0.51 0.459 0.958 4.9

AID 440 MLP 0.6 0.5 0.963 20 0.477 0.498 0.964 9.6
LG 0.56 0.67 0.963 11 0.413 0.512 0.96 5.6
GBT 0.23 0.56 0.963 33 0.477 0.421 0.963 17.1
RF 0.445 0.625 0.952 29.7 0.5 0.628 0.96 15.3
DT 0.576 0.614 0.94 10 0.54 0.564 0.94 5

AID624202 MLP 0.74 0.715 0.95 25.2 0.636 0.497 0.958 13.5
LG 0.628 0.83 0.94 26.8 0.791 0.78 0.837 13.25
GBT 0.489 0.61 0.95 45 0.495 0.482 0.954 22.36
RF 0.722 0.792 0.956 41 0.741 0.798 0.92 19.25
DT 0.725 0.72 0.932 8.78 0.765 0.743 0.89 4.44

AID 651820 MLP 0.82 0.817 0.915 35 0.788 0.8 0.91 17.3
LG 0.779 0.8357 0.962 19 0.75 0.768 0.89 9.36
GBT 0.714 0.742 0.9 60.5 0.762 0.766 0.905 29.9
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FIGURE 6: G-mean of numeric PaDEL descriptor and fingerprint for AID 65182.
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FIGURE 7: Sensitivity of all datasets for the PaDEL numeric descriptor.
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oversampling this minority class to significantly improve
perceptibility, with LG jumping from 0.314 to 0.46%. The
KSMOTE algorithm has been used to sample this minority
class to boost the predictability of the interesting class, which
represents active compounds. Besides, the sensitivity in-
creases have been shown in the LG, with the KSMOTE
sensitivity value jumped from 0.46 to 0.94 percent.

For the AID 624202 dataset, where the original model
hardly recognizes the rare class (active compounds) with
exceptionally weak sensitivity, a 0.2 RF is more significantly
improved. However, the sensitivity value improves dra-
matically from 0.4 to 0.8 in LG with the incorporation of
SMOTE. In KSMOTE, however, the sensitivity value in MLP
rises considerably from 0.8 to 0.928. The model classification
of AID 651820 is similarly enhanced, with sensitivity in the
majority class in MLP 0.728 (inactive compounds).

Figure 8 presents the sensitivity of the three approaches
using fingerprint descriptors. It is obvious that KSMOTE
sensitivity values are superior to other approaches. As can be
seen, the performance differs based on the type of the used
dataset; on the contrary, KSMOTE has a stable performance
using different classifiers. In other words, the difference in
the KSMOTE is not that noticeable. However, it is clear from
the figure that, on average, SMOTE and no-sample ap-
proaches have the same performance as well as behavior
when applied to all datasets. Besides, the sensitivity results
became much better when they are applied on the
AID651820 dataset than when AID 440 and AID624202
were used. Again, the results go along with the previous
measurement.

4.4. Specificity-Based Performance. Specificity is another
important performance measure where it measures the
percentage of negative classified classes that are correctly
classified. Figures 9 and 10 show the specificity of all clas-
sifiers using PaDEL and fingerprint descriptors, respectively.
Those figures illuminate two points as follows:

(A) All algorithms, on average, are correctly identifying
the negative classes, except SMOTE, LG classifier in
both AID 624202 and AID 651820 datasets

(B) Fingerprint descriptor results are more stable than
PaDEL descriptor results

To summarize the sensitivity and specificity results,
Table 3 shows the produced results using different classifiers.
KSMOTE has a superior result in most of the experiments.
Sensitivity and specificity results of the three datasets in
numeric and fingerprint descriptors are shown, and the
values marked in bold are the highest gained values among
the results. Those values show the efficiency of the proposed
method, KSMOTE.

4.5. Computational Time Comparison. One of the issues that
the algorithms always face is the computational time, es-
pecially if those algorithms are designed to work on lim-
ited-resource devices. The models without SMOTE, for
samples with minority classes, cannot achieve adequate
performance. On the other hand, the five classifiers’
computational time when KSMOTE is used has been
proven to be accurate using sensitivity and G-mean values
in almost all of the three PubChem datasets (see
Figures 4-8). The computed computational time is re-
ported in Figures 11 and 12. It is interesting to note that
both PaDEL descriptors and fingerprint PaDEL descriptors
produce similar computational efficiency among the five
classifiers. From the results, DT and LG give the best
computation time among all classifiers, followed by MLP.
The computational time values of fingerprint PaDEL are
much smaller than the numeric PaDEL descriptor’s
computational time in most cases. However, looking at the
maximum computational time among the classifiers in
both Figures 11 and 12, it turns out to be a GBT classifier
with a value of 29 and 60 seconds in numeric and fin-
gerprint descriptors.
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5. Discussion

It has been considered that the key problem of HT'S data is its
extreme imbalance, with only a few hits, often identified
from a wide variety of compounds analyzed. The imbalance
ratio distribution of AID 440 is 1/134, that of AID 624202 is
1/91.5, and for AID 651820, it is 1/23, as shown in Figure 1.
Based on the conducted experiments, our proposed model
successfully distinguished the active compounds with an
average accuracy of 97% and the inactive compounds with
an accuracy of 98%, with a G-mean of 97.5%.

Moreover, HTS data size, which typically comprises
hundreds of thousands of compounds, poses another
challenge. A statistical model may be trained and optimized
on such a highly time-intensive dataset. Big data platforms,
such as Spark in this study, were computationally effective
and dramatically decreased computing costs in the opti-
mized phase and substantially improved the KSMOTE
model’s performance.

Ideally, the KSMOTE model separates active (minority)
dataset from inactive (majority) data with maximum dis-
tance. But the KSMOTE model, constructed from an im-
balanced dataset, appears to move the hyperplane away from
the optimal location to the minority side. Thus, most items
are likely to be categorized into the majority class by both
no-sample and SMOTE models, leading to a broad differ-
ence between specificity and sensitivity. Therefore, such a
model’s predictability can be significantly weak. We not only
rely on cluster sampling to investigate the progress of the
KSMOTE model but also built a SMOTE model for each
sampling round.

We checked the KSMOTE model’s performance with the
blind dataset, which included 37 active compounds and 4963
inactive compounds for AID 440. KSMOTE in AID 440 was
able to classify the inactive compounds very well with an
overall accuracy of >98 percent, while it correctly classifies
the active compounds at an accuracy of 95%. However, AID
624202 contains 796 active compounds and 72807 inactive
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compounds, and AID 651820 contains 2332 active com-
pounds and 54269 inactive compounds. Thus, AID 624202 is
able to identify inactive compounds very well with an av-
erage accuracy of >96 percent, while it correctly classifies the
active compounds at an accuracy of 94%.

Also, AID 651820 is able to identify inactive compounds
quite well with an average accuracy of >94 percent, while it
correctly classifies the active compounds at an accuracy of
92%. KSMOTE is considered better than the other systems
(SMOTE only and no-sample) because it depends at the
beginning on the lack of similarity in taking the samples of
clusters. This dissimilarity between samples increases clas-
sifiers’ accuracy, and besides that, it used the SMOTE to
increase the number of minority samples (active compound)
by generating a new sample for the minority.

The strength of KSMOTE lies in the fact that, in addition
to the oversampling minority class accurately, CBOS pro-
duced new samples that do not affect majority class space in
any way. We use the randomness in an effective way by
restraining the maximum and minimum values of the newly
generated samples.

Recent developments in technology allow for high-
throughput scanning facilities, large-scale hubs, and indi-
vidual laboratories that produce massive amounts of data at
an unprecedented speed. The need for extensive information

management and analysis attracts increasing attention from
researchers and government funding agencies. Hence,
computational approaches that aid in the efficient processing
and extraction of large data are highly valuable and nec-
essary. Comparison among the five classifiers (RF, DT, MLP,
LG, and GBT) showed that DT and LG not only performed
better but also had higher computational efliciency.
Detecting active compounds by KSMOTE makes it a
promising tool for data mining applications to investigate
biological problems, mostly when a large volume of im-
balanced datasets is generated. Apache Spark improved the
proposed model and increased its efficiency. It also enabled
the system to be more rapid in data processing compared to
traditional models.

6. Conclusion

Building accurate classifiers from a large imbalanced dataset
is a difficult task. Prior research in the literature focused on
increasing overall prediction accuracy; however, this strategy
leads to a bias towards the majority category. Given a certain
prediction task for unbalanced data, one of the relevant
questions to ask is what kind of sampling method should be
used? Although various sampling methods are available to
address the data imbalance problem, no single sampling
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method works best for all problems. The choice of data
sampling methods depends, to a large extent, on the nature
of the dataset and the primary learning objective. The results
indicate that, regardless of the datasets used, sampling ap-
proaches substantially affect the gap between the sensitivity
and the specificity of the model trained in the nonsampling
method. This study demonstrates the effectiveness of three
different models for balanced binary chemical datasets. This
work implements both K-mean and SMOTE on Apache
Spark to classify unbalanced datasets from PubChem bio-
assay. To test the generalized application of KSMOTE, both
PaDEL and fingerprint descriptors were used to construct
classification models. An analysis of the results indicated
that both sensitivity and G-mean showed a significant im-
provement after KSMOTE was employed. Minority group
samples (active compounds) were successfully identified,
and pathological prediction accuracy was achieved. In ad-
dition, models created with PaDEL descriptors showed
better performance. The proposed model achieved high
sensitivity and G-mean, up to 99% and 98.3%, respectively.

For future research, the following points are identified
based on the work described in this paper:

(1) It is necessary to find solutions to other similar
problems in chemical datasets, such as using semi-
supervised methods to increase labeled chemical
datasets. There is no doubt that the topic needs to be
studied in depth because of its importance and its
relationship with other areas of knowledge, such as
biomedicine and big data.

(2) It is suggested to study deep learning algorithms for
the treatment of class imbalance. Utilizing deep
learning may increase the accuracy of the classifi-
cation overcoming the deficiencies of existing
methods.

(3) One more open area is the development of an online
tool that can be used to try different methods and
decide on the best results instead of working with
only one method at a time.

Data Availability

The dataset used is publicly available at (1) AID 440 (https://
pubchem.ncbi.nlm.nih.gov/bioassay/440), (2) AID 624202
(https://pubchem.ncbi.nlm.nih.gov/bioassay/624202), and
(3) AID 651820 (https://pubchem.ncbi.nlm.nih.gov/
bioassay/651820).
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